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Abstract
Address space layout randomization (ASLR) is a widely used
component of computer security aimed at preventing code
reuse and/or data-only attacks. Modern kernels utilize ker-
nel ASLR (KASLR) and finer-grained forms, such as func-
tional granular KASLR (FGKASLR), but do so as part of
an inefficient bootstrapping process we call bootstrap self-
randomization. Meanwhile, under increasing pressure to op-
timize their boot times, microVM architectures such as AWS
Firecracker have resorted to eliminating bootstrapping steps,
particularly decompression and relocation from the guest
kernel boot process, leaving them without KASLR. In this
paper, we present in-monitor KASLR, in which the virtual
machine monitor efficiently implements KASLR for the guest
kernel by skipping the expensive kernel self-relocation steps.
We prototype in-monitor KASLR and FGKASLR in the open-
source Firecracker virtual machine monitor demonstrating,
on a microVM configured kernel, boot times 22% and 16%
faster than bootstrapped KASLR and FGKASLR methods,
respectively. We also show the low overhead of in-monitor
KASLR, with only 4% (2 ms) increase in boot times on aver-
age compared to a kernel without KASLR. We also discuss
the implications and future opportunities for in-monitor ap-
proaches.

CCS Concepts: • Security and privacy→Virtualization
and security.
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1 Introduction
Never do anything yourself that others can do for you.

—Agatha Christie (1890-1976)

The operating system kernel is highly privileged and of-
ten shared, especially in a cloud computing environment. Its
security is critical. Even when running as a guest kernel in a
virtual machine (VM), security is important, either as a first
layer of defense for the host or to isolate multiple mistrust-
ing tenants running containers atop the guest kernel. In any
case, kernels have evolved a suite of techniques to mitigate
attacks. One technique used by kernels to frustrate attack-
ers, specifically code reuse attacks, such as return-oriented
programming [61], is address space layout randomization
(ASLR). Kernel ASLR (KASLR) consists primarily of random-
izing the base address where the kernel and kernel modules
are loaded, or, more recently, randomizing individual func-
tion sections (FGKASLR). Randomization makes code reuse
fragments (gadgets) more difficult for attackers to locate.
Some form of KASLR is used in all major OS kernels. It has
been upstream in Linux since 3.14 (2014), and made default
as of 4.12 (2017). Traditionally, prior components in the boot
sequence (e.g., bootloaders) have been unaware of KASLR,
so the OS kernel relocates itself in memory at boot time in a
process we refer to as bootstrap self-randomization, which is
implemented as part of the kernel’s bootstrapping routines.
Bootstrap self-randomization is depicted in Figure 1(a).
Meanwhile, lightweight virtualization environments, or

microVMs, are gaining popularity as a secure unit of execu-
tion that can meet the increasingly stringent performance
demands of emerging cloud programmingmodels like server-
less computing [1–3, 5], and modern virtual machine moni-
tors (VMMs) bypass much of the traditional boot sequence,
especially bootstrapping logic [18]. For example, on x86_64
processors, lightweight monitors bypass the awkward iter-
ation of CPU modes, descriptor tables and page tables to
transition from a 16-bit “real mode” environment to a 64-bit
“long mode” environment by executing the kernel directly
from its 64-bit entry point. Lightweight monitors also by-
pass kernel decompression, opting instead to directly boot
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Figure 1. Overview: (a) guests on standard virtualization
stacks perform inefficient bootstrapping and randomiza-
tion early in their boot; (b) fast-booting modern monitors
eliminate bootstrapping (and randomization) entirely; (c) in-
monitor KASLR efficiently implements randomization in the
monitor instead of the guest.

a kernel ELF file. Unfortunately, perhaps carried away in
their attempts to avoid the inefficiencies of the bootstrap-
ping process, lightweight monitors bypass randomization,
as depicted in Figure 1(b).
In this paper, we make the observation not only that

KASLR is bypassed in modern monitors, but that the tra-
ditional approach of bootstrap self-randomization is incom-
patible with the goal of minimized boot time imposed by
evolving cloud computing workloads. Instead, we propose
in-monitor KASLR, in which the task of randomization is
moved to the virtual machine monitor. In-monitor KASLR is
depicted in Figure 1(c). It exploits the observation that funda-
mentally, bootstrapping (including self-randomization) should
only be undertaken when there is no controlling principal that
can set up an appropriate environment. Lightweight monitors
are such a principal for virtualized environments; indeed,
this is the same reason why they can bypass bootstrapping
steps for processor modes.

We implement in-monitor KASLR in the open-source AWS
Firecracker1 [18] Linux/KVM-based virtual machine monitor,
a modern hypervisor implementation aimed at addressing
next-generation cloud workloads such as serverless com-
puting. Our implementation also introduces state-of-the-
art, function-granular randomization (FGKASLR) within the
monitor by performing steps similar to those taken by its
in-development implementation in Linux. By performing
randomization within the monitor, we can amortize the ker-
nel load process and the guest no longer needs to perform
inefficient relocations that arise from the traditional meth-
ods of decompression and self-randomization. Moreover, our
approach requires no changes to the guest Linux kernel.
The value proposition of microVM monitors like Fire-

cracker rests on their ability to boot workloads quickly (e.g.,
less than 150 ms [18]) to support serverless computing. We
evaluate in-monitor randomization and find it can meet this
threshold even while providing function-granular random-
ization, demonstrating boot times with coarse/fine-grained

1https://github.com/firecracker-microvm/firecracker/

randomization as low as 16 ms/28 ms in a minimally config-
ured kernel. We also show our in-monitor implementation
can speed up boot times by 42%/38%, on average, over ex-
isting self-randomization approaches. Finally, we show low
overhead for in-monitor KASLR, showing as little as a 2.3%
increase in boot times over a kernel without KASLR.

In summary, we make these primary contributions:

• Thorough study of the root cause of bootstrap-related
overhead including decompression and relocation.

• Identification of the omission of KASLR in current
fast-booting microVM architectures.

• Design and implementation of coarse and fine-grained
in-monitor KASLR in AWS Firecracker.

• Evaluation of in-monitor (FG)KASLR.

The rest of this paper is organized as follows: Section 2
and 3 provide background on microVMs, (FG)KASLR, and
the unfortunate current realities of their (nonexistent) com-
bination. Section 4 describes the design and implementation
of in-monitor (FG)KASLR. Section 5 presents an evaluation
of in-monitor (FG)KASLR. Section 6 discusses implications
and future directions, Section 7 surveys related work, and
Section 8 concludes.

2 microVMs
In this section, we first describe the important trends guid-
ing microVMs and their focus on low boot times. We then
provide background on the Linux early boot process, break
down the source of bootstrap-related overhead, and identify
how microVM monitors currently eliminate that overhead.

2.1 The rise of microVMs
Since the inception of the cloud, there has been a general
trend towards even more fine-grained elasticity, in the form
of renting computing resources on a pay-as-you-go basis.
Whereas workloads on the cloud originally resembled tradi-
tional systems (VMs running for days, months, or years), they
have been giving way to workloads organized as fine-grained
application components that individually scale. The most
extreme incarnation of this trend is visible in the function-as-
a-service, or serverless computing domain. Embodied by sys-
tems like Amazon Lambda [2], Microsoft Azure Functions [3],
IBM Cloud Functions [5], and Apache OpenWhisk [1], indi-
vidual units of execution, called lambdas or actions, only run
for seconds or even milliseconds. In order for cloud providers
to profit from such a fine-grained elastic cloud model, the
time to create a new instance on the cloud must be relatively
short compared to its execution time, as cloud users only
pay for their execution time. In general, we highlight two
fundamental shifts in the cloud landscape: increasingly, the
unit of execution in the cloud 1) has a short lifetime and 2)
must boot quickly.
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Figure 2. Components of Linux bzImage

Cloud computing as we know it was formed around the
use of VMs; Amazon EC2 is the canonical example of pro-
viding compute resource in a pay-as-you-go model via VMs.
Yet VMs have traditionally been heavyweight, especially in
boot time, often taking minutes to boot [52]. Under pressure
from lightweight but less well-isolated containers [4, 10],
lightweight virtual machine monitors emerged from both
academia (e.g., LightVM [51]) and industry [6, 18, 64]. AWS
coined the term microVM in the context of Firecracker [18].
Lightweight monitors have been applied to the container
ecosystem through Intel’s clear containers project [64] and
later the Kata containers project [7], which touts “the speed
of containers, the security of VMs”.
Along with lightweight monitors, fast boot times criti-

cally depend on reducing the size and inefficiency within
the guest. Firecracker and Kata Containers both distribute
Linux configurations for lightweight guest kernels. Uniker-
nels [9, 11–13, 24, 45, 50, 53, 55, 62] represent perhaps the
most extreme case of reducing the size of a guest, by re-
placing the guest kernel with only those components of a
library OS needed to directly run on a virtual hardware in-
terface. More recently, similar approaches have been applied
to Linux primarily via guest kernel configuration in Lupine
Linux [48].

The combination of lightweight monitors and guests has
allowed virtualization to meet the requirements imposed by
modern cloud workloads like serverless, while maintaining
a VM-like security posture. Next, we will describe one part
of achieving such a fast boot time: bypassing the bootstrap
loader (and, unfortunately, (FG)KASLR).

2.2 Booting a (micro)VM
For years, the most common way to distribute Linux ker-
nels has been to compress the kernel and link it to a small
bootstrap loader that would decompress then jump to the
decompressed kernel. Here, we detail the overheads of this
booting practice and subsequently the techniques microVMs
use to bypass bootstrap overhead.

Booting a bzImage. The standard format for the kernel—to
be loaded on physical or virtual machines— is commonly
named bzImage or vmlinuz. As shown in Figure 2, bzImage
is actually a concatenation of two components: a small pro-
gram we refer to as the bootstrap loader, and a compressed
blob, which when decompressed, is the executable kernel
image (vmlinux) and a list of relocations, the addresses in

the kernel text segment that must be adjusted in case the
kernel is relocated.
During boot, the bootstrap loader begins executing with

a boot stack and heap using a direct, one-to-one memory
map. At this point, the bootloader has loaded the bzImage
(containing both the bootstrap loader and compressed ker-
nel proper), initrd, and command line arguments to known
locations in memory. The first task of the bootstrap loader is
to decompress the kernel to an available location in memory.
Finally, the bootstrap loader parses the ELF file, loads seg-
ments into memory, and jumps to the uncompressed kernel
(startup_64).

The astute reader will notice that, in this description, we
did not describe the use of the relocation information within
the bzImage that directly follows the uncompressed kernel
image. On x86_64, no relocation is needed unless KASLR is
in use (as described in Section 3.2), so for now we ignore the
relocations.

Direct kernel boot. Modern VM monitors (such as Fire-
cracker, Cloud Hypervisor, and QEMU) support eliminating
bootstrap overhead by directly booting into an uncompressed
kernel image instead of the bzImage, without loading or
running the bootstrap loader. Currently, there are two pro-
tocols that VMMs can use to boot into an uncompressed
(x86_64) Linux kernel: the Linux boot protocol [15] and the
Xen [21] PVH protocol [14]. Both load the raw vmlinux ELF
file, which is usually compressed in the bzImage, and boot
directly into it, avoiding decompression costs. The main
differences in boot protocols lie in how boot-time system
information is conveyed to the nascent kernel.

bzImage and uncompressed kernel boot times. To un-
derstand the benefits of direct kernel boot, we compare the
boot times in the Firecracker VMM for compressed (bzIm-
age) and uncompressed (vmlinux) kernels. To capture the
effects of increasingly lightweight guest kernels, we further
experiment with three configurations of the Linux 5.11.0-rc3
kernel. The first,Ubuntu, uses the configuration fromUbuntu
18.05.4, representing a relatively large, standard distribution
kernel. The second, AWS, uses the reference kernel configu-
ration from AWS Firecracker, representing a state-of-the-art,
medium, general-purpose microVM kernel. The third config-
uration, Lupine, uses a configuration from Lupine Linux [48],
representing a small single-purpose kernel configuration,
approaching a slightly more futuristic unikernel-based envi-
ronment. A description of all kernels used in our experiments
is in Table 1 and our full experimental setup is described in
Section 5.1.
Firecracker does not natively support compressed bzIm-

ages, so to obtain bzImage boot times we used a lightly-
modified version of Firecracker (described in Section 5.1)
which adds bzImage support. To determine which kernel
compression algorithm boots the fastest, we measured six
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Figure 4. Boot times for compressed (with LZ4) and uncom-
pressed kernels

different compression schemes as shown in Figure 3. To opti-
mize boot performance of the bzImages in our experiments,
we configure the guest kernels to use LZ4, rather than the
deafult, gzip, as it is the fastest booting compression algo-
rithm on our machine.
Figure 4 shows the results of booting the various guest

kernels. Overall boot time is measured from the call to exe-
cute Firecracker to just after the guest kernel’s init process
is run. We break down the boot time as In-Monitor, the time
spent in Firecracker before jumping to the kernel and enter-
ing the guest context, Bootstrap Loader, the time between
executing the bootstrap loader and jumping to the uncom-
pressed kernel, and Linux Boot, the time between the jump
to the uncompressed kernel to just after the init process
is run. Since (the lack of) disk caching can greatly impact
boot time, we also looked at the effects of disk caching. For
the No Cache experiments, we drop the caches (pagecache,
dentries, and inodes) right before each kernel boot. In the
Cached experiments, we warmed the cache by booting the
kernel 5 times before starting to measure boot times. All
times shown are the average over 100 kernel boots.

When the kernel is not cached and has to be read directly
from disk, compressed kernels all had faster boot times, due
to decreased I/O operations compared to an uncompressed
kernel, showing that the cost of reading the uncompressed
image from disk is greater than the cost of bzImage decom-
pression on our system. In this case, a direct boot is slower
than a bzImage by 26% with Lupine, 18% with AWS, and 7%

lupine aws ubuntu
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Figure 5. Breakdown in cost of in the Linux bootstrapping
process

with Ubuntu. This helps explain why kernels are traditionally
compressed; when booting on bare metal, the reduced I/O
cost allows compressed kernels to boot faster where a warm
cache is impossible.
However, the situation reverses when the kernel image

is cached and does not have to be read from disk. In addi-
tion to cached boot times being (unsurprisingly) faster than
corresponding uncached kernel boot times, Figure 4 also
shows that a direct boot of an uncompressed kernel is the
better strategy in the cached case. Now, a direct boot is faster
by 36% with Lupine, 33% with AWS, and 20% with Ubuntu.
These results help to explain the lack of enthusiasm for sup-
porting bzImage images in most modern hypervisors; cloud
providers booting VMs for general-purpose workloads will
likely reuse the same kernel for each instance, and cached,
uncompressed kernels have the lowest overhead, so we as-
sume that kernels will be cached for the rest of the paper.
See Section 6.1 for further discussion about when this as-
sumption may not hold.
Digging deeper, we also examine the costs of each step

in the bootstrap loader, which is bypassed in the direct
boot of an uncompressed kernel. The results of these micro-
benchmarks are shown in Figure 5. We can see that most
of the time in the bootstrap loader, up to 73%, is spent on
decompression.
To test the validity of these experiments across multiple

modern hypervisors, we repeated the above experiments
using QEMU v6.0.94, and we can draw the same conclusions.
Due to differences in the implementations of Firecracker and
QEMU, the time spent in the hypervisor varies. With cached
kernels in QEMU, a direct boot is faster than a bzImage by
2% with Lupine, 33% with AWS, and 17% with Ubuntu. The
takeaway is that in both VMMs, an uncompressed and cached
kernel is the fastest way to boot Linux.
To summarize, by eliminating the bootstrap loader and

directly booting an uncompressed kernel, hypervisors like
Firecracker are saving up to 36% in boot times over a tra-
ditional, compressed kernel boot. Unfortunately, as we will
see next, this approach is incompatible with KASLR in its
current form.
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3 KASLR
As W∧X and SMAP/SMEP have all but eliminated attacks
consisting of user code injection into the kernel, attackers
have largely resorted to various forms of code reuse attacks.
Code reuse attacks typically require knowledge of the lo-
cations of various structures within an address space: for
example, the location of the stack or of various code snippets
that could form gadgets for ROP attacks [61]. Two comple-
mentary defense strategies have emerged to make code reuse
fragments (gadgets) both (a) hard for an attacker to use, by
attempting to enforce control flow integrity (CFI) [16], and
(b) hard for an attacker to find, through techniques such as ad-
dress space layout randomization (ASLR). Due to its simplic-
ity and low cost, ASLR has been rapidly and widely adopted,
for both userspace processes and the kernel (KASLR). Operat-
ing system kernels, including the Linux kernel since version
3.14, have adopted KASLR as a configurable defense option;
it has been a default option since version 4.12.
KASLR was introduced to the Linux kernel in a coarse

grained fashion by randomizing the base at which the kernel
was loaded at boot time [30, 33]. Attackers would need to
guess the offset to find code reuse gadgets. More recently,
fine-grained kernel randomization has been proposed in the
form of FGKASLR [17], which randomizes kernel addresses
at a function-level granularity. In the rest of this section,
we describe why KASLR remains relevant and important,
show how KASLR is implemented in the boot process, and
highlight its absence for microVMs. We then revisit compres-
sion to argue that it is not the sole cause of slowdown in the
boot process, as there are historical artifacts, and fundamen-
tal design properties that contribute to the inefficiency of a
bzImage boot.

3.1 The Enduring Relevance of KASLR
Since its inception, KASLR has faced criticism in terms of
its effectiveness [63], yet it remains an important compo-
nent of system security. We focus on two criticisms. First,
unlike userspace applications, the kernel will only be ran-
domized once over its (presumably long) lifetime. Further-
more, the monolithic nature of Linux makes it unsuitable for
re-randomization techniques proposed for microkernels [36].
Second, the prevalence of information leaks in the kernel [31,
46] are particularly devastating due to the coarse granularity
of KASLR (e.g., CONFIG_RANDOMIZE_BASE results in the
entire text of the kernel sharing the same offset).

However, these criticisms are eroding over time. First, the
previously mentioned trends in the cloud computing do-
main towards microVMs suggest a use case in which (guest)
kernel instances are short lived. For example, AWS Fire-
cracker [18] is used for serverless computing workloads for
AWS Lambda in which the lifetime of the VM could be as
short as a function invocation. With KASLR, each instance
would utilize a different randomization. Second, concerted

efforts to avoid leaking kernel pointers have accompanied
KASLR, such as kptr_restrict, which controls a format
specifier that converts kernel address pointers to zeros when
printed [60]. More recently, inspired by application self-
randomization [29], fine-grained, FGKASLR [17] has been
implemented and is being discussed on the Linux Kernel
Mailing List for inclusion upstream to improve entropy and
add a layer of defense used in tandem with coarse-grained
KASLR. With the addition of FGKASLR, the virtual space
enjoys randomization at the function level, on top of the
KASLR base offset. This greatly decreases the value of an
information leak since once can only gain knowledge of a
single function’s location. This means that attackers will not
be able to explot the entire kernel with a single informa-
tion leak, minimizing the damage done by potentially buggy
code.

Other concerns over the efficacy of KASLR have emerged
in the context of microarchitectural side channels. As KASLR
forms a first barrier for an attacker to overcome, breaking
KASLR has recently become a proving ground for emerging
side-channel attacks, including on virtual machines in the
cloud [22]. To date, KASLR has been broken using mem-
ory management side channels [41], prefetch side chan-
nels [38], transient executed loads [28], out-of-order exe-
cution [27], the branch target buffer [34], and hardware in-
structions to support transactions [42]. However, while side
channels remain a concern, mitigations such as KAISER [37]
or LAZARUS [35] continue to be adapted to close side chan-
nels [28] indicating that KASLR will likely remain a useful
and popular component to improve kernel security.

3.2 KASLR in the bootstrap loader
As described in Section 2.2, the Linux kernel is typically dis-
tributed in a compressed format. Early in the boot sequence,
the bootstrap loader is responsible for decompressing the
kernel, parsing and loading the resulting decompressed ELF
image, and if (FG)KASLR is enabled, performing the neces-
sary relocations.

Initially KASLR was implemented as an offset in the physi-
cal dimension; bymaintaining a fixed offset between physical
and virtual addresses, this additionally resulted in random-
ization in the virtual address space [30, 33]. A few years later,
it was noticed randomization in the virtual address space
could be decoupled from randomization in the physical ad-
dress space, allowing more entropy in the virtual address
space [40]. Virtual addresses, not physical addresses, are nec-
essary for code reuse. For example, return addresses, jump
targets, and data are all addressed with virtual addresses.
Moreover, attacks that do require knowledge of physical ad-
dresses, such as DRAMA [58] or rowhammer [44] attacks,
often rely on low order address bits, which do not change re-
gardless of virtual/physical randomization, especially when
large pages (e.g., 2 MB or 1 GB) are in use. Hence, we focus
our discussion on randomization in virtual address space.
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Once the bootstrap loader selects a randomized and aligned
virtual address offset, it can begin to fix up the addresses
present in the loaded kernel. Linux divides the relocations
into three types: 1) 64-bit addresses that need an offset added
to them, 2) 32-bit virtual addresses that need an offset added
to them, and 3) 32-bit virtual addresses that need an offset
subtracted from them (inverse relocations). The bootstrap
loader iterates through each relocation entry, provided by
the relocs section of the bzImage (Figure 2). Each entry is
a pointer to the physical address that will hold the virtual
address to be modified, and the bootstrap loader adds or
subtracts the offset. In contrast to the large overhead from
decompression, these operations comprise at most 8.8% of
the time spent in the bootstrap loader, making KASLR a
good candidate for relocation to the VMM. The overhead of
KASLR is further discussed in Section 5.2.
When using FGKASLR, every function in the kernel’s

text section has its own offset from its original location.
To do this, the compiler places each function into its own
section (.text.<function name>) in the kernel ELF when
compiled with the GCC flag -ffunction-sections. During
the bootstrap process, additional parsing of the kernel ELF
must be done to retrieve the section headers for each section
to be randomized, the string table, and the symbol table,
to extract symbols used to handle relocations. The sections
are then shuffled and re-aligned contiguously, giving each
function a unique random offset from its original location in
the kernel. This means that more work must now be done
when handling relocations, and at each entry the function
section headers that were affected by randomization are
searched using a binary search to determine if they contain
an address that points to a function that was moved from
its original location. If so, the offset between the function’s
original location and its new location is added to the address,
as well as the KASLR virtual offset. The same process must
be done for /proc/kallsyms, the exception table, and the
ORC stack unwinder table2, because addresses to symbols
affected by FGKASLR must be updated to reflect their new
location. The increase of complexity over KASLR comes at a
performance cost, but significantly decreases the value of a
single data leak, as an attacker can only gain knowledge of
a single function’s location.

3.3 Combining KASLR with microVMs
Currently, both KASLR and FGKASLR are tightly coupled
with the bootstrap loader. But as we saw in Section 2.2, mi-
croVMs seek to improve boot times by directly booting un-
compressed kernels, eliminating the bootstrap overhead (and
the ability to do (FG)KASLR). Figure 5 shows that most of the
time in the bootstrap loader stems from decompression, so in

2The ORC stack unwinder table only needs to be updated if a kernel is
configured with CONFIG_UNWINDER_ORC, otherwise it is not present in
the ELF.
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this section we explore modifications to bootstrap loader to
boot uncompressed kernels. First, we implemented our own
compression scheme, compression-none, that simply leaves
the kernel uncompressed when linked into a bzImage, and
during decompression it is copied to the location that it
expects to run. Figure 6 shows that without further modifi-
cation to the bootstrap loader, compression-none leaves us
with more overhead than an LZ4 compressed kernel. This
is because the overhead comes not only from the cost of
decompression, but also from the cost of relocating the ker-
nel, and uncompressed kernels can be up to ten times larger.
During a bzImage boot, the following occurs:

1. Monitor reads bzImage into guest memory and jumps
to bootstrap loader entry point

2. Bootstrap loader copies compressed kernel out of the
way for in-place decompression

3. Kernel is decompressed to its location in physical mem-
ory where it is configured to run

4. Bootstrap loader jumps to decompressed kernel
But in the case of an uncompressed kernel, steps 2 and 3

are not necessary and can be eliminated, giving us a fully
optimized self-bootstrapped approach for uncompressed ker-
nels. Step 2 can be eliminated by simply skipping it, since we
are avoiding decompression so there is no risk of the kernel
being overwritten. To remove step 3, the bootstrap loader
and the bzImage linking process must be changed. The ker-
nel expects to be loaded and executed at a minimum address
of CONFIG_PHYSICAL_START, which cannot be set lower
than 0x1000000. The load address must also be aligned to
MIN_KERNEL_ALIGN. To accomplish this without copying
the kernel, we first link the kernel to the bootstrap loader
code aligned to MIN_KERNEL_ALIGN. Then, instead of load-
ing the bzImage into guest memory at the default 0x100000,
we increase the load address to 0x1000000. Because we have
nowmet the constraints to execute the kernel, we can simply
jump to the entry address of the kernel (startup_64).
By identifying and eliminating redundancies in the boot-

strap loader that are no longer necessary with respect to
a modern VMM use case, we have devised the most time
efficient self-bootstrapping method. But as Figure 6 shows,
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compression-none-optimized remains slower than a direct
boot, which suggests that more overhead lies in the boot-
strap loader. This makes a compelling argument for a new
design: in-monitor KASLR

4 In-monitor KASLR
In this section, we first specify the threat model for KASLR in
microVMs, before describing the design and implementation
of in-monitor KASLR and FGKASLR.

4.1 Threat model
We distinguish the microVM threat model from that of VMs
in traditional infrastructure-as-a-service (IaaS) clouds. In
particular, we assume that the attacker is not in control of
the guest kernel. Instead, we assume the guest kernel is
maintained by the host. Guest workloads are specified in
containers that run atop the guest kernel, some of which
may have more or less privilege to access other cloud based
services. We assume an attacker may compromise a process
running in a container, but that such a compromise does not
necessarily imply full attacker control of the VM. We discuss
unikernel models, in which there is no separation between
kernel and application in Section 6.

The guest kernel therefore acts as a first level of a layered
defense to maintain isolation between the components that
make up a cloud user’s application and the host infrastruc-
ture. We assume that the guest kernel employs state of the
art defenses, including seccomp, AppArmor and/or SELinux.
We assume the kernel may contain vulnerabilities that allow
an attacker to redirect control flow, but new code cannot be
injected and run by the attacker (W∧X). We similarly assume
that SMEP is in use to prevent the attacker from running
user code with kernel privileges.

Adding (FG)KASLR to the guest kernel minimizes the ca-
pability of the guest workload and adds a layer of defense
to protect the host infrastructure from VM escape attacks.
While microVMs likely contain less control software (e.g.,
monitoring, lifecycle, etc.) than IaaS cloud VMs, we suspect
that some amount of control software, potentially belong-
ing to the trust domain of the host, may remain inside the
guest VM. In this case, (FG)KASLR helps prevent horizontal
attacks. We assume that FGKASLR effectively mitigates in-
formation leaks that will disclose the location of the kernel
offset in the virtual address space. We further assume that
all microarchitectural side channels or those that exploit the
transient execution domain have been closed.

4.2 Design
Figure 7 provides an overview of the steps used by in-monitor
(FG)KASLR and those steps eliminated from the standard
(FG)KASLR process in the bootstrap loader (using bzImage
format, as described in Section 2.2). Four of the steps appear
in both cases: choosing a physical offset, parsing the kernel
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ELF (and shuffling functions for FGKASLR), choosing a vir-
tual offset, and handling relocations in the virtual address
space. In-monitor (FG)KASLR avoids the bootstrap loader
costs of relocating the kernel prior to decompression, the de-
compression itself, and the relocation of the (uncompressed)
kernel as done in standard (FG)KASLR.
One of the first tasks of the virtual machine monitor is

to read the kernel image from a file on the filesystem into
the memory that it has allocated for the guest VM. Once
the monitor loads the kernel into guest memory, the process
proceeds similarly to the standard bzImage (FG)KASLR case.
Instead of the bootstrap loader, the monitor parses the (un-
compressed) kernel ELF file, shuffles functions in the case
of FGKASLR, chooses a random virtual offset, handles relo-
cations, and updates important tables if FGKASLR is used.
Finally, the monitor enters guest context and the guest exe-
cutes the (uncompressed) kernel image.

In order to perform relocations, the monitor requires some
information about where the relevant addresses are located
in the kernel image. As described in Section 3, the kernel
build process appends this relocation information to the
kernel ELF prior to compression. Existing uncompressed
guest kernel boot protocols only require the kernel ELF file,
not the relocations. After all, they do not perform KASLR or
relocation in the virtual address space, so they have no use
for such information. Thus, our design for in-monitor KASLR
requires an additional parameter to include relocation entries.
Figure 8 depicts the additional argument to the monitor.
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4.3 Implementation
We implemented in-monitor KASLR and FGKASLR in Fire-
cracker v0.26. Firecracker was selected due to its position
as the state of art in terms of reported boot times in produc-
tion by AWS. Firecracker is open source and implemented in
Rust, and our changes are not invasive to the fundamental
system. In-monitor KASLR does not exceed 200 lines of code
in the guest kernel loading logic, and in-monitor FGKASLR
spans around 1000 lines, but the majority of the required
logic is contained in its own module. To perform KASLR in
the virtual address space, we adapted the implementation
of handling relocations directly from the C implementation
in the Linux bootstrap loader. Because the computational
steps for in-monitor (FG)KASLR are the same as those in the
Linux bootstrap loader, the entropy provided by in-monitor
randomization is equivalent to that of Linux.

To perform FGKASLR, eachmajor functionwas also adapted
directly from the C implementation in Linux, but some func-
tionality was omitted to help keep boot times down. While
investigating FGKASLR in its C implementation, we no-
ticed that updating and sorting /proc/kallsyms is unnec-
essary, because the kernel does not depend on it being cor-
rect for a successful boot. From our benchmarks, fixing up
/proc/kallsyms amounts to 22% of overall boot times on
average, so we propose that this fixup can be delayed un-
til /proc/kallsyms is first examined. Because microVMs
have short lifespans running workloads consisting of a single
function, and unprivileged userspace applications should not
have knowledge of kernel symbol locations, it is reasonable
to assume that /proc/kallsymsmay never be examined and
the cost of updating it can be avoided completely.
Similarly, we decided to omit functionality for updating

the ORC stack unwinder table, because the ORC stack un-
winder is typically used for debugging and is disabled by de-
fault in each of our kernel configurations. Implementing this
functionality is feasible if necessary, and in Section 5 we com-
pare our in-monitor implementation to a bootstrap loader
with the ORC stack unwinder and kallsyms fixup removed
to have a fair apples-to-apples comparison. In Section 6, we
discuss the possibility of code reuse between monitor and
guest kernels.
As described in Figure 8, we modified the monitor to ac-

cept an additional argument to specify relocation entries. As
a part of the standard Linux compilation process (and input
to bzImage creation), the kernel binary (vmlinux.bin) and,
when (FG)KASLR is enabled, its relocations (vmlinux.relocs)
are created. While the monitor is already capable of read-
ing the first, we modified it to accept the second as well.
Alternatively, the relocs tool in the Linux source tree can
take a vmlinux.bin as input and generate its respective
vmlinux.relocs file. With either method, obtaining reloca-
tions is straightforward and introducing them to the monitor
took the form of an extra configuration option at runtime.

Rather than relying on a complex mix of entropy pools and
hardware instructions like rdrand to find random numbers,
as is done in the standard KASLR, we directly leverage the
underlying system’s random number supply via a Rust crate,
allowing the monitor to pull from an entropy pool on the
longer-running host system. Moving randomization to the
monitor allows the use of well maintained libraries with
higher level languages, providing choice and simplicity in
implementation.
To locate a random virtual offset, we mimic the same

algorithm as Linux by randomly selecting an appropriately
aligned offset between the default kernel load address of
16 MB and the maximum offset permitted for the kernel
(1 GB, to avoid the fixmap).

Several numbers are specified by the guest code—and
thereby available to the bootstrap loader—but unavailable
to the monitor at the time of guest loading. For example,
CONFIG_PHYSICAL_START and CONFIG_PHYSICAL_ALIGN (e.g.,
the expected load address and alignment in the physical
address space that the kernel was compiled for) are both
available in the kernel configuration. On the other hand,
__START_KERNEL_MAP and KERNEL_IMAGE_SIZE (e.g., the ex-
pected virtual address starting point and themaximumkernel-
devoted memory in the virtual address space) are hardcoded
in a Linux kernel header file. Our current implementation
simply hardcodes these values. In the future, the monitor
could possibly take as input the kernel configuration, or
these values could be prepended to the kernel binary as an
ELF note, making them easy to retrieve.

5 Evaluation
We designed in-monitor KASLR and FGKASLR (which we
collectively refer to as in-monitor randomization) to allow the
guest kernel to benefit from the security they provide, while
providing microVM-comparable boot times. Thus, the most
important metric to evaluate for in-monitor randomization is
boot time. In this section, we answer the following questions:

• Does in-monitor (FG)KASLR enable a state-of-the-art
microVM to achieve its boot targets while providing
randomization?

• How does the boot time overhead of in-monitor ran-
domization compare with existing self-bootstrapped
approaches that can provide randomization?

• Howdoes the amount of memory allocated to the guest
impact boot time?

• Does in-monitor randomization cause any overhead
beyond boot time?

5.1 Experimental Setup
This section describes the hardware used in our experiments,
the Linux version and configurations used, our modifications
to the Firecracker VMM, and our testing methodology.
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kernel vmlinux size bzImage size
(Compression None, LZ4) relocs size config

lupine-nokaslr 20M 22M, 4.1M N/A Lupine
lupine-kaslr 20M 22M, 4.2M 95K Lupine + KASLR
lupine-fgkaslr 22M 24M, 4.7M 304K Lupine + FGKASLR
aws-nokaslr 39M 41M, 7.9M N/A Firecracker
aws-kaslr 39M 41M, 8.3M 348K Firecracker + KASLR
aws-fgkaslr 42M 45M, 9.8M 1.1M Firecracker + FGKASLR
ubuntu-nokaslr 45M 47M, 13M N/A Ubuntu 18.04.5
ubuntu-kaslr 45M 48M, 14M 1M Ubuntu + KASLR
ubuntu-fgkaslr 50M 54M, 17M 2.3M Ubuntu + FGKASLR

Table 1. Kernels used in Firecracker boot time experiments

Hardware Setup. All the experiments were run on single
a machine with an Intel®Core TM i7-4790 CPU @ 3.60GHz,
8GB of DDR3 memory @ 1600MHz, and an SSD with up to
560mb/s reads and 510mb/s writes. This machine was run-
ning Ubuntu 18.04 with the Linux 4.15.0-101-generic kernel.

Kernel configuration. Table 1 summarizes the kernels we
used, their image sizes, how much relocation information
they contain, and notes on their configuration. KASLR in-
creases the size of the compressed kernel because relocation
information is appended to the end of the image before com-
pression, and FGKASLR increases the size of both the com-
pressed and uncompressed, as placing functions into their
own sections increases the size of the kernel ELF file, and
requires more relocation information than KASLR. All ker-
nels are based on the Linux 5.11.0-rc3 source tree. We chose
this version because it was used in the initial FGKASLR
implementation3. To configure the kernels, the reference
configuration (e.g., the .config file from the Ubuntu 18.05.4
kernel) was applied to clean Linux 5.11.0-rc3 tree using make
olddefconfig to generate the new kernel configuration.
As mentioned in Section 2.2, we used three kernel con-

figurations representing a range of kernel sizes. The largest
kernel, Ubuntu, represents a relatively large, standard distri-
bution kernel used in Ubuntu 18.05.4. The second configura-
tion, AWS, uses the reference kernel configuration from AWS
Firecracker, representing a state-of-the-art, medium sized,
general-purpose microVM kernel. The third configuration,
Lupine, uses a configuration from Lupine Linux [48], repre-
senting a small single-purpose kernel. We only use the base
Linux configuration from Lupine, not any kernel patches it
provides.
Three variants for each kernel were built. The nokaslr

version does not have KASLR or FGKASLR enabled, kaslr
only has KASLR enabled, and the fgkaslr version has both
KASLR and FGKASLR enabled. The nokaslr and kaslr
kernel variants were built from a source tree without the
FGKASLR patches, and fgkaslr variants were built from
the source tree with the patches. This is due to the fact that

3https://github.com/kaccardi/linux/tree/fg-kaslr

even when disabling FGKASLR from the kernel boot com-
mand line, additional parsing of the kernel ELF still occurs,
increasing boot times.

Firecracker versions. We use four versions of Firecracker
in our experiments. The first version, firecracker-baseline, is
Firecracker version 0.26 built directly from the github source
repo without any modifications. Firecracker does not na-
tively support compressed bzImages, so the second version
of Firecracker, firecracker-bzimage, is a lightly-modified ver-
sion of v0.26 based on an unmerged patch from a pull request
that added bzImage support 4. The third and forth versions
of Firecracker, firecracker-kaslr and firecracker-fgkaslr respec-
tively, contain our in-monitor implementations of KASLR
and FGKASLR.

Testing methodology. To measure the boot time, we used
perf (Linux profiling with performance counters) which al-
lowed us to retrieve performance information from inside
both the monitor and the guest kernel. To timestamp impor-
tant events, we placed port IO writes inside the guest to be
detected by perf, and we begin our benchmarking at the call
to execute Firecracker, as perf will trace syscalls.

We break down the cost of an overall boot into four cate-
gories: In-Monitor, the time spent in Firecracker, Bootstrap
Setup, the time spent in the bootstrap loader prior to decom-
pression, Decompression, the time to decompress the kernel
(only present with LZ4), and Linux Boot, the time from the
jump to the uncompressed guest kernel’s entry point and just
after its init process is run. The Linux Boot portion of each
graph does not depend on the method of randomization, (the
averages for each kernel with nokaslr, kaslr, and fgkaslr
vary by a maximum of 4%), and is included for completeness.
The portions of interest are In-Monitor, as it will include
randomization time for our in-monitor approach, Bootstrap
Setup, as it includes randomization for a bzImage boot, and
Decompression, to show the extra time incurred by LZ4.
In computing boot times, we take the average boot time

over 100 runs. The error bars in the graphs show the min and
the max values over the 100 runs. Before each benchmark
test we boot the kernel 5 times to warm up the cache, because
in a model similar to a production deployment of Firecracker,
it is reasonable to assume that kernels will be cached.

5.2 Firecracker Boot Time
To evaluate the performance of our in-monitor randomiza-
tion implementation, we compare against the best perfor-
mance attainable by a bzImage, optimized compression-none,
which from now on we will simply call compression-none. As
described in Section 3.3, compression-none is our modified
version of the bootstrap loader that removes the need for
compression and inefficient artifacts to minimize boot times.
As in-monitor randomization does not require modifications

4https://github.com/firecracker-microvm/firecracker/pull/670
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Figure 9. Boot times for our three kernel configurations

to the kernel, we also compare against the best performance
attainable by an unmodified bzImage bootstrap loader, which
is booting an LZ4 kernel.
Figure 9 shows that across all three kernel configura-

tions, in-monitor randomization is faster than both self-
randomized approaches of compression-none and LZ4 kernels
for all three sizes of kernels.

Looking first at KASLR, the Lupine kernel with in-monitor
KASLR exhibits boot times that are 96% (15 ms) faster than
compression-nonewith KASLR on average,AWS is 21% (13ms)
faster, and Ubuntu is 9% (16 ms) faster. Compared to an un-
modified bzImage boot with LZ4, Lupine with in-monitor
KASLR is 124% (20 ms) faster on average, AWS is 38% (23 ms)
faster, and Ubuntu is 15% (25 ms) faster.

Our in-monitor implementation of FGKASLR exhibits sim-
ilar trends compared to compression-none: Lupine is 93%
(35 ms) faster, AWS is 25% (33 ms) faster, and Ubuntu is
2% (6 ms) faster. Leaving the kernel unmodified, in-monitor
FGKASLR is 95% faster with Lupine, 27% faster with AWS,
and 9% faster with Ubuntu.

Because we can avoid the unnecessary overhead of a boot-
strap loader and the computation involved in KASLR is min-
imal, the cost of in-monitor KASLR compared to an unmodi-
fied version of Firecracker is low. With the Lupine kernel, in-
monitor KASLR increases boot times over firecracker-baseline
by 1 ms, or 6.3%. For the AWS kernel, in-monitor KASLR
adds 2 ms, or 3.7%, and Ubuntu with in-monitor KASLR adds
3.7 ms, or 2.2%. Overall we show that in-monitor KASLR
adds a small cost over an unmodified version of Firecracker,
allowing kernels with varying target workloads to enjoy the
benefit of the widely adopted KASLR at a low cost.

However, while our in-monitor implementation of FGKASLR
is faster then the self-bootstrapped versions, FGKASLR does
add significant overhead to the boot process. Compared to
firecracker-baseline, boot times are 2.33 times slower with
Lupine, 2.15 times slower with AWS, and 1.84 times slower
with Ubuntu. With its added complexity, as described in
Section 3.2, it is not surprising that in-monitor FGKASLR
has a higher cost than in-monitor KASLR, but as we have
seen it incurs less cost than either of the self-bootstrapped
FGKASLR options and still allows AWS, Firecracker’s base-
line microVM configured kernel, to boot within in 131 ms,
which is under their 150 ms benchmark metric. Since the
added overhead from in-monitor KASLR is low, there will
be little effect on critical performance metrics such as the
number of VMs instantiated per second. With FGKASLR
however, there is a larger tradeoff between an increase in
security, and a decrease in throughput. If FGKASLR gains
popularity, cloud providers such as AWS may not choose to
adopt it, as the increased overhead could be prohibitively
large. However, with the AWS kernel, FGKASLR manages to
hit boot times below their 150ms maximum, so we suspect
that FGKASLR could be a welcome increase in security to
cloud providers with target use cases that differ from that of
services like AWS Lambda.
The variance in the In-Monitor portion of No KASLR and

KASLR boots stems from the size of the kernel being read
into memory because the cost of KASLR is so low. As seen in
Table 1, a compression-none bzImage is larger than a bare vm-
linux, which is caused by the addition of the bootstrap loader,
relocation information, and the padding needed to align the
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kernel to the bootstrap loader. Because of this, there is gener-
ally an increase in the In-Monitor time from uncompressed to
compression-none, and the LZ4 kernel, being much smaller,
decreases In-Monitor time over uncompressed. In all cases,
this decrease in In-Monitor time is outweighed by Decompres-
sion , causing LZ4 to be the slowest of the three. In the case
of FGKASLR, In-Monitor is largest with a direct boot, due to
randomization occurring in-monitor and outweighing the
time to read the kernel into memory.

The in-monitor implementation of (FG)KASLR shares the
same algorithm used by the bootstrap loader, making the
core difference which controlling principle is doing the ran-
domization. When it is the responsibility of the monitor to
bootstrap, it reads the kernel image one segment at a time
directly into guest memory at the physical location specified
by each program header. When a bootstrap loader is used,
the monitor must read the entire kernel into memory, and
only after we have undergone a full read of the kernel can
the bootstrap loader parse the ELF and load each segment
to its correct location. By booting an uncompressed kernel,
we avoid a relocation of the kernel by allowing the monitor
to directly load it to its final location. Making the monitor
responsible for randomization allows us to benefit from its
added security without relying on the bootstrap loader and
suffering an unnecessary relocation.

FGKASLR benefits from the same principle, i.e., removing
bootstrapping allows us to avoid an extra relocation of the
kernel, but avoids more complexity when the system in con-
trol is already bootstrapped. In order to copy each function
section to a random location, the bootstrap loader must make
a copy of the entire kernel text section to avoid overwriting
sections that have yet to be randomized in the ELF. This
means that the size of the heap given to the bootstrap loader
must be increased (up to eight times) over KASLR. Because
the bootstrap loader has to initialize its own structures (stack,
heap, page table, bss), it incurs extra cost when allocating
and zeroing a larger boot heap. The monitor avoids this by
virtue of the host kernel having already performed these
steps. This extra time is incorporated in the Bootstrap Setup
portion of Figure 9. In all cases, it is clear that compression-
none does extra work during Bootstrap Setup that can be
avoided by allowing the monitor to prepare the kernel for
boot and handle randomization.
The key takeaway is that bootstrapping a kernel in an

already bootstrapped system is unnecessary and adds cost
that can be avoided by an in-monitor solution. Moreover, in-
monitor randomization requires no modifications to Linux,
and self-randomization in an unmodified kernel leaves even
more performance on the table, despite using a fast com-
pression scheme. These results also show we can implement
in-monitor KASLR with minimal overhead.
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Figure 10. Evaluation of in-monitor randomization with
respect to the amount of memory allocated to the guest.

5.3 Guest Memory Impact on Boot Times
We note that boot time is often affected by the amount of
memory allocated to the guest VM. We ran an additional
experiment to compute the difference between the baseline
(without randomization) and in-monitor (FG)KASLR for all
three kernels and guest memory amounts of 256 MB (base-
line), 512 MB, 1 GB, and 2 GB. Figure 10 shows that the
amount of memory allocated to the guest VM does not affect
the portion of boot time spent in the monitor. The Linux Boot
portion increases linearly with allocated memory, yet there is
no obvious difference in this time between kernels with and
without in-monitor randomization, therefore we conclude
that boot time for kernels using in-monitor randomization
is not affected by the amount of guest memory.

5.4 Impacts on System Performance
The main reason that microVM guest kernels do not employ
KASLR is due to the inability of bootstrap self randomization
to achieve microVM boot targets. For completeness, we also
measure the effects of enabling randomization on general
system performance after boot. Figure 11 shows the results
from running the LEBench kernel microbenchmarks [59],
which evaluate various performance-critical system calls.

The experimental setup is as follows. For a baseline, we run
LEBench on the aws-nokaslr kernel with firecracker-baseline
and run the LEBench program with the default number of it-
erations (10000). Then, we run LEBench on the aws-kaslr and
aws-fgkaslr kernels with our modified versions of Firecracker
that support in-monitor (FG)KASLR. Figure 11 shows the
average performance of each test, normalized to the baseline.
We do not expect the Firecracker binary to affect overall

guest kernel performance. Instead, we focus on differences in
the guest kernels (aws-nokaslr vs. aws-kaslr and aws-fgkaslr).
(FG)KASLR-capable guest kernels must be compiled with
the CONFIG_RELOCATABLE configuration option. How-
ever, unlike PIE, where the code is compiled to be position
independent with a performance penalty [57], a relocatable
kernel adjusts necessary addresses during bootstrapping, as
described in Section 3.2. As shown in Figure 11, results for
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kernel needed by in-monitor KASLR aws-kaslr shows low impact on overall system performance.

the KALSR-enabled kernel are less than 1% slower on aver-
age, which is within noise levels. The runtime of FGKASLR-
cabable kernels has been seen to be affected by a slightly
higher percentage of L1 cache misses, and performance has
been observed to vary per-workload due to frequently used
functions that are usually grouped together being separated,
5 and our benchmarks show that the performance of in-
monitor FGKASLR is about 7% slower than our baseline,
which is less than the performance regressions across kernel
versions highlighted by the LEBench authors [59].

6 Discussion
Unikernel models. Unikernels exhibit a model in which
the guest kernel is not distinct from the guest application;
they are linked together in the same address space. While
unikernels typically do not yet employ ASLR, performing
randomization in the monitor would be more efficient than
self-randomization. This mirrors the current design of appli-
cation ASLR, in which the kernel provides randomization
for user-space processes.

Moreparavirtualization. Paravirtualization, explored first
by systems like Xen [21] and Denali [69], fundamentally
changes the contract between the virtual machine monitor
and the guest kernel. In this way, in-monitor KASLR is an
instance of paravirtualization driven by the microVM trend.
Other bootstrap steps could be moved to the monitor or re-
moved entirely however, these approaches must weigh the
impacts of changing the contract on the host or the guest.
For example, in-monitor randomization requires relocs to be
managed with guest binaries. Other approaches, like uniker-
nel monitors [70] require changes or adaptation in the guest.
Our experience illustrates the importance of both host and
guest.

5https://lwn.net/Articles/824307/

Reusing code modules in monitor or guest. Though we
used Rust instead of C to better fit into Firecracker, our imple-
mentation of in-monitor randomization shared algorithms—
if not code—with the existing implementations in the boot-
strap loader.While KASLR remains relatively simple, FGKASLR
is more complex. Ideally, both implementations could share
code. If the relevant (FG)KASLR modules were implemented
as rustvmm crates, it is even possible that the Linux boot-
strap loader could be rewritten in Rust to seamlessly reuse
the same implementation. Such an undertaking could be
feasible as the bootstrap loader is already logically separate
from the rest of Linux, and interest is growing for in-tree
Linux modules written in Rust [23].

Memory density despite KASLR. Cloud providers have
a business incentive to maximize the utilization of their re-
sources. One resource dimension is memory density: the host
can transparently share pages between VMs using content-
based page merging [8, 39].6 However, fine-grained random-
ization has been shown to nullify page-sharing benefits [66]
as fine-grained variations of page contents prevent merg-
ing. With in-monitor randomization, the host could manage
this tradeoff. For example, the host could select a particular
random seed for a group of related VMs [65].

Trust models that do not include the host. In our threat
model, we assume a cloud environment in which the host,
including the VM monitor, is trusted. However, increasing
interest in confidential computing platforms, such as Intel
SGX or AMD SEV, suggest a different threat model, one
in which the host is not trusted. If the (untrusted) host is
compromised by or colluding with an attacker, in-monitor
KASLR is trivially broken, since random offsets are gener-
ated by the host. In this environment, some form of self

6Due to easy-to-use side channels like flush and reload [72] that are enabled
with page sharing, it is unclear how much providers use page sharing across
tenants in practice [22], though a case could be made for same-tenant page
merging.
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randomization [29] (e.g., in-guest KASLR) and its associated
bootstrapping/copying costs may be required.

6.1 Validity of kernel image caching.
As we detail in Section 2, it makes sense for modern hyper-
visors to have moved away from a compressed kernel boot
if we can assume that the (uncompressed) kernel image is
able to be warm in the cache. However, if guest kernels be-
come more specialized and unikernel-like [48], more kernels
may exist in the system and this assumption may begin to
fail. In this case (depending on storage size/performance),
compression may once again become attractive.

7 Related Work
One of the major drivers of lightweight virtualization is
serverless computing. SAND [19] proposes two level fault
isolation for serverless functions, where VMs persist for
multiple functions or function instances that belong to the
same application. This alleviates some of the pressure for
VMs to boot quickly but, without in-monitor KASLR, loses
the opportunity to periodically efficiently reboot kernels for
re-randomization between function invocations. Many other
projects have investigated caches of memory snapshots of
execution contexts to reduce startup times.

So called zygote-based approaches leverage checkpoint/re-
store to avoid redundant startup delays and have been ex-
plored in the context of the JVM [67], lightweight contain-
ers [54], unikernels [26], and VMs [25, 32]. However, zygote-
based approaches typically rely on page sharing and copy-on-
write to maintain reasonably low memory overhead, which
can result in identical memory layouts, nullifying ASLR.
Morula suggests maintaining a pool of zygotes with differ-
ent memory layouts to combat this [49]. The complexity and
security issues of doing so may be offset by fast-booting VMs
that support randomization via in-monitor KASLR, reducing
the need for zygotes.

Related projects in the unikernel space, especially uniker-
nel monitors [70] apply similar in-monitor techniques to
achieve fast boot of unikernels. For example, ukvm sets up
page tables before jumping to the kernel. In the most ex-
treme case, for some unikernels, all bootstrapping can be
eliminated, resulting in unikernels running as processes in-
stead of VMs [71]. While we are not aware of ASLR-enabled
unikernels, unikernels may present additional opportuni-
ties for whole-system ASLR [50] and they are apparently
considering in-monitor approaches.7 Regardless, our pro-
posal of in-monitor KASLR is more general as it supports to
unmodified Linux-based guest VMs.

Finally, there is a rich literature exploringASLR in userspace,
including various granularities and binary formats [20, 43,
47, 56, 68]. It is possible that some of these approaches could
be applied to guest kernels via in-monitor KASLR.

7https://github.com/Solo5/solo5/issues/304

8 Conclusion
In this paper, we have identified an incompatibility between
the fast-booting requirements of microVMs in the cloud and
the bootstrap self-randomization technique that OS kernels
use to achieve kernel address space layout randomization
(KASLR). Fortunately, we have shown that, through a tech-
nique we refer to as in-monitor KASLR, unmodified Linux
guest kernels can utilize KASLR while booting with little
overhead on a state of the art monitor. Furthermore, it is
possible that performing randomization in the monitor may
reduce constraints and create opportunities for greater ran-
domization in the future. More generally, as the cloud and
virtualization community continues to move towards lighter-
weight VMs, we believe it is time to re-evaluate what the
guest should do itself and what should be left to the monitor.
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A Artifact Appendix
Abstract
The artifact provided with this paper comprises a
benchmarking suite to evaluate the performance of booting
guest kernels with Firecracker VMM modified to support
in-monitor (FG)KASLR, as well as the data/scripts used to
generate figures used in the paper. We leverage perf (Linux
profiling with performance counters), and small patches to
the Linux kernel to issue I/O writes to a unique port that are
traced as KVM events by perf 8. Benchmarking begins when
Firecracker is executed, timestamps are taken before and
after relevant function calls/code blocks (e.g., decompression,
(FG)KASLR functionality, loading kernel segments, etc.), and
the final timestamp is taken after the call to execute the
guest’s init process.

8The idea to use perf to trace I/O writes was found here: https://github.
com/stefano-garzarella/qemu-boot-time

A.1 Description & Requirements
A.1.1 How to access. Artifacts can be accessed via:
https://github.com/bencw12/in-monitor-rando-benchmarking

A.1.2 Hardware dependencies. Firecracker requires ei-
ther Intel x86_64, or AMD x86_64, CPUs that offer hardware
virtualization support. All experiments for the paper were
run on a machine with an Intel Core i7-4790 CPU @ 3.60
GHz.

A.1.3 Software dependencies. Currently, Firecracker rec-
ommends either Linux kernel version 4.14 or 5.10, as those
are the versions they currently use to validate source code.
We ran all experiments on a machine running Ubuntu 18.04
using a Linux 4.15 kernel.

A.1.4 Benchmarks. All guest kernels, file systems, and
relocation information needed to boot VMs with and without
our modifications to Firecracker are included in the artifact
repository. The data collected for our experiments is in the
results-paper directory, with subdirectories containing
the results for each experiment, and the included scripts will
generate the graphs shown in the paper.

A.2 Set-up
Firecracker requires KVM access which can be granted with:
sudo setfacl -m u:$USER:rw /dev/kvm. All scripts are
designed to be run from a standard Linux shell with root
permissions with no additional set-up.

A.3 Evaluation workflow
A.3.1 Major Claims.

• (C1): When kernels are not warm in the cache, a com-
pressed bzImage achieves optimal performance due
to the image being smaller than an uncompressed im-
age, but when kernels are cached, the increase in I/O
time to load an uncompressed kernel over that of a
bzImage is small compared to the overhead incurred
by the bzImage’s bootstrap loader. This is shown in the
experiment (E2) described in Section 2.2 with results
shown in Figure 4.

• (C2): Themajority of the extra overhead from a bzImage
bootstrap loader stems from decompression, which is
why microVMs have moved toward directly booting
uncompressed kernels. The data supporting this is also
generated from (E2), and results are shown in Figure
5.

• (C3): Optimizing the bzImage bootstrap loader to re-
move decompression and redundant kernel relocations
still leaves performance on the table and does not jus-
tify booting a bzImage over an uncompressed kernel.
This experiment (E3) is described in Section 3.3 with
results shown in Figure 6.

• (C4): In-monitor randomization achieves up 22% to
better performance than existing/optimized methods

163

https://lwn.net/Articles/420403/
https://lwn.net/Articles/420403/
https://doi.org/10.1145/2541583.2541587
https://grsecurity.net/kaslr_an_exercise_in_cargo_cult_security
https://lwn.net/Articles/644675/
https://lwn.net/Articles/644675/
https://github.com/stefano-garzarella/qemu-boot-time
https://github.com/stefano-garzarella/qemu-boot-time
https://github.com/bencw12/in-monitor-rando-benchmarking


EuroSys ’22, April 5–8, 2022, RENNES, France Benjamin Holmes, Jason Waterman, and Dan Williams

of self-randomization where a bootstrap loader, rather
than the monitor, is the controlling principle. On aver-
age, in-monitor KASLR adds a small overhead of 4%
(2ms) compared to stock Firecracker. This is shown in
the experiment (E4) described in Section 5.2. Results
are illustrated in Figure 9.

• (C5): In-monitor randomization does not affect kernel
performance outside of boot. The experiments (E5) de-
scribed in Section 5.4 verify this and results are shown
in Figure 10.

A.3.2 Experiments. All kernels, file systems, relocation
information, and binaries are included with our artifacts,
so all experiments except for (E5) can be run by executing
one shell script from the root of the repository with no addi-
tional preparation. All guest kernels are Linux version 5.11,
since this is the version FG-KASLR was originally patched
into. Each VM is allocated 256M and 1 CPU, and the cache
is warmed by booting each kernel 5 times before recording
data unless otherwise specified. Each experiment finishes all
100 boots of a kernel before moving on to the next. All new
data is saved in a directory separate from the data used in
the paper, and will be used instead of our results by graph
generation scripts if present.

Experiment (E1):Compression Bakeoff [1.5 compute-hours]:
A comparison of overall boot times for bzImages compressed
with six different compression schemes supported by Linux.

[Execution] Executing run_compression_bakeoff.sh 100
will boot each kernel 100 times to replicate the results used
in the paper.

[Results] Results are collected and saved automatically
to the directory results/compression-bakeoff/ for each
kernel during execution. To use the new data to generate a
graph like Figure 3, run scripts/fig-3.py. LZ4 is expected
to have the lowest overhead.

Experiment (E2): Cache-Effects [1 compute-hour]: An ex-
periment used to demonstrate the effects of caching on over-
all boot time when booting a bzImage versus an uncom-
pressed kernel.

[Execution] Executing run_cache_effects.sh 100 will
boot each kernel 100 times to replicate the results used in the
paper. First each kernel is allowed to be warm in the cache,
then each kernel is run after dropping the caches (pagecache,
dentries, and inodes) to see the affect of a cold cache on boot
performance.

[Results] Results are collected and saved to the directory
results/cache-effects/ automatically for each kernel dur-
ing execution. The results from this experiment are used to

generate Figures 4 and 5. To use the new data to generate
them, run scripts/fig-4.py and scripts/fig-5.py. Fig-
ure 4 is expected to show that bzImages will have faster
boot times than uncompressed kernels when the cache is
cold, but uncompressed kernels boot faster than bzImages
when they can be cached. Figure 5 is expected to show that
decompression makes up the majority of bootstrapping time.

Experiment (E3): BootstrapMethod Comparison [1 compute-
hour]: A comparison of four methods of bootstrapping Linux:
none, lz4, none-optimized, and uncompressed. none kernels are
patched to simply leave the kernel uncompressed when link-
ing into a bzImage, lz4 is an unmodified bzImage using LZ4
compression, none-optimized kernels remove decompression
and extra relocations, and uncompressed is the uncompressed
kernel natively supported by Firecracker.

[Execution] Executing run_bootstrap_comparison.sh
100 will boot each kernel 100 times to replicate the results
used in the paper.

[Results] Results are collected and saved automatically to
the directory results/bootstrap-comparison/ for each
kernel during execution. To use the new data to generate
a graph like Figure 6, run scripts/fig-6.py. none kernels
are expected to have the highest overhead, followed by lz4,
none-optimized, and uncompressed with the lowest overhead.

Experiment (E4): Evaluation [2.5 compute-hours]: This ex-
periment evaluated the performance of in-monitor (FG)KASLR
by comparing in-monitor randomization with uncompressed
kernels to self-randomization methods using none-optimized
and LZ4. Each kenrel is also compared against its unrandom-
ized counterpart as a baseline.

[Execution] Executing run_eval.sh 100 will boot each
kernel 100 times to replicate the results used in the paper.

[Results] Results are collected and saved automatically to
the directory results/evaluation/ for each kernel during
execution. To use the new data to generate a graph like Fig-
ure 9, run scripts/fig-9.py. In-monitor randomization
with uncompressed kernels is expected to have the lowest
overhead compared to kernels with none-optimized and LZ4.
Firecracker with in-monitor KASLR is expected to exhibit
minimal overhead compared to stock Firecracker.

Experiment (E5): LEBench [5 human-minutes, 75 compute-
minutes]: This experiment uses LEBench9 to evaluate the
performance of important kernel functions for an unran-
domized kernel, and kernels with (FG)KASLR.

9https://github.com/LinuxPerfStudy/LEBench
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[Execution] Executing run_lebench.sh will boot an un-
randomized kernel (nokaslr), a kernel with KASLR (kaslr),
and a kernel with FG-KASLR (fgkaslr). At each boot, the
LEBench process runs and the kernel will shutdown when it
is finished.

[Results] Results are collected and saved automatically
to the directory results/lebench/ after LEBench finishes
for each kernel. To use the new data to generate a graph
like Figure 10, run scripts/fig-10.py. The performance of

kernels with in-monitor (FG)KASLR for each kernel function
is not expected to deviate significantly from the baseline of
nokaslr.

A.4 Notes on Reusability
The methods we used to benchmark the performance of the
Linux bootstrap process can be extended to any part of the
kernel by defining more tracepoints and placing I/O writes
in the kernel code.

165


	Abstract
	1 Introduction
	2 microVMs
	2.1 The rise of microVMs
	2.2 Booting a (micro)VM

	3 KASLR
	3.1 The Enduring Relevance of KASLR
	3.2 KASLR in the bootstrap loader
	3.3 Combining KASLR with microVMs

	4 In-monitor KASLR
	4.1 Threat model
	4.2 Design
	4.3 Implementation

	5 Evaluation
	5.1 Experimental Setup
	5.2 Firecracker Boot Time
	5.3 Guest Memory Impact on Boot Times
	5.4 Impacts on System Performance

	6 Discussion
	6.1 Validity of kernel image caching.

	7 Related Work
	8 Conclusion
	References
	A Artifact Appendix
	A.1 Description & Requirements
	A.2 Set-up
	A.3 Evaluation workflow
	A.4 Notes on Reusability


