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Abstract

Infrastructure-as-a-Service (IaaS) clouds are evolving

from offering simple on-demand resources to providing

diverse sets of tightly-coupled monolithic services. Like

OS kernels of the 1980’s and 1990’s, these monolithic of-

ferings, albeit rich in features, are significantly constrain-

ing users’ freedom and control over the underlying—

cloud—resources. For example, we are unaware of a

true hybrid cloud, where its users can migrate virtual

machines freely across clouds. This paper argues for a

new type of IaaS cloud, an xCloud, that builds on ideas

from extensible OSs to give users the flexibility to install

custom cloud extensions, which can address the limita-

tions outlined above. We describe the design space for

xClouds, including a practical approach for transforming

today’s public clouds into xClouds.

1 Introduction

“Nature is a mutable cloud which is always and

never the same.”

—Ralph Waldo Emerson

Whereas Infrastructure-as-a-Service (IaaS) clouds

once provided a simple bare-bones virtual machine (VM)

abstraction, they are now evolving into increasingly di-

verse, feature-rich offerings. On the surface, this is ad-

vantageous: cloud users on Amazon EC2, for example,

enjoy tools such as CloudWatch (integrated monitoring),

AutoScaling, and Elastic Load Balancing. Beneath the

surface, however, users are constrained: cloud provider

features are rapidly becoming synonymous with vendor

lock-in [1, 2], which is a symptom of a larger prob-

lem. Users are completely dependent on the provider

for any hypervisor-level features. Tools and techniques

at the hypervisor-level—enabling increased portability,

availability [9], security [10], efficiency [24] and per-

formance [14]—are impossible for users to implement

themselves.

The current state of clouds resembles a point in the

evolution of operating system (OS) kernels. In particular,

extensible systems (such as exokernels [11], SPIN [5],

and VINO [19]) emerged to solve certain limitations in

monolithic kernels. These systems were motivated, in

part, by applications’ inability to define their own tai-

lored hardware abstractions, just as applications on to-

day’s clouds are unable define their own virtual and phys-

ical hardware abstractions.

In this position paper, we argue that the abstraction of

an extensible cloud, or xCloud, is essential for certain

cloud applications. At the same time, we point out that

the deployment of an xCloud must not depend on sup-

port from cloud providers. For example, current calls

for standardization across multiple cloud providers will

likely take years to implement, if ever. Cross-provider

live migration—an important and commonly sought out

feature—continues to remain a fantasy. On the other

hand, the user with the ability to customize and homog-

enize the cloud will be able to implement cross-platform

live migration immediately.

2 What’s Wrong with Today’s Clouds?

The uses of today’s clouds are extensive: users range

from a person deploying a single VM to an entire IT de-

partment or enterprise deploying hundreds or thousands

of VMs. A rich array of services, third-party cloud man-

agement tools [8], and middleware [6, 16] operate at the

VM-level to provide useful high-level functionality to

cloud users. However, beneath this superficial VM-level

veneer, the deployment of efficient, portable, innovative

applications—especially by large cloud users attempting

to efficiently manage a hybrid cloud—is being hindered

by two main shortcomings:

Immutable Hypervisors: The hypervisor, or virtual

machine monitor (VMM), in today’s clouds is controlled

by the provider, leaving users with little or no say as to



Abstraction Level Feature

Today’s Clouds

Application monitoring

Auto-scaling

Non-live migration

Mutable Hypervisor

Page sharing [12,21]

Overdriver [24]

Revirt [10]

Remus [9]

Live migration [7]

Cross-provider live migration

Exposed Hardware

vSnoop [14]

Superpages [18]

Page coloring [15]

Non fate-sharing

Unsupported paravirtualization

Table 1: Cloud abstractions and extensions they enable

what hypervisor-level functionality is implemented or ex-

posed. For example, no cloud currently exists with a

hypervisor that allows users to maximally utilize their

leased VMs through techniques like page sharing [12,21]

or aggressive oversubscription [24]. Live VM migra-

tion [7] between multiple clouds—public or private—is

virtually impossible. Innovative hypervisor-level tech-

niques for high availability [9] or intrusion detection [10]

are unavailable, while further customization and experi-

mentation at this level is stifled.

Buried Hardware: Today’s clouds bury the details of

hardware beneath a virtual machine abstraction. Users

must depend on the provider to expose everything from

efficient I/O interfaces to physical fate-sharing infor-

mation. Moreover, they cannot implement hardware-

dependent tricks to squeeze the best performance out of

the rented resources. Time-sensitive tasks, such as TCP

acknowledgment [14], are difficult. Superpage [18] uti-

lization is not efficient on virtual memory that may not

be contiguous, and performance opportunities like page

coloring [15] are also lost.

Table 1 provides examples of cloud extensions, some

of which are available today. However, there is a large

set of features—spanning performance, security, and

portability—that require a mutable hypervisor. A further

set of performance-related features require control or vis-

ibility at the hardware level. It is important to note that

despite advocating for mutability, we believe that IaaS

clouds should continue to provide a VM abstraction. This

approach is fundamentally different from that of cloud

operating systems that expose an OS abstraction [22].

Figure 1: General extensibility architecture. U and P de-

note user and provider installed modules, respectively.

3 xClouds

In response to today’s clouds, made up of immutable hy-

pervisors and buried hardware, we propose an xCloud. Its

general components are shown in Figure 1. Like today’s

IaaS clouds, an xCloud ultimately exposes a VM-like in-

terface, upon which cloud users can run VMs. Unlike

today’s clouds, the VM-like interface can be customized

and user-defined hypervisor-level functionality can be in-

troduced to directly interface with the hardware. Thus,

an xCloud exposes both a mutable hypervisor and the un-

derlying hardware.

We consider the hypervisor to be made up of a number

of modules that interact to comprise the inner-workings

of the cloud provider. The provider will likely implement

modules that multiplex hardware and enforce protection,

such as the isolated containers in Figure 1 that protect

cloud users from one another. Modules that implement

functionality essential to the operation of the cloud, such

as protection and accounting, are immutable. Some mod-

ules may be modified by users; others, implementing in-

novative or experimental interfaces, may be completely

supplied by the cloud user. Modules depicted within a

dotted box require access to the hardware.

There are a number of design alternatives for arranging

the components in Figure 1. These alternatives, shown in

Figure 2, are largely inspired by seminal work on exten-

sible kernels.

Download Extensions into the VMM: SPIN [5] and

VINO [19] are two systems from the 1990’s in which ex-

tensions, or grafts, can be downloaded into the kernel,

and run safely. Safety is provided mostly at the language

level, using techniques like safe languages (Modula-3)

and software fault isolation. An xCloud architecture that



(a) Download extension modules into VMM (b) Export hardware through VMM (c) Add another VMM

Figure 2: Three design alternatives for xClouds. The shading scheme is identical to Figure 1.

adopts this design is shown in Figure 2(a). The hyper-

visor becomes mutable by allowing user-defined or user-

modified modules to be downloaded into the kernel. Sim-

ilar to the extensible OSs, this must be done safely, such

that other modules, especially immutable provider mod-

ules, are protected. Since modules are executing in the

hypervisor with privilege, they can be granted direct ac-

cess to the hardware.

Expose Hardware through the VMM: Exoker-

nel [11] is a system that achieves extensibility by expos-

ing hardware directly to applications, to the extent that

the actual hardware names and addresses are visible to

applications. Management of the hardware, traditionally

done by the OS kernel, is performed by a library OS

(libOS) that can be completely custom built and linked

into the application. The kernel, on the other hand, only

enforces protection between applications, which can be

complex [13]. With the renewed interest in virtualization

in the early 2000’s, paravirtualization revisited many of

these ideas, with the Denali isolation kernel [23] exposing

much of the hardware, and implementing the traditional

OS as a library, linked into the application. Xen [3] also

adopted a paravirtualization approach and argued that full

virtualization is not desirable when a guest OS needs to

see real physical resources. Figure 2(b) shows a design

in which the cloud provider exposes hardware to a “lib-

VMM” under the control of a cloud user—analogous to a

libOS on top of an Exokernel. The hardware is not buried,

but exposed to the libVMMwhich is completely mutable.

Add Another VMM: Interest in nested virtualization

is increasing as virtualization becomes ever more ubiqui-

tous. Furthermore, nested virtualization has been shown

to perform well, for example, the Turtles Project [4] has

achieved performance within 6-8% of single-level virtu-

alization for some workloads. Figure 2(c) shows how

nested virtualization can be leveraged for extensibility

in the cloud. When a user leases a VM instance, it in-

stalls a mutable, second layer hypervisor to run on top of

the cloud provider’s VM abstraction. The providers’ and

users’ modules are implemented in the first and second

layer hypervisors, respectively. It should be noted that

existing techniques require modifications to the bottom-

most hypervisor in order to expose virtualization hard-

ware extensions to VMs.

Nested virtualization fundamentally differs from the

previous two design alternatives. On the one hand, us-

ing nested virtualization, the hardware remains buried

under the virtual machine abstraction, preventing a

cloud user from implementing the class of performance-

enhancements described in Section 2. On the other hand,

nested virtualization has enormous potential for immedi-

ate and incremental deployment, even without provider

cooperation. As an alternative to existing nested virtu-

alization systems that require lower-layer VMM modifi-

cations, techniques such as paravirtualization can be ap-

plied inside a standard fully virtualized or even paravir-

tualized guest VM. As such, this mutable, second layer

hypervisor implements an xCloud that can be immedi-

ately deployed on today’s cloud platforms without requir-

ing their involvement. These unexplored and unevaluated

techniques for nested virtualization offer a compelling

xCloud architecture, but will such an xCloud perform?

4 Will a Deployable xCloud Perform?

As discussed above, the nested virtualization approach

has the advantage of rapid and immediate deployment on

today’s clouds. In this section, we show that nested vir-

tualization can achieve reasonable performance without

provider involvement. Then, we briefly discuss oppor-

tunities to achieve higher performance, still without any

changes to the underlying platform.

For these experiments, we assume standard, hardware-

assisted hypervisors that run at the lowest layer, simi-

lar to the HVM instances available from Amazon EC2.
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Figure 3: Virtualization configurations

Single Nested

Baseline PV HVM KVM PV / HVM PV / KVM

double div (ns) 7.19 7.55 7.61 7.41 7.57 7.35

null call (µs) .19 .37 .21 .20 .37 .38

fork proc (µs) 65.17 249.70 78.89 86.52 280.39 336.93

Table 2: Microbenchmarks using lmbench

Without hypervisor modifications to virtualize the pro-

cessor features supporting virtualization [4], we must use

other techniques to implement the second layer hyper-

visor, such as paravirtualization (e.g., Xen [3]), binary

translation (e.g., VMWare [20]), or full emulation (e.g.,

QEMU).1 Our experiments focus on using paravirtual-

ized Xen,2 and were performed on machines with 24 GB

of RAM and dual 6-core 2.93 GHz Intel Xeon X5670 pro-

cessors, which include advanced virtualization features

like extended page tables. The virtualization configura-

tions that we compare are described in Figure 3.

Table 2 shows the results of some lmbench mi-

crobenchmarks over the various setups (Figure 3). As

expected, all arithmetic operations, like double division

(shown), are minimally affected by virtualization. Simple

operations like null system calls, are achieved in fully vir-

tualized configurations without hypervisor support, and

thus have matching performance. Paravirtualization, on

the other hand, invokes the hypervisor on the system call,

which must be bounced back up to the guest OS. Nesting

does not introduce any extra overhead beyond that of PV.

However, in nested environments, process fork generates

12-30% additional overhead over PV by inducing traps

into the lowest layer hypervisor.

I/O typically stresses a virtualized system because of

the inefficiencies of emulation required to fully virtual-

ize I/O devices and handle interrupts. To determine the

overhead introduced by the second layer hypervisor, we

1Results from experimentation with QEMU are not shown due to

the abysmal performance of full emulation, which was up to two orders

of magnitude slower.
2While Xen paravirtualization somewhat limits compatibility, we

note that it is very popular; for instance, a large fraction of Amazon

EC2’s offerings are indeed paravirtualized.
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Figure 4: Disk throughput using dd
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Figure 5: Network receive throughput using netperf

conducted experiments with disk I/O and network I/O. In

the first experiment, we measure the performance of disk

I/O by writing 1.6 GB of data to a disk partition with dd

using blocks of size 256 K. Each result is the average of 5

trials. Figure 4 shows the throughput of the disk. We find

that, for disk I/O, nested virtualization does not cause sig-

nificant overhead, achieving 90% of native throughput.

In the second experiment, we measure the performance

of network I/O. The network device typically generates

more interrupts and requires more OS interaction than a

disk, making it a more stressful test for virtualized en-

vironments. We ran netperf in each setup in order to

determine how fast a guest could receive TCP network

traffic generated from another machine across a 1 Gbps

network. netperf was configured to use the default set-

tings and a message size of 16,384 bytes. Each result

is the average of 10 trials. Figure 5 shows the results.

Considering a single layer of virtualization, it is immedi-

ately obvious that full virtualization (HVM, KVM) incurs

a dramatic performance hit. HVM performs particularly

poorly, achieving only 40% of the baseline throughput.3

PV, which bypasses device emulation by using paravir-

tualization, achieves performance matching the baseline.

This suggests that the poor performance of the nested se-

tups is largely due to the device emulation of the first

layer hypervisor. For instance, whereas the single layer

of KVM virtualization reduced throughput by 47%, the

second layer only reduces it by a further 9%.

3This is a known limitation of network virtualization in Xen due to

inefficient I/O remapping [17].



Figure 6: Screenshot of Xen booting on Amazon EC2

The performance impact of a second layer of virtual-

ization appears to be a reasonable price to pay for a read-

ily deployable xCloud. Paravirtualization is extremely

important for device I/O, suggesting that incorporating

paravirtualization through both layers may lead to even

better performance.

5 Conclusion and Future Work

Cloud providers are trending towards complexity, diver-

sity, and vendor lock-in. This trend is also limiting users’

abilities to implement sophisticated, custom applications

that require VMM- and HW-level control. This paper ar-

gues the need to address today’s limitations through ex-

tensibility.

Creating an xCloud on today’s infrastructure is within

reach using nested virtualization as an extensibility layer.

In preliminary experiments, we showed that its overhead

is within acceptable limits given its relative ease of de-

ployment. We also noted the potential performance ben-

efits of using paravirtualized I/O drivers on both virtu-

alization layers, eliminating the bottleneck presented by

device emulation. In ongoing work, we have imple-

mented nested paravirtual device drivers, that can trans-

mit and recieve packets from the network at line speed on

a Gigabit link. Furthermore, nested paravirtual drivers

are required for compatibility with clouds that expose

a paravirtual network interface, such as Amazon EC2.

As shown in Figure 6, we have successfully run Xen

on EC2 and are currently evaluating the performance of

EC2 as an xCloud. Finally, we intend to implement

nested paravirtualization on a fully paravirtualized EC2

instance, extending both the deployability and perfor-

mance of xCloud. The xCloud webpage is available at

http://xcloud.cs.cornell.edu.
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