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Abstract

This paper introduces a software defined device driver
layer that enables new ways of wiring devices within and
across cloud environments. It builds on the split driver
model, which is used in paravirtualization (e.g., Xen) to
multiplex hardware devices across all VMs. In our ap-
proach, called theBanana Double-Split Driver Model,
the back-end portion of the driver is resplit and rewired
such that it can be connected to a different back-end
driver on another hypervisor. Hypervisors supporting
Banana cooperate with each other to (1) expose a con-
sistent interface to rewire the back-end drivers, (2) al-
low different types of connections (e.g., tunnels, RDMA,
etc.) to coexist and be hot-swapped to optimize for place-
ment, proximity, and hardware, and (3) migrate back-
end connections between hypervisors to maintain con-
nectivity irrespective of physical location. We have im-
plemented an early prototype of Banana for network
devices. We show how network devices can be split,
rewired, andlive migrated across cloud providers with
as low as 1.4 sec of downtime, while fully maintaining
the logical topology between application components.

1 Introduction

The flexibility and agility of the cloud stems from de-
coupling the functionality of devices from their physi-
cal hardware. However, for system devices the decou-
pling is incomplete. Virtual devices often hold depen-
dencies on physical components, limiting the flexibil-
ity of cloud resource management. For example, they
may depend on the presence of a physical device (e.g.,
a GPU, FPGA, etc.) or a device-related configuration
(e.g., VLAN configuration, firewall rules, etc.). While
device-specific mechanisms to complete the decoupling
exist (e.g., virtual networking for NICs [4]), we aim to
design a generic, software-defined mechanism for device
decoupling.

Figure 1: Xen’s split driver model

Specifically, we reexamine the architecture of the split
driver model that was popularized by Xen paravirtual-
ization [1]. As shown in Figure 1, the split driver model
consists of two parts: the front-end and back-end drivers.
The two components are connected through a ring buffer,
a bidirectional data pipe. The front-end driver is accessed
by the virtual machine (running in Domain U in Xen).
The back-end driver is managed by the host OS (running
in Domain 0 in Xen) and interfaces with the underlying
hardware drivers.

The split driver model enables multiplexing all access
to the underlying physical hardware, but only partially
decouples the underlying hardware from the end hosts.
It does not provide location independence, limiting po-
tential optimizations based on VM placement, proximity,
or available hardware. This is because back-end drivers
are coupled with the underlying hardware drivers in an
ad-hoc fashion.

This paper proposes theBanana Double-Split Driver
Model (Banana, for short). Banana extends the split
driver model by further splitting the back-end driver into
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two logical parts: theCorm and theSpike.1 The Corm
multiplexes access to the underlying hardware, while the
Spike talks to the guest OSs. These two subcomponents
expose a standard interface (endpoints) by which a Ba-
nana controller canwire or connect together Spikes and
Corms. The Banana controller is software defined, al-
lowing the external definition and on-the-fly reconfigu-
ration of both (1) the pairing of the Spike and Corm and
(2) the wire format connecting them. The wire format
can be switched between local memory copies or a vari-
ety of network connections (i.e., OpenFlow, VPN, STT,
VXLAN, RDMA, etc.), depending on the physical loca-
tion of Corms and Spikes.

As a first step, we provide an alternate approach
to virtualizing NICs in Xen [1]. NICs are a natu-
ral starting point as the resulting double split commu-
nication core creates a good reference architecture for
other devices like GPUs and FPGAs. We focus on (1)
how wires between Banana Spikes and Corms can be
stretched across clouds, and (2) how, using a simplecon-
nect/disconnect primitive, Banana controllers can easily
switch Spike/Corm mappings. Specifically, leveraging
the Xen-Blanket [16] augmented with Banana, we per-
formed cross-cloud live migration of VMs from our pri-
vate cloud to Amazon EC2. The entire live migration
process involved no changes to VMs or their network
configurations and incurred as low as 1.4 s of downtime.

2 Going Bananas

Banana supports a double-split architecture, illustratedin
Figure 2. This section describes three design elements:
(1) the splitting of the back-end—system—portion of de-
vice drivers, (2) the wiring of double-split device driver
components, and (3) the management of wires (connec-
tions) during VM provisioning and during VM migra-
tion.

2.1 Double Splitting Drivers

Banana modifies what we refer to as thesystem portion
of a split device driver. The system portion contains
the back-end driver (in paravirtualization), the hardware
driver, and all of the ad-hoc code that connects the two.
The system portion as a whole traditionally implements
two primary features: (1) it multiplexes the underlying
hardware, and (2) it interfaces with the virtualized guests
(illustrated in Figure 1). In Xen, the hardware is multi-
plexed in an ad-hoc manner depending on device type.
For example, the network may be multiplexed using a

1The “corm” in a banana plant refers to the parts that are above
ground (similar to a tree trunk). The “spike” is inflorescence in which
the banana fruit grows.

Figure 2: Banana Double Split Driver Model

bridge or virtual switch, whereas a disk may be multi-
plexed using the filesystem. The interface with the guests
is via ring buffers between the host OS (running in Do-
main 0) and guest OSs (each running in Domain U).

Banana cleanly demarcates these two functionalities
into two logical components: theCorm and theSpike
(Figure 2). The Banana Corm essentially maps to the
portion of the driver that multiplexes the underlying
hardware. As such, there is typically one Corm per phys-
ical device; it is tied to a physical machine. The Banana
Spike corresponds to the portion that talks to guest OSs.
Unlike existing implementations, the Corm and Spike
are not hardwired together nor do they have to run on
the same physical host. Instead, the two components ex-
poseendpoints, which resemble virtual NICs, that can be
wired together such that one or more Spikes from differ-
ent physical machines can communicate with the Corm
on a given physical machine.

Consider a base system in which both the Spike and
Corm of the network driver reside on the same physical
machine. Here, an endpoint on the Spike represents an
interface to one of the VMs and an endpoint on the Corm
represents an interface to the underlying network. As
described later, the wiring between Corms and Spikes
implies that VMs can be moved around irrespective of
physical location.

2.2 Wires

Wires are essentially connections between twoend-
points, each bound to a Corm or a Spike. The binding be-
tween endpoints is configured by anendpoint controller
residing in the hypervisor. Each endpoint has a unique
identifier. Consequently, Banana does not restrict how
wires (connections) are implemented as long as the end-
point controller is able to properly associate connections
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with endpoints. Furthermore, the choice of wires can de-
pend on the location of the endpoints. If, for example,
two endpoints reside in different data centers, the wire
can be a VPN tunnel.

Wires are inherently decentralized. For example,
endpoints could be globally addressable within a Ba-
nana network through a hierarchical naming convention
rooted at hypervisor identity. Each endpoint could have
a home hypervisor2 that keeps track of the current lo-
cation of the endpoint, while the endpoint controller in
each hypervisor responds to queries pertaining to its ac-
tive endpoints. The binding between endpoints is main-
tained even if the corresponding component is migrated
to another hypervisor. On migration, the configuration
of endpoints is updated to ensure the wire topology is
maintained (described next).

2.3 Wire Management

Banana exposes a simple interface made up of two op-
erations,connect anddisconnect, which create and
destroy wires between the Spikes and Corms. These in-
terfaces augment the typical VM creation and destruction
interfaces exposed by hypervisors.

To maintain the logical wire topology as VMs migrate,
the endpoint controller on each hypervisor is integrated
with its live migration mechanism. During migration, the
source hypervisor copies the affected endpoint configu-
rations to the destination hypervisor as part of the VM
metadata. The wire format need not remain the same:
for example, if the wire crosses administrative domains
(e.g, different clouds) a VPN may be used in place of a
simple encapsulation method (e.g., VXLAN).

3 Implementation

We have implemented Banana in Xen, initially focus-
ing on modifying its virtual NICs to support the Banana
Double-Split Driver model. We also augment existing
hypervisor live migration mechanisms to also migrate
wires and endpoints.

Endpoints. We kept the endpoint implementation sepa-
rate from both the back-end and hardware drivers. End-
points appear to the system as independent network de-
vices, just like the vNICs and hardware devices. Figure 3
depicts how endpoint devices are connected to the back-
end and hardware devices to form the Banana Spike and
Corm. To form the Spike, we use a dedicated software
network bridge, called the endpoint bridge, to connect
the endpoint network device to the back-end driver. To

2The home hypervisor is akin to the Local Mobility Anchor in
Proxy Mobile IP (PMIP) [14], and could be implemented robustly
through consistent hashing.

Figure 3: Virtual Ethernet in Banana

form the Corm, we connect one or more endpoint de-
vices to the virtual switch to which the hardware device
is connected.

Types of Wires. We implemented three types of wires:
native, encapsulating, and tunneling wires. Native wires
directly bridge spikes and corms that are colocated on
the same physical machine. Encapsulating wires imple-
ment VXLAN. We implemented the entire endpoint in
a Domain 0 kernel module to reduce the number of con-
text switches required when compared to a userspace im-
plementation, such asvtun, which uses the TAP/TUN
mechanism. Inside the kernel module, packets traveling
across a wire between Spikes and Corms are intercepted
and encapsulated in UDP packets, then sent through Do-
main 0’s external interface. Finally, the tunneling wire
is OpenVPN-based, which can be used to tunnel across
different clouds.

Switching Wires and Corms. We implemented an in-
terface in the/proc filesystem in the endpoint controller
kernel module, through which endpoints are controlled.
This interface provides a convenient mechanism to create
and destroy wires as needed. It is also used by the local
migration process to update endpoints during a VM mi-
gration.

Migrating Endpoints. We modified the local Xen live
VM migration process [3] in two ways to include Banana
migration.3 First, when the destination creates the empty

3During live migration, the source hypervisor instructs thedestina-
tion hypervisor to create an empty VM container. Then, the source
iteratively copies memory to the destination, while the migrating VM
continues to run. At some point, the source stops the VM and copies
the final memory pages and other execution state to the destination.
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Downtime Duration

Banana 1.3 [0.5] 20.13 [0.1]
No Banana (nested) 1.0 [0.5] 20.04 [0.1]
No Banana (non-nested) 0.7 [0.4] 19.86 [0.2]

Table 1: Mean [w/standard deviation] downtime (s) and
total duration (s) for local live VM migration

VM container (during the pre-copy phase), it also recre-
ates the vNICs and endpoints to form Banana Spikes for
each interface of the VM. The newly created Spikes at
the destination are wired to the same Corms that the cor-
responding Spikes at the source were wired to. Second,
during the stop-and-copy phase, all Corms for which a
Spike is attached are rewired to the new Spikes at the des-
tination by signaling the appropriate endpoint controllers
to update relevant endpoint configurations. Finally, af-
ter migration completes, the source deletes the original
Spikes.

4 Banana in Action

We evaluate the efficacy of Banana in the context of
our implementation of the Banana NIC. Specifically, we
demonstrate how stretching Banana wires and switching
Corms can simplify cross-cloudlive migration of VMs
from our local environment to Amazon EC2. Live VM
migration across clouds typically require complex setup
of gateways and VPNs to extend layer 2 domains. Ba-
nana wires abstract away this complexity in a uniform
manner.

While we experimented with complex application se-
tups, due to space considerations, we focus on two VMs
connected through a virtual switch, with one VM contin-
uously receivingnetperf UDP throughput benchmark
traffic from the other VM.4 Initially, both VMs are co-
located. We use resources at our local institutions as well
as from Amazon EC2. Since we do not have access to
the underlying hypervisor in Amazon EC2, we leverage
the Xen-Blanket [16] for nested virtualization. For con-
sistency, we use the Xen-Blanket in both setups. In ei-
ther case, the Xen-Blanket Domain 0 is configured with
8 VCPUs and 4 GB of memory. All guests (DomUs) are
paravirtualized instances configured with 4 VCPUs and
2 GB of memory.

Cross-cloud Live Migration. The performance time of
live migration of a VM (receivingnetperf UDP traf-
fic) between two machines in our local setup is shown
in Table 1. We examine the components of the migra-
tion overhead by comparing against VM migration with-

4We usenetperf with 1400-byte packets and UDPSTREAM (for
throughput) and UDPRR (for latency) modes throughout.

Downtime Duration

Local to Local 1.3 [0.5] 20.13 [0.1]
EC2 to EC2 1.9 [0.3] 10.69 [0.6]
Local to EC2 2.8 [1.2] 162.25 [150.0]

Table 2: Mean [w/standard deviation] downtime (s) and
total duration (s) for live VM migration with Banana

out Banana, in which vNICs are directly bridged onto
the physical network. Since this is on our local setup, we
also show results for migration without nested virtualiza-
tion (non-nested). We find a 43% increase in downtime
and an 18% increase in total duration due to nesting. The
added task of migrating Banana endpoints introduces an
additional 30% increase in downtime, but a negligible
increase in total duration. We note that live migration
without Banana is restricted to a single physical network
subnet because the vNICs are bridged onto the physical
network.

Table 2 quantifies the performance of live migration
across clouds using Banana. We compare the perfor-
mance of single-cloud live migration within our local
(nested) setup (Local to Local) and within Amazon EC2
(EC2 to EC2) to multi-cloud migration between the two
(Local to EC2). Within one cloud, local or EC2, the la-
tency between the instances is within 0.3 ms, whereas
across clouds it is about 10 ms. VPN overhead limits
throughput across clouds to approximately 230 Mbps.
The 10 Gbps network between our EC2 instances leads
to significantly reduced total migration time when com-
pared to local; however, the downtime was comparable.
Live migration of a VM (receivingnetperf UDP traf-
fic) between our local nested setup and Amazon EC2 has
a downtime of 2.8 s and a total duration of 162.25 s on
average, but variance is high: the duration ranged from
48 s to 8 min. For an idle VM, the performance of the
network between machines has little effect: the down-
time during live migration between two local machines
and from local to EC2 is 1.4 s on average.

We ran two more experiments,5 shown in Figure 4 and
Figure 6, to identify the throughput and latency over time
for the test deployment as the recipient VM and then
the sender VM were live migrated to Amazon EC2, re-
spectively. As expected, significant degradation in the
throughput and latency occurs when the VMs are not co-
located on the same cloud.

Banana Wire Performance. We examine the overhead
of our VXLAN encapsulation for Banana wires, high-
lighting the effect of the in-kernel implementation of
Banana endpoints. Figure 5 compares the performance

5We could not measure both the throughput and latency from a sin-
gle experiment usingnetperf.
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Figure 4: Throughput over time between two VMs mi-
grating to Amazon EC2
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Figure 5: Tunnel throughput comparison

of Banana wires against various other software tunnel
packages on our local 1 Gbps setup. We measure the
UDP performance of a VM sending data to another VM
through each tunnel. The baseline is a measurement of
the direct (non-tunneled) link between the VMs. The
kernel-module approach of Banana wires pays off espe-
cially for nested environments: while Banana wires show
an increase in throughput by a factor of 1.55 over the
popular open-source tunneling softwarevtun in a non-
nested scenario, they show a factor of 3.28 improvement
in a nested environment. This can be attributed to the rel-
atively high penalty for context switches experienced in
the Xen-Blanket [16]. These results suggest that, while
any tunnel implementation can be used for wires in Ba-
nana, it should be optimized for the environment.

5 Related Work

Banana drivers provide a cut point for device drivers de-
signed to provide location independence. There has been
work on general frameworks to virtualize devices that
focus on block devices. Block tap drivers [15] provide
a different cut point in the block device I/O path where
arbitrary functionality, including Banana, can be imple-
mented in userspace.

Netchannel [10] enables live migration of device state,
remote access for devices, and hot swapping, or switch-
ing out the physical device that a virtual device maps
to. While a general framework, Netchannel primarily
addresses I/O block devices. While we have so far fo-

 0.1

 1

 10

 0  100  200  300  400  500  600  700  800  900

La
te

nc
y 

(m
s)

Time (s)

V
M

1 
m

ig
ra

tio
n 

st
ar

ts

V
M

1 
m

ig
ra

tio
n 

en
ds

V
M

2 
m

ig
ra

tio
n 

st
ar

ts

V
M

2 
m

ig
ra

tio
n 

en
ds

Figure 6: Latency over time between two VMs migrating
to Amazon EC2

cused on network devices, we envision Banana to ben-
efit from the exploration of block devices in Netchan-
nel. However, whereas Netchannel emphasizes contin-
uous access to devices, we are interested in developing
a clean and general wiring interface to achieve location
independence.

More specific to devices, Nomad [7] discusses the mi-
gration of high-speed network devices that are mapped
directly into guests, bypassing the hypervisor. US-
B/IP [6] achieves location independence for peripherals
by virtualizing devices within an OS driver. Neither ap-
proach is general for a wide class of virtualized devices.

The focus of Banana on network devices was inspired
by emerging virtual networking architectures, such as
VL2 [4] and NetLord [12], as well as software-defined
network environments [5, 9, 11, 13] that aim to enable
location independence for the network. Banana comple-
ments these efforts by introducing location independence
in the VM driver stack.

Banana can be directly applied to create overlays of
virtual network components, such as VIOLIN [8] or
VINI [2]. In these systems, the overlay can benefit from
the Banana architecture, creating new opportunities for
rewiring VM topologies and migrating various compo-
nents without disruption.

6 Conclusion

This paper presented Banana, an architecture in which
device drivers can be virtualized. It builds on the current
split driver model that is found in paravirtualization to
allow the back-end portion to be arbitrarily rewired. We
have demonstrated the efficacy of our approach in creat-
ing virtual networks that can migrate between clouds by
only modifying Xen’s virtual NIC device driver. We are
actively modifying other device drivers with the hope of
creating a robust device virtualization layer that can unify
ongoing approaches in storage, GPUs, and any other sys-
tem resource.
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