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Abstract

Recently, unikernels have emerged as an exploration of
minimalist software stacks to improve the security of ap-
plications in the cloud. In this paper, we propose ex-
tending the notion of minimalism beyond an individual
virtual machine to include the underlying monitor and
the interface it exposes. We proposeunikernel monitors.
Each unikernel is bundled with a tiny, specialized mon-
itor that only contains what the unikernel needs both in
terms of interface and implementation. Unikernel mon-
itors improve isolation through minimal interfaces, re-
duce complexity, and boot unikernels quickly. Our ini-
tial prototype,ukvm, is less than 5% the code size of a
traditional monitor, and boots MirageOS unikernels in as
little as 10ms (8× faster than a traditional monitor).

1 Introduction

Minimal software stacks are changing the way we think
about assembling applications for the cloud. A minimal
amount of software implies a reduced attack surface and
a better understanding of the system, leading to increased
security. Even better, if the minimal amount of software
necessary to run an application is calculated automati-
cally, inevitable human errors (and laziness) when trying
to follow best practices can be avoided. Recently this sort
of automated, application-centered, dependency-based
construction of minimal systems has been explored to
what some believe is its fullest extent: unikernels [21]
are stand-alone, minimal system images—built entirely
from fine-grained modules that the application depends
on—that run directly on virtual hardware.

Yet the exploration of minimal systems for the cloud
via unikernels is only complete when viewed within a
box: the box in this case being a virtual machine (VM).
In this paper, we think outside the box and ask, in terms
of the dependency-based construction of minimal sys-
tems, why stop at VM images? Is the interface between

Figure 1: The unit of execution in the cloud as (a) a
unikernel, built from only what it needs, running on a
VM abstraction; or (b) a unikernel running on a spe-
cializedunikernel monitorimplementing only what the
unikernel needs.

the application (unikernel) and the rest of the system,
as defined by the virtual hardware abstraction, minimal?
Can application dependencies be trackedthroughthe in-
terface and even define a minimal virtual machine mon-
itor (or in this case aunikernel monitor) for the applica-
tion, thus producing a maximally isolated, minimal exe-
cution unit for the application on the cloud? How would
that work?

As shown in Figure 1, we propose that executables
for the cloud should contain both the application (e.g.,
a unikernel) and amonitor. The monitor is responsible
both for efficiently launching the application in an iso-
lated context and providing a specialized interface for
the application to exit out of the context (e.g., for I/O),
containing only what the application needs, no more, no
less. The bundling of each application with its own cus-
tom monitor enables better isolation than either VMs or
containers, with a simple, customized, high-performing
interface. The ability of a unikernel monitor to boot
unikernels quickly (as low as 10ms) makes them well
suited for future cloud needs, including transient mi-
croservices [3, 5] and zero-footprint [4] operation.



In this position paper, we discuss how unikernel mon-
itors could be automatically assembled from modules;
specifically, how techniques used in package manage-
ment to track application dependencies could extend
through interface modules as well as monitor implemen-
tations. We also discuss the dangers and difficulties of
running many different monitors in the cloud and how
the small size of unikernel monitors (0.2% of a unikernel
binary and 5% of the code base of traditional monitors
like QEMU [11]) admits mitigation techniques like code
analysis and certification. Finally, we discuss how our
prototype implementation,ukvm, demonstrates the feasi-
bility of unikernel monitors by efficiently booting Mira-
geOS unikernels [21] with specialized interfaces.

2 Why Specialize the Monitor?

We argue that applications in the cloud should sit on top
of specialized interfaces and the software layer under-
neath it, themonitor, should not be general-purpose. The
desire to eliminate general-purpose OS abstractions is
not new [13]. As such, there have been many approaches
to specialize application software stacks for performance
or isolation, from seminal library OS work [14, 19] to its
more recent incarnation on the cloud under the unikernel
moniker [22, 23, 29, 27, 12, 16, 8, 7]. Yet specializing
the underlying monitor has been less studied.

The cloud suffers from unnecessary problems be-
cause applications use general-purpose monitors and in-
terfaces. Current clouds try to fit all applications as VMs
with the x86 interface, or as containers with the POSIX
interface. Despite an extremely wide range of possible
interface levels to explore, we argue thatany general-
purpose abstraction will suffer the same issues. More
specifically, in this section, we describe how general pur-
pose abstractions are not minimal, impose unnecessary
complexity, and may introduce performance overheads.

Minimal Interfaces. In today’s clouds, the interface
to the rest of the system—whether full virtualiza-
tion [11], paravirtualization [10], or OS-level (i.e., con-
tainers) [24]—is wide and general-purpose, including
many unnecessary entry points into the monitor. Since
each application has different requirements,a general-
purpose interface cannot be minimal.For example, the
virtual hardware abstraction exposed by KVM/QEMU is
not minimal for an application because the VMM does
not know whether a guest VM (application) will require
a particular virtual device or interface. Exposing vir-
tual device interfaces when they are not necessary can be
disastrous for security, as demonstrated by the VENOM
vulnerability in QEMU [9]. With VENOM, a bug in vir-
tual floppy drive emulation code could be exploited to

break out of the guest, regardless of whether a virtual
floppy drive is instantiated.

A specialized monitor can expose a minimal interface,
determined by what the application needs, resulting in
fewer vulnerabilities available to exploit. A specialized
monitor exposes an off-by-default interface. Rather than
trying to block interface exit points via a blacklist-style
policy (e.g., Default Allow in AppArmor [2]), exit points
are explicitly introduced due to application needs, more
like a whitelist.

In some cases, it may even be possible to elimi-
nate seemingly-fundamental interfaces, like the network.
Suppose a number of microservices in the cloud are in-
tended to be chained together to implement a larger ser-
vice. In today’s clouds, each microservice would utilize
the network to communicate. By specializing the mon-
itor, network interfaces could be eliminated in favor of
simpler serial input and output in a familiar pattern:

echo 1 | bundle1 | bundle2 | bundle3

Even in the case of compromise, each microservice
would not have a network device available to use for
communication with the outside world.

Simplicity. Regardless of the width or the level of the
interface, general-purpose monitors adhere to a general-
purpose interface. Any implementation in the monitor
(underneath the interface) must be general enough to
work for the full range of applications above, thereby
introducing complexity. Simplicity is somehow related
to the choice of interface level: any functionality imple-
mented underneath the interface (in the monitor) must
pay a “generality tax”. For example, for an interface at
the TCP level, the monitor must manage multiple tenants
and resource sharing in the network stack. At the packet
level, the monitor must only multiplex a NIC. In general,
a lower-level interface needs to pay less “generality tax”.
However, even at the low layer, general-purpose moni-
tors are still complex. Virtual hardware devices adhere
to legacy standards (BIOS, PCI devices, DMA address
restrictions, memory holes, etc.) so that general-purpose
guests can operate them.

Specialized monitors, on the other hand, create op-
portunities to simplify both the guest and the monitor.
Legacy standards are unnecessary for most applications
in the cloud. For example, both thevirtio [25] front-
end (in the guest) and back-end (in the monitor) can be
completely removed in lieu of simpler, direct packet-
sending interfaces. Furthermore, with a specialized mon-
itor, complex VM introspection techniques [15], which
are brittle and suffer from inconsistencies and synchro-
nization issues [28], can be replaced by introducing inter-
faces to facilitate introspection techniques and deal with
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/* UKVM_PORT_NETWRITE */

struct ukvm_netwrite {

void *data; /* IN */

int len; /* IN */

int ret; /* OUT */

};

Figure 2: An example interface to send a network packet.

synchronization issues. Finally, specialized interfacesto
integrate with software written for general-purpose op-
erating systems [26] could simplify certain applications
and their development.

It may be still advised to implement low-level in-
terfaces rather than high-level interfaces in specialized
monitors for security reasons (see Section 3), but spe-
cialized monitors do not incur a “generality tax”.

Faster Boot Time. Boot time is especially important
for emerging application domains including the Inter-
net of Things (IoT) [20], network function virtualiza-
tion (NFV) [22], and event triggered, subsecond-metered
services like Amazon Lambda [3]. In such environ-
ments, cloud-based services are expected to be created
on the fly and then destroyed after they have performed
their function.1 As described above, guests running
on general-purpose monitors often perform cumbersome
virtual hardware negotiation and emulation, which—in
addition to adding complexity—also increases boot time
(e.g., to enumerate the virtual PCI bus). Efforts to im-
prove the boot time on general-purpose monitors [1] will
eventually hit a limit where any further specialization of
the monitor and guest to eliminate common discovery
and negotiation may diminish the set of guests supported
by the monitor. Such specialization is unacceptable for
today’s cloud, where there is one monitor that must sup-
port all guest workloads.

In situations where further specialization is
acceptable—including the bundling of application-
specific monitors with the applications themselves as
we suggest—better performance has been demonstrated.
For example, unikernels like ClickOS [22] and Mira-
geOS [21] with Jitsu [20] have been shown to boot in as
low as 20ms on modified (specialized) VMM toolstacks.

3 Unikernel Monitors

We propose that each unikernel be distributed with its
own specialized monitor. This monitor should have two
tasks: 1) creating an isolated context to run the unikernel,
and 2) taking action whenever the unikernel exits the iso-
lated context. The monitor thereby maintains complete

1This is sometimes called azero-footprint cloud. [4]

control over the unikernel. One of the actions the moni-
tor may take is to destroy the unikernel.

A straightforward implementation of a unikernel mon-
itor is as a specialized virtual machine monitor. In this
case, hardware protection provides an isolated context,
using hardware support for virtualization. If the uniker-
nel exits its context for any reason (e.g., an I/O port oper-
ation, an illegal instruction, etc.) the hardware will trap
into the monitor.

The default behavior for a monitor is to maintain com-
plete isolation for the unikernel. A completely self-
contained unikernel is bundled with an extremely sim-
ple monitor. The monitor simply sets up the hardware-
isolated context and runs the unikernel. It does not ex-
pose any interfaces to the unikernel: every unikernel exit
results in the monitor immediately destroying the uniker-
nel and reclaiming its resources. At this time, since the
monitor is specialized for the (now destroyed) unikernel,
the monitor no longer has work to do and can safely exit.

Of course, a unikernel that runs in complete isolation
may not be terribly useful for the cloud. Interfaces be-
tween the unikernel and monitor are provided on a per-
application basis and do not need to adhere to established
standards. Interfaces can exploit the fact that the moni-
tor is able to access the memory contents of the uniker-
nel. For instance, Figure 2 shows an example interface
to send a network packet. By writing the address of
an instance of this structure to the I/O port defined by
UKVM PORT NETWRITE, a unikernel will exit to the mon-
itor. The monitor directly accesses the network packet
in the unikernel’s memory at the specified memory loca-
tion, checks or sanitizes the packet, and then sends the
packet to the physical network.

Building Monitors. In theory, a unikernel strives to be
a single application assembled with a minimal amount
of software to allow it to run. Simply running a library
operating system is insufficient for minimalism. In addi-
tion, only the functions needed by the application should
be included in the library OS for any specific unikernel.
Some unikernel approaches apply a clever use of package
management and dependency tracking to approximate a
minimal build.

For example, MirageOS [21], which produces OCaml-
based unikernels, leverages the OCaml package man-
ager, OPAM, to track dependencies between components
of their library OS. As depicted in Figure 3(a), even
modules that would typically be included by default in
a monolithic OS, such as the TCP stack, are packages
with tracked dependencies. In this example, the appli-
cation requires TCP, so at compile time, the toolchain
selects both TCP and a network interface driver to inter-
face with the virtual NIC exposed by the VMM. Since the
application does not use a filesystem, the toolchain ex-
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Figure 3: Application dependencies determine software
that is assembled into (a) a standard unikernel; or (b) a
unikernel and monitor bundle. Dark boxes are included
by default.

cludes filesystem modules and block device driver mod-
ules from the build. It is important to note that the
back-end virtual devices and their interfaces may still be
present in the overall system regardless of whether the
application needs them. In Figure 3, dark gray boxes
are included by default, whereas white boxes are selected
based on application dependencies.

We propose extending the dependency-tracking notion
through the monitor interface, more specifically by modi-
fying the toolchain and the package manager. Figure 3(b)
shows the same application that depends on TCP. At
build time, the modified toolchain selects TCP and a net-
work interface driver. Unlike the standard unikernel in
Figure 3(a), the network interface spans the unikernel
and monitor; it is not written assuming a generic virtual
network device implementation such asvirtio [25].
Furthermore, the network interface module carries an ex-
plicit dependency on the backend network implementa-
tion via a TAP device [18]. In this case, the toolchain not
only excludes filesystem modules and device driver mod-
ules from the unikernel, but from the monitor as well. If
the application did not have a dependency chain to the
network tap device, the toolchain would have excluded
the tap driver, the interface, and the TCP module from
the unikernel and monitor. The only default component
in the monitor,guest setup, is the component that is re-
sponsible for booting the unikernel (and destroying it on
any unhandled exit).

To realize such a system, there are many interesting is-
sues to solve around how to specify or encode packages,
especially those that span the interface, what granularity
packages should be, and how to automatically build an
entire unikernel monitor from such packages.

Securing the Monitors Unlike traditional virtual ma-
chine monitors in the cloud, there is not a single uniker-

nel monitor for the cloud. From a cloud operation per-
spective, this implies that the cloud must evolve to sup-
port multiple monitors, a potentially different one for
each unikernel. At first glance, this is a daunting propo-
sition: it’s hard enough to maintain a single virtual ma-
chine monitor in production, it would be near impossible
to maintain a boundless number!

However, after further reflection, we believe that mon-
itors are small enough to be bundled with unikernels
and safely run on the ubiquitous Linux KVM system.
Implementation-wise, the unikernel monitor can be sim-
ilar to a type-II hypervisor: essentially a userspace pro-
gram that leverages the host for most resource manage-
ment. For example, a unikernel monitor that occupies the
same place in the stack as QEMU in a standard Linux
KVM/QEMU system can run on any Linux host with the
KVM module. As we describe in Section 4, our proto-
type is indeed similar to a type-II hypervisor.

It should be noted that, in this circumstance, the mon-
itor will execute in the isolation context of a normal
user process, which may not be secure enough for multi-
tenant clouds. Given the fact that the interface between
the monitor and the unikernel is customized, the less-
than-ideally-isolated monitor appears to be a straight-
forward channel for a unikernel to bypass its hardware-
based isolation. We believe that well-defined interfaces
and a modular, minimal approach to monitor construc-
tion will help assuage these fears. Unikernels are already
touted to be small, but the overall size of the monitor is
but a fraction of the size of the unikernel, making them
amenable to formal verification [17] or audit. For exam-
ple, our prototype monitor is just over 1000 lines of code,
with a binary just.02% of a MirageOS-based static Web
server unikernel binary. A cloud provider could mandate
that each monitor be built from a set of certified modules.

4 A Prototype: ukvm

In order to show the feasibility of this new unit of ex-
ecution on the cloud, we now describe a prototype im-
plementation of a unikernel monitor calledukvm. The
source code is freely available [6].ukvm boots and acts as
a monitor for a unikernel based on Solo5 [6], a thin open-
source unikernel base, written in C, that (among other
things) supports the MirageOS [21] runtime and com-
ponents. A Mirage application binary (compiled from
OCaml code) is statically linked to the Solo5 kernel.
ukvm is a specialized monitor for a Solo5-based

unikernel. Architecturally, ukvm is a replacement
for QEMU (specifically the user level side of a
KVM/QEMU system). It is a user level program that
loads a kernel ELF executable (solo5+mirage), creates
a KVM VCPU, and configures memory and registers so
the Solo5 kernel can start in 64-bit privileged mode as
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QEMU ukvm

Solo5 Kernel

malloc 6282 6282
runtime 2689 2272
virtio 727 -
loader 886 -

total 10484 8552

Monitor
QEMU 25003 -
ukvm - 990 (+ 172 tap)

total 25003 1162

Table 1: Lines of code for the kernel and the monitor for
the general-purpose QEMU, and the specialized ukvm.

a regular Cmain(). The memory and register setup in-
cludes setting a linear page table (a unikernel has a single
address space), a stack, and loading registers with some
arguments for the kernel (like the memory size).

The I/O interfaces betweenukvm and Solo5 look like
the one in Figure 2. They provide zero-copy IO by allow-
ing any address of memory to be used as a buffer (of any
size), and making the call with no more than a single VM
exit (no need to probe if the PCI bus is ready, as would
be done withvirtio). We implemented basic disk and
network backends inukvm by using TAP [18] and host
file reads and writes.

Table 4 shows the lines of code needed for implement-
ing Solo5 on top of QEMU versusukvm. Most of the
reduction in Solo5 comes by removingvirtio and the
loader. Also, notice how an application configured not to
use the network would have 10% less code in ukvm. For
a concrete estimate of the size of the monitor in relation
to the unikernel, theukvm binary is 23KB compared to
the 11MB Solo5 executable image when linked against
thewwwMirage application (only 0.2%).

Our prototype implementation does not automatically
select the minimal configuration needed to run; auto-
matic selection is limited to the MirageOS components.

Boot Time. We measured boot time forukvm and com-
pared it against traditional virtualization approaches like
QEMU, and to the more recentlkvm (used bykvmtool
in clear containers [1]). QEMU exposes a physical ma-
chine abstraction andlkvm is a more lightweight moni-
tor that skips the BIOS and bootloader phase and jumps
directly to the 64-bit kernel.lkvm and QEMU were con-
figured to usevirtio network and block devices. The
three monitors were configured to use 512 MB of mem-
ory, and one 2.90GHz CPU core. Furthermore, the mon-
itors were instrumented to trace the first VM instruction,
the first serial output, the first network output, and the
final halt instruction.

Figure 4 shows the boot times for QEMU,lkvm, and
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Figure 4: Boot times forukvm (U), lkvm (L), and QEMU
(Q) for some applications. ’s’ and ’n’ indicate the first
serial and network output, respectively.

ukvm for 3 MirageOS applications:hello (prints “hello”
to the console then exits),block (tests disk reads and
writes), andwww(serves static Web pages).

The gray bars on the left show the time spent on moni-
tor initialization. As expected, QEMU takes the longest,
with 80ms compared tolkvm that takes an average of
45ms, andukvm with 10ms.ukvm andlkvm load the 64-
bit kernel immediately, so the kernel produces its first se-
rial output (the ’s’) quicker than QEMU, which unpacks
an ISO file in real mode to load the kernel. Thewwwbars
show thatukvm is able to do real work as soon as the ker-
nel starts as the kernel sends its first network packet (the
’n’) 18 milliseconds after its first serial output.lkvm and
QEMU, on the other hand, first discover these devices,
then initialize them before sending, resulting in at least
100ms delay.

5 Conclusion

We propose a new unit of execution for the cloud, built
from the bundling of unikernels and specializeduniker-
nel monitors. As a first step, with our prototype monitor,
ukvm, we have shown that such monitors can be small
and simple, yet powerful enough to run real unikernels.
We believe the advantages of specializing cloud software
stacks—including the monitor—are key to realizing the
security and responsiveness needs of future clouds.
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