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When it comes to isolation on the cloud, conven-

tional wisdom holds that virtual machines (VMs) pro-

vide greater isolation than containers because of their

low-level interface to the host. A lower-level interface

reduces the amount of code and complexity needed in the

kernel that must be relied upon for isolation. However,

it is incorrectly assumed that virtualization mechanisms

are required to achieve a low-level interface suitable for

isolation. In this paper, we argue that the interface to

the host can be lowered for any application by moving

kernel components to userspace. We show that using a

userspace network stack results in a 33% reduction in

kernel code usage, which is 20% better than when re-

sorting to virtualization mechanisms and using a VM.

1 Introduction

Cloud security is an ever-present and growing concern

as more enterprises consider running workloads in the

cloud. Multi-tenancy brings challenges to security, as

cloud users must trust the cloud provider to maintain iso-

lation between their workloads and any potentially mali-

cious tenants that are co-located with them on the same

physical infrastructure. Currently, running each tenant in

its own virtual machine (VM) is the most common prac-

tice used by cloud providers for isolating tenants.

However, as containers gain popularity as a

lightweight, developer-friendly alternative to VMs,

it is reasonable to ask whether VMs are still needed for

isolation. Arguments for isolation typically boil down

to discussions about differences in the interface between

the guest and the host, which are often conflated with the

mechanism in use. VMs, using hardware virtualization

mechanisms, utilize a low-level interface which is

thought to provide strong isolation. Containers, using

process mechanisms, utilize a high-level interface,

which is thought to contribute to poor isolation. For

example, the authors of LightVM describe the cause of

container security concerns as follows:

The main culprit is the hugely powerful kernel

syscall API that containers use to interact with

the host OS. [23]

Yet LightVM then goes on to try to introduce container-

like properties to VMs, without giving up the complex

hardware-based virtualization mechanism implementing

the low-level interface to guests.

In this paper, we make the observation that the level

of the interface between the guest and the host is not

fundamentally tied to the actual mechanism used to sep-

arate the guest from the host (like the virtualization or

process mechanism). In Section 3, we describe how the

high-level container interface can be arbitrarily lowered

by introducing library OS (libOS) components to appli-

cations or using userspace services in a manner we dub

microkernelification. While we do not focus on enforc-

ing isolation in this paper, we assume guards can protect

a given interface despite the mechanism.1

Furthermore, we claim that the mechanism used by

virtualization actually hurts isolation due to its complex-

ity. To back up this claim, we introduce a rough metric

based on kernel function tracing, kernel code usage, with

the assumption that an interface that requires less kernel

code results in greater isolation for tenants. We find that

applying libOS techniques to the network stack alone is

enough to produce a 20% smaller kernel code usage than

traditional virtualization, which is 33% smaller than reg-

ular Unix processes.

2 Isolation and Kernel Code Usage

The ability to correctly isolate tenants from each other is

a fundamental part of designing and operating a cloud.

However, there is no trivial quantitative metric for isola-

tion. Instead, practitioners often resort to heuristics such

1For example, using virtualization mechanisms, a monitor may

implement guards, whereas using process mechanisms, system call

whitelisting (e.g., seccomp) may implement them.



Figure 1: (a) A process/container typically accesses the

host kernel through a high-level interface, such as using

its network stack via socket system calls. (b) A VM

uses a low-level interface, such as using a network tap

device to process layer 2 packets (the TCP stack is im-

plemented in the guest kernel).

as how high-level (abstract) or low-level (hardware-like)

the interface between cloud applications (guests) and the

host is. For example, a process expects a high-level, ab-

stract POSIX interface, whereas a VM expects a low-

level virtual hardware interface.

A system that implements a high-level interface hides

complexity to the user at the cost of becoming more com-

plex itself, usually in the form of an increased code base.

More code can lead to more errors and vulnerabilities;

the industry average is between 15 and 50 errors per 1000

lines of code [24, 10]. Conservatively, any vulnerability

in the underlying system that provides isolation can lead

to an exploit that violates the isolation it provides. Thus

we say a system that can be implemented with less code

(e.g., one that provides a low-level interface) can provide

greater isolation.

Suppose we consider the Linux kernel as the under-

lying system that provides isolation between tenants in

a cloud environment. Most familiarly, as seen in Fig-

ure 1(a), Linux provides a high-level POSIX interface

for processes. Alternatively, using the KVM kernel mod-

ule, Linux can provide a low-level virtual hardware in-

terface. Figure 1(b) shows such a case, where the guest

application has its own OS and uses low level (hardware-

like) abstractions from the kernel. We define kernel

code usage as the number of unique kernel functions that

are used throughout the execution of cloud applications.

This metric provides an estimate of how much of the ker-

nel is needed to implement high or low-level interfaces.

As described above, we would expect Linux configured

to provide a low-level interface to result in lower kernel

code usage (and thus greater isolation) than Linux con-

figured to provide a high-level interface including system

calls that interact with large, complex subsystems like the

network stack and filesystems.

In a practical setting, the kernel code usage metric

could be used by cloud practitioners to lock down cloud

applications to some fixed interface, via guards. In a

more extreme case, if the kernel code usage for a given

interface was small enough, the cloud provider could im-

plement a hypervisor, microkernel [18] or separation ker-

nel [25, 27] with formal methods [18, 14] that exposes

the desired interface, providing high assurance that the

isolation property remains upheld.

3 No Need for Virtualization Mechanisms

In this section, we claim that the interface mechanism

(i.e., the mechanism used to implement processes vs.

VMs) has little to do with the interface level. Further-

more, we describe how to arbitrarily lower the interface

level for any process, thereby reducing the kernel code

usage and improving isolation.

3.1 Interface Mechanism 6= Interface Level

Processors have evolved their interface mechanism (pro-

tection features) by introducing protection rings and ex-

ecution modes in order to adapt to new paradigms. Ini-

tially, three protection rings were developed to help im-

plement processes [3]. We refer to these as the process

interface mechanism. Since then, processes have been

used to implement containerized applications. In re-

sponse to the popularity of VMs, a hypervisor mode was

introduced (VT in Intel [19]), which is used in virtual

machine monitors like QEMU/KVM (see Figure 1(b)) to

implement VMs. We refer to this as the virtualization

interface mechanism. Cloud applications run in VMs on

top of a guest kernel which interacts with a monitor pro-

cess, QEMU. QEMU interacts with the KVM module

in the Linux kernel running in hypervisor mode. Both

the monitor (via the process mechanism) and the guest

(via the virtualization mechanism) interact with the ker-

nel through low-level interfaces.2

Most likely for historic reasons, people tend to equate

the interface mechanism with what it was designed for,

specifically, use of the virtualization mechanism tends to

be associated with low-level-interface VMs. However,

equating the interface mechanism to the interface level or

drawing the conclusion that low-level interfaces require

the virtualization mechanism is an invalid generalization.

3.2 Lowering Process Interfaces

Figure 2 shows the expected relationship of interface

level to kernel code usage. Unsurprisingly, we depict tra-

2Although out of the scope of this paper, we note that new interface

mechanisms are emerging with enclave technologies such as Intel Soft-

ware Guard Extensions (SGX) [8]. Our point still applies: the interface

level used on them is completely arbitrary.



Figure 2: The level of interface between the guest and

host can be lowered by libOS techniques or microker-

nelification, without using virtualization mechanisms.

ditional VMs in the lower left, at a point with a low inter-

face level and low kernel code usage. Similarly, we de-

pict traditional Unix processes/containers as a point with

a high interface level and subsequently high kernel code

usage.

However, process mechanisms can be used with dra-

matically lower-level interfaces than standard Unix pro-

cesses, depicted by a line on Figure 2.3 For example,

as shown in Figure 3(a), an application can choose to

link with its own network stack and use the low-level

network tap device as its network interface to the ker-

nel [9, 15, 13, 21]. In general, this approach of mov-

ing kernel functionality into libraries is called the library

OS or libOS approach. LibOSes have been well stud-

ied [11] and are currently experiencing a rejuvenation in

the context of the cloud due to rise of unikernels [22, 6, 1]

and the ecosystems that support them, such as Mira-

geOS [22].

More generally, kernel functionality can be moved

into user space daemons as shown in Figure 3(b). We

refer to this process as microkernelification, as the re-

sultant architecture approaches a traditional microker-

nel architecture, with the kernel doing little more than

inter-process communication. For example, FUSE [2]

is a technique in which the kernel implements a small

amount of bridging code that allows a process to

consume a filesystem that is implemented entirely in

userspace. As a result, the applications (taken as a set)

interface with the kernel at a lower level, beneath the

filesystem, which will result in a lower kernel code us-

age. userfaultfd [7] is an example of a similar strat-

egy for memory fault handlers.

At the extreme, software approaches can be used to

3This observation holds in the other direction as well: virtualization

mechanisms can be used for high-level interfaces, as in Dune [4].

Figure 3: (a) A libOS can have a low-level interface to

the host, without the kernel complexity of a VM. For ex-

ample, the application can implement its own user-level

TCP/IP library (like lwip [9]). (b) Kernel functionality

can be implemented in user-level components, such as

FUSE [2] filesystems through microkernelification.

move the interface level down to the machine level by

emulating machine instructions without hardware sup-

port (as is possible in QEMU [5]). Full emulation would

only need to interact with the kernel for I/O, and in that

case, it can minimize the amount of kernel code used

by only interacting with the lowest interface levels avail-

able: network tap and block devices.

To summarize, as shown in Figure 2, the interface level

(and subsequently kernel code usage) is not dependent on

using virtualization mechanisms.

4 Dangers of Virtualization Mechanisms

In this section, we examine how lowering the level of the

interface of cloud applications via libOS techniques af-

fects isolation indirectly through measuring kernel code

usage. We also demonstrate that the use of virtualiza-

tion mechanisms via KVM has a significant impact on

the kernel code usage.

4.1 Methodology

In this experiment, we use the Linux kernel ftrace

functionality to observe the Linux kernel code usage for

a simple HTTP web server on various isolation configu-

rations, described in Table 1.

In order to provide a comparable application in each

scenario, we use the MirageOS unikernel ecosystem to

build the application. MirageOS is an ecosystem of

libOS components built in OCaml. MirageOS tooling

allows an OCaml application to be built as standalone

VMs or normal unix applications with and without libOS

components.

We measure the kernel code usage for cloud applica-

tions built using MirageOS under four different scenarios

(described in Table 1). The first two configurations are



Name How much LibOS? Networking Description

qemu all tap VM (unikernel) running on QEMU in emulation mode.

kvm all tap VM (unikernel) running on QEMU with KVM.

tap network stack tap Unix process using MirageOS network stack.

socket none sockets Unix process built with MirageOS using host network stack.

Table 1: MirageOS configurations for kernel code usage experimentation.

VMs. Both qemu and kvm use the same image, however

one is run in emulation mode (qemu) while the other is

run with KVM assistance (kvm). Comparing these con-

figurations should allow us to estimate the effects of us-

ing KVM on the kernel code usage. The second two

configurations are processes. Both tap and socket are

built with MirageOS, but tap uses the MirageOS network

stack while socket uses the Linux host’s network stack.

Comparing these configurations should allow us to ob-

serve the reduction in the kernel code usage achieved by

applying a libOS technique, even if it is just on the net-

work stack.

To compute kernel code usage, we count the number

of functions in the kernel that are invoked through an

interface using the Linux kernel’s ftrace functionality.

We use the function graph tracer set to ignore irqs and

trace only the pids that correspond to our application.

In order to avoid contaminating the kernel trace, we run

all experiments inside a virtual machine including kvm;

this is possible via nested virtualization. The test VM

is running a stock Ubuntu Linux kernel, version 4.10.0-

38-generic. In all scenarios except for socket, we bridge

the test VM’s network device with the tap interface. We

start and stop ftrace in the test VM entirely through the

serial console to avoid any tracing contamination from

SSH.

For each scenario, we measure the number of unique

kernel functions that were accessed when issuing a single

wget for a 1354 byte page in each scenario. We do not

start the ftrace measurement until after the web server

is idle and waiting for requests, to avoid polluting the

trace with startup-related function calls. We use a single

connection in this experiment to ensure that the size of

kernel traces remain small.

4.2 Results

Figure 4 shows the total number of kernel functions ac-

cessed and also shows a classification of whether each

function in the ftrace log corresponds to virtualization,

networking, or something else. We perform classifica-

tion based on manual inspection of function names. For

example, we classify a function as virtualization if its

name contains kvm, vmx, x86, vmcs, vcpu, or emulator;

network if its name contains: tcp, br , skb, inet, ip,
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Figure 4: The number of unique kernel functions ac-

cessed when serving HTTP.
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qemu 2 1 1 4 8 12 7 11 33 0 4 83

kvm 0 0 3 3 9 9 6 11 25 0 0 66

tap 2 1 1 4 9 12 7 11 33 0 4 84

socket 62 14 16 34 30 25 0 13 35 1 4 234

Table 2: Breakdown of network-related functions.

sock, napi, net, packet, sk , or tun; and other other-

wise. This classification is not perfect; in particular, we

expect we have missed some functions resulting in them

being incorrectly classified as other.

The first observation we draw from Figure 4 is the ef-

fect of libOS techniques on the kernel code usage. Re-

call that tap and socket are processes that differ only by

the network stack, with the former using a libOS stack.

As seen in Table 2, the use of the libOS network stack

cuts the total number of network-related kernel functions

called by almost two thirds, from 234 to 84. As a re-

sult, the total kernel code usage shrinks by a factor of

1.5, from 530 to 353. Table 2 also shows the break-

down of the network-related functions, based on function

names that contain each substring. Packet handling and

the bridge in the test VM (br , skb, packet, napi) are

common to all scenarios, whereas the higher-level net-

work stack functions (leftmost 6 columns) are replaced

with lower-level tap functions (tun).

Comparing tap and kvm, we see that even a partial
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kvm 62 28 18 0 3 1 112

tap 0 0 0 0 0 0 0

socket 0 0 0 0 0 0 0

Table 3: Breakdown of virtualization-related functions.

application of libOS techniques is enough to produce a

lower kernel code usage than traditional KVM/QEMU

virtualization. In particular, tap, through the use of the

libOS network stack, has a kernel code usage of about

80% of that of kvm, with 353 and 443 total calls respec-

tively. Table 3 shows the breakdown of the virtualization-

related functions.

The qemu and kvm bars correspond to VMs, and as

such can be roughly viewed as providing insight into

what the kernel code usage would look like if a full libOS

was added to a process. The qemu result is in some sense

a best case, with the smallest kernel code usage, because

it uses emulation (in userspace) instead of additional ker-

nel mechanisms (KVM) to implement virtualization. In

fact, using virtualization support via KVM increases the

kernel code usage by over 1.5 times, from 268 in qemu

to 443 in kvm, 120 of which we have classified as vir-

tualization. We expect that a full libOS implementation

(instead of just the network stack as in tap) would yield

similar results to qemu.

5 Discussion and Related Work

Generality: The obvious question for libOS approaches

is how complete the libOS implementation is. POSIX

compatibility is often discussed in the context of li-

bOSes. OSv [17] can support complex applications in-

cluding those running with the JVM. Furthermore, met-

rics exist to help design libOSes for completeness [26].

Maintenance: Kernel code is well maintained. Who

will maintain the userspace equivalents? One answer

could be that language communities with experience

maintaining package ecosystems in their language of

choice naturally embrace lower-level libraries. This is

happening to some extent in the unikernel communi-

ties, such as MirageOS [22] and the OCaml commu-

nity. Another answer could be to reuse existing (main-

tained) kernels without modification. Anykernels [16],

rump kernels and rumprun [1] have demonstrated that,

if architected in a particular way, pieces of community-

supported kernels like NetBSD can be used directly as

libraries with no modifications. As another example,

qemu kvm tap socket

385.8 2820.1 2988.0 4250.4

Table 4: Requests/second for HTTPS server under vari-

ous configurations.

Stackmap [28] uses the Linux kernel’s network stack in

userspace.

Performance: When the interface to the application

changes, performance can change for a few different rea-

sons. Most obviously, although qemu shows the small-

est kernel code use in Section 4, it is not a practical ap-

proach because of the performance implications of full

emulation. In a throughput experiment (Table 4) with

a MirageOS HTTPS web server under a load of 1000

connections per second we observe similar throughput

from kvm and tap but confirm the inefficiencies of qemu

losing 91% of the performance. The mechanism itself

also affects performance, for example, we have mea-

sured improvements from 2355 to 1094 cycles when

comparing vmexits from the virtualization mechanism

to sysenters for the process mechanism. Moreover,

the level of the interface may affect the number of inter-

face crossings; for example, a libOS may cross for each

and every packet, whereas a native process may only per-

form one crossing for a large stream write. Finally, the

quality of implementation may differ between libOS im-

plementations and native kernel implementations (e.g.,

a highly-optimized network stack like the one in Linux,

vs. a home-grown stack). As discussed above, it is pos-

sible that native kernel implementations can be reused in

libOSes.

Metrics for isolation: We have largely focused on

kernel code usage as a metric for isolation. However,

there are many other metrics to consider. For example, a

better metric for security may not be the size of the code

reachable by the interface, but how many vulnerabilities

are expected to be found in the code. Lock-in-pop [20]

is a system that uses libOS techniques to restrict kernel

usage to popular code paths. Alternatively, an isolation

mechanism may need to consider data sharing rather than

code coverage, in which taint-tracking techniques may

help. [12]

6 Conclusion

When thinking about isolation for the cloud, we should

not view virtualization mechanisms as necessary but see

them for what they are: overly complex ways to achieve

a low-level interface. It is time to shed complexity and

move on to a safer cloud without virtualization.
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