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ABSTRACT

From the inception of the cloud, running multi-tenant workloads
has put strain on the Linux kernel’s abstractions. After years of
having its abstractions bypassed via virtualization, the kernel has
responded with a native container abstraction that is eagerly being
applied in the cloud. In this paper, we point out that history is re-
peating itself: with the introduction of serverless computing, even
the native container abstraction is ill-suited. We show that bypass-
ing the kernel with unikernels can yield at least a factor of 6 better
latency and throughput. Facing a more complex kernel than ever
and a relatively undemanding computing model, we must revisit
the question of whether the kernel should try to adapt, we should
continue bypassing the kernel, or if it is �nally time to try a new
native OS for this important future cloud workload.
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1 INTRODUCTION

The Linux kernel has evolved into a sacred software component
that underpins everything and that can run directly on almost any
type of hardware. In particular, Linux now powers smartphones,
tablets, cars, cloud data centers and high-performance supercom-
puters [13]. In the cloud domain, the kernel has once again seized
the spotlight. For ten years, virtualization has relegated the ker-
nel to be a simple and thin hypervisor. But now, as virtualization
is being dismissed as too heavyweight, the relatively lightweight
containers implemented by the kernel are slated as the new face of
the cloud [23].

In this paper, we predict that this milestone is in fact the begin-
ning of the end of the ubiquity of Linux in the cloud.1 We base this
prediction on the con�uence of two fairly obvious trends: that the

1We are not the �rst to take issue with a current OS: indeed, 22 years ago Engler and
Kaashoek asserted that “[T]hroughout the history of computer science there has been
a fairly constant opinion that current operating systems are inadequate” [8].
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complexity of the kernel continues to grow, and that the unit of
execution on the cloud continues to shrink.

First, the complexity of the kernel has signi�cantly increased, es-
pecially in the past few years. To introduce support for containers,
the Linux kernel underwent major changes to include new abstrac-
tions like namespaces and cgroups. This took years. The next sig-
ni�cant changes will take even longer, because complexity a�ects
implementation time, and the Linux kernel’s complexity has been
growing quadratically with time [12, 22, 24]. This is why bypassing
the kernel makes sense: it is either to hard to implement something
in the kernel, too hard to optimize the relevant code paths in the
kernel, or too hard to secure the kernel. For example, fully bypass-
ing the kernel is still commonplace for data plane network services
using hardware-level virtualization and software frameworks like
the Data Plane Development Kit (DPDK) [5].

Second, the units of software running as cloud workloads are
evolving. The current trend in the cloud is to run a relatively small,
lightweight application rather than amore heavyweight system [23].
The industry hype around so-called serverless architectures [2, 4, 6]
is an indication that this trend will continue beyond applications to
run even smaller, more lightweight lambdas or actions. A kernel ab-
straction designed for starting an application once every few hours
is unlikely to perform well for an action starting once every hun-
dred milliseconds or so. Indeed, we provide supporting evidence
for this claim in Section 3.

Yet, if history is any indication, the need for an e�cient multi-
tenant implementation will inevitably cause the kernel to evolve
to support serverless actions as a native abstraction. In this paper,
we identify three approaches to adapt the kernel for these work-
loads. First, it is possible to continue to directly modify or extend
the kernel, as was done with containers, despite the complexity re-
quired in doing so. Second, kernel-bypass architectures could be-
come even more commonplace, relegating Linux once again to a
sideline role. Finally, the kernel in the cloud could be completely re-
placed with something better suited to emerging cloud workloads.

The rest of the paper is organized as follows. In Section 2, we
describe the characteristics and requirements of serverless and the
tradeo�s present in each of the three approaches mentioned in the
previous paragraph. Section 3 shows evidence of the current inabil-
ity of Linux to e�ciently implement new serverless abstractions,
which we believe is a sign that the general purpose kernel’s unchal-
lenged use cloud is unsustainable. In Section 4, we discuss whether
the kernel as we know it will linger along with bypass techniques
or if it will be replaced by an entirely new design. Ultimately, in
Section 5, we conclude, at least for serverless, that it is counter-
productive to extend the kernel and that the e�orts of the commu-
nity would be better spent shrinking or completely replacing the
kernel.
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Figure 1: A serverless architecture. User-supplied actions

(denoted by blue circle A’s) are invoked in response to events

from services in the cloud data center.

2 RETHINKING THE KERNEL

It should not be a surprise that as time has gone on, the complexity
of the Linux kernel has increased quadratically with time [12, 24].
Beyond this observation, one could ask what percentage of that
complexity is necessary to implement various cloud abstractions.
In this section, we brie�y describe an emerging cloud model: the
serverless computing model. We assert that, for serverless, very lit-
tle of the complexity of the Linux kernel is necessary, further tip-
ping the scales away from Linux as the best kernel for the job.

2.1 The serverless model

Figure 1 depicts an overview of a serverless architecture. The basic
idea behind serverless is that users upload code that is associated
with an event in the cloud (e.g., from a data store or other service).
The code, called a lambda, or an action, is only run when the event
happens and billed on a 100 ms granularity; the user does not need
to pay for a server to wait idly for events (hence “serverless”). Ex-
isting implementations limit how long an action can run [2, 6]. The
canonical example action computes an image thumbnail, triggered
every time an image is uploaded into cloud storage. Applications
that trivially �t the serverless model include periodic antivirus
scans or spam classi�ers where each action operates on a single
email or �le. The boundaries of what types of workloads can be
mapped into serverless are still being explored: for example, map-
reduce has been implemented in a serverless model where each
mapper or reducer is started as an action [11].

As serverless systems in the wild are still nascent, the precise
de�nition of an action varies from system to system. Conceptually,
actions comply to a restricted computing model. They implement
functions, not general-purpose servers or applications. In the ex-
treme, restricting actions to be non-preemptable, run-to-completion
threads of execution with a single input and a single output would
not violate the conceptual model. For the purposes of this paper,
we primarily consider two relatively general-purpose implementa-
tions of actions: libraryOS approaches [9, 18], speci�cally uniker-
nels [14–16, 26], and Linux containers.

Regardless of the speci�cs of the programming model and its
implementation, there are some clear technical requirements for
the actions in a serverless platform. First, as actions run arbitrary
code from multiple tenants, they must remain well-isolated from
other tenants and the host platform. This excludes implementa-
tions based solely on native Linux process, for example. Second,
actions must perform well. The speci�c types of performance we
are interested in are:

• Low latency: A user expects actions to launch instanta-
neously on an event. From a provider’s perspective low
latency also reduces complexity: it removes the need to
manage caches that hide high startup latency. To give a
ballpark number, we would the serverless platform to be
able to fetch and start any action, without any previous
cached state, under 100 ms, regardless of system load.

• High throughput: From a provider perspective, the num-
ber of actions run on a machine must be high enough to
cover the cost of running the machine, even if the actions
are very short-lived. We did some back of the envelope cal-
culations using Amazon Lambda [3] and EC2 pricing [1].
A 4-core EC2 instance (to match our experimental setup in
Section 3), costs $0.188 per hour (t2.xlarge). In order for
Lambda to be cost e�ective, and taking into account that
users pay $0.000000417 per action (256 MB per action),
we need to have at least (0.188/0.000000417)/(60 ∗ 60), or
125.23, actions/second.

In Section 3, we show experimentally that the Linux kernel is cur-
rently ill-suited to reach these performance objectives.

2.2 How to adapt for serverless

Assuming that the kernel will eventually evolve to natively sup-
port multi-tenant actions as it did to support multi-tenant con-
tainers, we identify three possible approaches, shown in Figure 2.
The �rst one, denoted (a), is to enhance the Linux kernel and its
container-related capabilities for actions. This appears to be the ap-
proach favored by industry, perhaps by default, as containers are
the most popular con�guration in existing serverless systems [2,
6]. The second option, denoted (b), is to bypass the complexity
of the kernel and add another layer from which actions can be
started. Examples of this approach could include a hypervisor (e.g.,
QEMU) or unikernel monitor [26] (e.g, ukvm) to run the action as
a unikernel. In this way, only basic device drivers are used out of
the Linux kernel, and functionality like TCP/IP is implemented in
the unikernel’s library OS. The �nal option, denoted (c), is to write
a more appropriate host OS from scratch that is more suitable to
run serverless actions. This does not mean con�guring a stripped-
down Linux; this option implies a completely new set of user ab-
stractions that may not even look like our traditional and familiar
processes.

As shown in Figure 2, choosing between these 3 options in-
volves tradeo�s in two dimensions. Speci�cally, the di�erent ap-
proaches trade impediments to e�ciently supporting actions that
stem from 1) dealing with a complex legacy code base or 2) dealing
with a lack of familiar/useful abstractions.

• Impediments due to complexity (the bottom axis on
Figure 2). Although an old project like the Linux kernel
has lots of useful abstractions, it is a complex code base.
Software engineering studies have shown thatmaintenance
cost increases polynomially with the number of lines in a
software project [12, 22]: Cost = constant ∗ Lines1.3. To
worsen the outlook, the number of lines in the Linux ker-
nel is increasing at a quadratic rate with time [12, 24]. This
also has a direct impact on how hard it is to extend the
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Figure 2: Three options for designing native support for

serverless actions (denoted by blue circle A’s). In option (a),

the kernel is extended similarly to how container support

was recently introduced. In option (b), the kernel (and its

complexity) is largely bypassed. In option (c), a new, tailor-

made kernel is created.

code base. Extending the kernel to support a new server-
less abstraction (e.g., option (a)) sounds like daunting task.

• Impediments due to lack of familiar/useful abstrac-

tions (the top axis on Figure 2). Well-established projects
like the Linux kernel have several APIs that make it easy
to write an initial version of a serverless platform (i.e. con-
tainers as actions). On the other hand, writing a new OS
from scratch (e.g., option (c)) would require the creation
of completely new (although more appropriate) abstrac-
tions for serverless actions. As noted above, and discussed
in Section 4, there is an opportunity to de�ne the action
abstraction in such a way as to dramatically simplify the
implementation of such a “native serverless” OS.

In the middle, option (b) is a compromise. It involves a somewhat
convoluted architecture in terms of bypassing the kernel, but is
relatively easy to implement and high performing. The rise of in-
terest in library OS’s through unikernels [15] has decreased many
of the impediments caused by the lack of useful abstractions. We
next adopt this strategy to provide a counterpoint while demon-
strating that a state-of-the-art Linux abstraction is not appropriate
for serverless actions.

3 THE KERNEL IS NOT READY FOR
SERVERLESS

In this section, we perform some experiments to demonstrate that
Linux containers are unable to achieve the performance goals we
put forth in Section 2. At the same time, we show that a kernel-
bypass approach using unikernels can achieve these goals and fur-
ther assert that such an approach is in fact easier to implement.

3.1 Containers do not perform well enough

We are interested in the raw performance of the underlying action
abstraction in the two metrics described in Section 2: latency and
throughput. Ideally, we would like to see latency under 100 ms
and throughput above 125.23 actions/second . We do not consider
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Figure 3: Latency and throughput of actions implemented as

a raw Linux process (echo), as a unikernel on ukvm and as a

runc container.

caching strategies, as they inevitably a�ect user experience as a
performance wall [10]. In the Linux case, we evaluate containers.
We compare the container performance to a kernel-bypass approach
that uses ukvm-based unikernels [26] and also report performance
for normal Linux processes as a baseline.

Experimental setup. We evaluate the performance of running
the simplest action possible: a hello-world function that takes no
input and outputs a “Hello” on the console. The baseline native
Linux process used is echo Hello.

To give the Linux container the best performance possible, we
create an optimized container by reducing it to amicrocontainer [25]
with no libc. In other words, rather than including an entire Linux
distribution, the container only includes a statically-linked binary
that does not even link libc. The binary is a small application writ-
ten in inline assembly that directly invokes a system call to out-
put “Hello” on stdout. The container is invoked with runc using
a standard config.json and a precreated layered rootfs using
overlayfs. We did not set up network interfaces by default.

The comparison unikernel, referred to as ukvm in the experi-
ments, runs a Solo5/ukvm unikernel that prints "Hello" onto the
serial console then exits [7]. It is invoked with ukvm-bin, a spe-
cialized unikernel monitor generated to run the unikernel [26].
ukvm-bin is modular, and a "hello world" unikernel only needs
a serial console to output a string, so that is the only device (i.e.
module) set up by the monitor. ukvm-bin runs as a Linux process
and loads the unikernel in a new VCPU context via the Linux KVM
system call interface.

We ran all experiments on a 4-core Intel i7 2.6 GHz X1 Carbon
ThinkPad, with an SSD and RHEL 7.3, Linux 3.10 kernel.

Examining latency. For latency, we measure the time spent set-
ting up and initializing the container or unikernel for it to be able
to output the string ("Hello") over stdout. For each run, the latency
is calculated as the di�erence between the timestamp (host time)
at which the message was received and the timestamp at which
the action was invoked.
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Figure 3 (on the left) shows the results (averaging 5 runs): In our
setup, the baseline, echo, a regular (non-namespaced) Linux pro-
cess takes only 5.8 ms. Starting a unikernel, depicted ukvm, takes
7.8 ms (only 34% more than a regular Linux process).

Although runc is a minimal container runtime (when compared
to e.g., Docker), it still does much more than just start the process.
It sets the isolationmechanisms for the process by invoking names-
pace and cgroupAPIs. This takes 23milliseconds on a pre-allocated
rootfs mount. Using the overlay �le system, the average startup
time was 47 ms (about 22 ms are spent setting up an overlay FS).
Both the microcontainer and unikernel binaries are small enough
that fetch time is under 2 ms.

Both are under the 100 ms bar we proposed in Section 2, al-
though containers are almost 6 times slower to boot. We should
reiterate that this is a best case for containers, as we measured con-
tainer startup times for Alpine Docker containers to be in the 100s
of milliseconds. Additionally these more traditional (non-micro)
containers can also have fetch times in the 100s of milliseconds.

Examining throughput. As described in Section 2, throughput
is of crucial importance to providers. We measured the system
throughput using a simple workload generator. We used an open
system model, where the generator spawns actions at a given rate,
regardless of feedback from the system under load [20]. To obtain
the max throughput of the system, load is increased until a satura-
tion point. We note that this method can be skewed by contention
from the load generation.

Figure 3 (on the right) shows the results. The max throughput
numbers (in hellos/sec) are 329 for echo, 193 for ukvm, and 24 for
runc. ThatâĂŹs an 8x performance improvement for unikernels
over containers. Looking at the back-of-the-envelope calculation
in Section 2, we see that this performance could actually have real-
world implications: given those numbers, a container throughput
(24 hellos/sec) would not be enough to be cost-e�ective (125 action-
s/sec) for the serverless provider. On the other hand, bypassing the
kernel with ukvm does enter the desired range at 193 hellos/sec.

3.2 Why didn’t we just �x containers?

The fact that we chose a bypass implementation isn’t by anymeans
proof that Linux has reached a point where it is more cost e�ec-
tive to implement serverless actions using the bypass model. How-
ever, we did not choose to modify the Linux kernel because we
suspected that it would need new features and performance im-
provements, whichmay have impacted many subsystems (e.g., like
the changes to support containers).

A less personal indication of the complexity of Linux becoming
a burden has come from industry. Despite great attention from the
industry and the popular use of containers for serverless platform
implementations [2, 6, 10] the Linux kernel has still not yet been
adapted or �xed to provide the necessary throughput for server-
less.

4 WHAT ROLE WILL LINUX HAVE IN THE
CLOUD?

Based on these observations, it might be time to rethink the Linux
kernel as the default OS for the cloud, or at least the parts of the
cloud (like serverless) where the unit of execution doesn’t look like

a system or a traditional process. As we saw in the previous sec-
tions, there are two clear trends: the Linux kernel complexity is
rapidly growing and the units of the cloud are getting more light-
weight and restricted. The consequence of the units of the cloud be-
ingmore restricted is that they need less from the layer underneath
(i.e. the OS). As a result, bypassing the kernel, or even building a
serverless platform from scratch looks relatively more attractive
compared to modifying the kernel than it did 10 years ago.

Bypassing the kernel. What will happen to the Linux kernel if it
is routinely bypassed for serverless workloads? It is possible that
the kernel will evolve to make bypass easier and easier, reducing
the complexity of taking such an approach. However, the goals of a
Linux kernel for a traditional system di�er wildly from the goals of
a Linux kernel primarily for bypass. One could argue that changes
that a�ect large parts of the kernel (e.g., namespaces or cgroups)
are not desirable as they a�ect the stability and security of the ker-
nel. Would the kernel community split between those that want
a thin, bypass-ready kernel for serverless (and other performance-
focused domains) and those that want a more traditional system?

Replacing the kernel. If serverless actions are de�ned in a re-
strictedmanner, as described in Section 2, a âĂĲnative serverlessâĂİ
OS could be implemented without many features of a traditional
OS:

• Non-preemptable scheduling. If actions are short and
non-interruptible, thenwe could use a non-preemptive sched-
uler for the actions.

• Limited set of I/O related calls. If the only necessary
I/O is an input at startup and output at completion, then
actions do not need access to �les, networking, nor many
of the +200 syscalls implemented by Linux.

• No inter-process communication (IPC). IPC is mainly
used for messages in a client-server model or shared mem-
ory for multiple processes. It is not needed in serverless ac-
tions, as they can only interactwith one another via events
generated at completion and used as input at startup by
another action.

• Noprocess synchronization. Semaphores and locksmight
make sense for synchronizing access to shared data, or
more generally to let multiple processes cooperate in an
orderly fashion. The only cooperation allowed between
actions is done via queuing of events.

Such an OS may share many features with a multi-kernel like Bar-
rel�sh [21] or Arrakis [17], which have an explicit goal of not shar-
ing data between processes running in di�erent cores. The main
di�erence would be that instead of providing a POSIX-like abstrac-
tion of processes, perhaps actions would have a limited library OS
designed to only support the required interactions: one input and
one output. The bene�t of this would be simplicity, potentially bet-
ter performance, and a smaller attack surface.

. This discussion is also related to the idea that “the OS is the
control plane” [17]. Linux may likely remain active in the cloud,
even in a serverless context, in a control-plane role. This could
happen at di�erent levels. Linux could be a per-machine controller
dictating how actions are queued and passed around between ac-
tions running in di�erent cores, �tting well with a bypass design.
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Or, Linuxmay be a per-cluster controller, passing actions to servers
running a specialized native serverless OS, similar to in EbbRT [19].

5 CONCLUSIONS?

It should be surprising that taking an approach that uses relatively
heavyweight hardware in a VCPU context (e.g., performing vmexit
instead of sysenter for a “system call”) is not only acceptable but
can perform an order of magnitude faster than using a native OS
abstraction. Yet, today, in a serverless setting, this is actually the
case. Will we struggle on in this way or have we �nally reached
the point, precipitated by the serverless cloud trend, where it is
reasonable to rethink the kernel?
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