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Abstract

As interest grows in introducing network functions—
middleboxes—to Platform as a Service (PaaS) clouds, it is
tempting to treat them as normal PaaS services. However,
the PaaS service abstraction lacks sufficient support for mid-
dlebox services. For example, network functions may require
proximity to data sources for efficient snooping or request
rewriting, or access to raw packets rather than application-
level requests. Instead, we propose a new network func-
tion abstraction to PaaS clouds called middlepipes. True
to PaaS philosophy, middlepipes are sufficiently high level
for application developers to forget about details like pack-
ets vs. requests and data source proximity. Middlepipes
can be chained together to cooperatively interpose on traffic
between applications and services. Furthermore, they can
generate callbacks into applications; in this paper, we de-
scribe the middlepipe PaaS architecture in the context of a
“circuit breaker” network function.
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1. INTRODUCTION
Unlike Infrastructure as a Service clouds, PaaS clouds

promise their users a higher-level abstraction in which ap-
plications express interest in services and runtimes (e.g., “I
want a Ruby runtime that talks to a MongoDB service”). In
this example, the PaaS would near instantly provision the
necessary Ruby runtime containers and MongoDB instances.
This, in principle, frees developers from worrying about low-
level details such as virtual machine (VM) configurations,
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Figure 1: Middlebox as an endpoint vs. Middlepipes

networking issues, etc. Even higher level capabilities—
like elasticity and high-availability—are implicitly assumed,
rather than explicitly managed.

Not surprisingly, today’s PaaS vision emphasizes offer-
ing all its capabilities in bite-size services: its runtimes,
databases, etc. These services are conceptually treated as
endpoints that have four simple lifecycle calls: provision,
bind, unbind, and deprovision. Even network functions
(NFs) and middleboxes are expected to be offered in the
same way [13, 22]. We argue that this—endpoint—service
model is not suitable for all network functions. Sophisticated
features (e.g., intrusion detection, response caching, circuit
breaking, transcoding, etc.) cannot be easily implemented
as endpoint services that interpose on requests and network
packets. They would also break the simplicity of consuming
PaaS capabilities, where developers would need to config-
ure and manage these middlebox endpoints, worrying about
the logical topology of the application and middleboxes. As
depicted in Figure 1(a), if a developer wants to add a mid-
dlebox (e.g., an intrusion detection system) between a Ruby
front-end and a MongoDB, he/she would need to provision
the middlebox endpoint; then he/she would need to wire
the logical flow between various components. A sophisti-
cated load balancer—that enables A/B testing or incremen-
tal upgrade—would require even more configuration com-
plexity by the developer.
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Instead, we advocate that NFs and middleboxes repre-
sent alternative connectivity options within a PaaS. Con-
ceptually, this implies that NFs and middleboxes should be
treated as pipes rather than endpoints (Figure 1(b)). We call
these middlepipes. Middlepipes enable developers to modify
how different services and runtimes talk to each other. A
developer can for example say “I want to protect all com-
munication between my Ruby runtime and MongoDB using
Bro.” The PaaS sets up, routes, scales, and maintains the
necessary connections between the various application com-
ponents.

We examine Netflix’s OSS components [9] as target use
cases for middlepipes. The Netflix OSS includes a set of
network-centric components—implemented at the applica-
tion level—that Netflix uses to run its core infrastructure
on top of different clouds. Hystrix [5], for example, is a
Java framework for providing circuit breaker capability: the
ability to switch services when failure is detected. Hystrix
is used to limit failure propagation and, at the same time,
provide end-users with default behavior (e.g., default movie
recommendation) when a service fails. Zuul [11] is another
service that offers request throttling, A/B testing, and stress
testing. We focus on these services for three reasons: (1)
they capture real needs by a cloud-scale applications, (2)
they are open source, and (3) they are currently language
specific, requiring heavy application modification. Our goal
is to offer similar features in the form of middlepipe ser-
vices. In the case of the Hystrix middlepipe equivalent, a
user should be able to ask the PaaS to use the circuit breaker
middlepipe, automatically triggering a callback when service
failure is detected.

In this paper, we provide a blueprint for creating and
managing middlepipes. We have implemented an early pro-
totype of the middlepipe framework inside Cloud Foundry,
a leading open source PaaS. Our approach separates each
middlepipe into two parts: filtering and aggregation. Mid-
dlepipe filters are lightweight modules that are instantiated
inside each PaaS container (e.g., Warden1 in the case of
Cloud Foundry). Filters share the same design principles
of netfilter, but allow a greater flexibility of interposing
on both requests and network packets. Additionally, filters
can be strung together and hot swapped depending an ap-
plication’s needs. To maintain implementation efficiency,
filters asynchronously communicate with an aggregator ser-
vice. The aggregator service understands how to control
the various instances of the filters and how to combine any
monitoring data across them. Using our framework, we show
how to implement a circuit breaker middlepipe. We high-
light the implementation challenges for maintaining high
throughput between application components, correctly han-
dling callbacks, and allowing dynamic chaining of filters.

2. TODAY’S PAAS
“Platform as a service” like “cloud” is an overloaded

term. In this paper, by PaaS, we refer to an offering that
manages application runtimes (e.g., Ruby, NodeJS, Java,
etc.) and provides simplified access to services (e.g., Mon-
goDB, RabbitMQ, etc.). Cloud Foundry [2], Heroku [4],
IBM BlueMix [6], Microsoft Azure [10], and Google Ap-
pEngine [12] are examples of such a PaaS. Figure 2 de-
scribes the architecture of CloudFoundry and Heroku PaaS

1Warden can be thought of as an OS-level container

Figure 2: Cloud Foundry PaaS Overview

platforms. These platforms adopt a loosely-coupled service
model, wherein each service is composed of five elements
from the PaaS point of view: a service metadata catalog and
four service lifecycle calls, namely (1) provision (2) bind, (3)
unbind and (4) deprovision.

2.1 An “as a Service” Obsession
In PaaS environments, the service abstraction reduces

the complexity for application developers. For example, in
Cloud Foundry, users express interest in services and run-
times using cf, a simple-to-use PaaS command line inter-
face. A user can request a runtime for his/her application
using the command cf push and can create a service using
the command cf create-service. Users can also create
bindings between these environments using the command
cf bind-service. Under the covers, the PaaS manages the
number of instances and routing of requests. It should be
noted that logical topologies are not typically enforced (i.e.,
a developer cannot force requests through a service, like a
middlebox, unless he/she embeds the logic inside the appli-
cation).

In current PaaS offerings, network functions are being
shoehorned into the service model.2 In general, this model
lacks the necessary support for network functions. The next
subsection illustrates these deficiencies through two exam-
ples.

2For example, in BeanStalk (Amazon’s PaaS), developers
explicitly request an elastic load balancer and manage it via
command line tools, in a similar way to a physical loadbal-
ancer. Additionally, many PaaS providers provide message
queuing services, which can be categorized as very high-level
network functions.
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Figure 3: Basic Circuit Breaker Pattern

2.2 Examples

Intrusion Detection System

An intrusion detection system (IDS) monitors the network
for suspicious or policy-violating traffic and reports it to
a management server. Examples include Bro [17] and
Snort [20]. Policies can be specified based on packet-level
headers. The IDS examines packets and maintains state
about network flows.

We study IDSs inside the PaaS because they are essential
middlebox capabilities for many enterprise applications. To
implement an IDS in the service model is fundamentally dif-
ficult because the service model operates at network requests
(e.g., REST requests) instead of network packets. Packet-
level headers are hidden from all applications and services.

Circuit Breaker

A key goal for the Netflix OSS is to build highly elastic
and highly fault tolerant infrastructure. The circuit breaker
design pattern (which is part of Hystrix [5]) provides an
interesting approach for fault isolation and better user ex-
perience. The idea is to detect failure quickly and isolate
the failed component. For example, if a recommendation
service fails, Netflix would return a default movie recom-
mendation rather than have the user wait to get customized
recommendations.3

Figure 3 depicts the high level design of a circuit breaker.
A monitoring component listens on requests to various ser-
vices. When “failure” is detected, the failing component is
switched out of the dependency path. Here, failure can in-
clude any number of metrics: fail stop, an abnormal re-
sponse, or a slow response time. After the circuit breaker
is tripped, the source is notified for quick failure recovery,
possibly returning a cached, default, or empty response. In
the case of writes, the system can queue them for future
commits.4

3The Netflix OSS does not technically fall under our def-
inition of PaaS because it is implemented as a language
framework rather than an as-a-Service offering. However,
it contains a number of interesting (and important) features
that other PaaS environments can implement.
4Netflix assumes an eventual consistency model.

Circuit breaker requires non-trivial interposition on the
invocation path of requests. Specifically, (1) it requires
active—stateful—monitoring of requests, (2) when the
breaker is tripped, it can trigger a wide spectrum of re-
sponses (from a trivial empty response to a more elaborate
triggering of exceptions), and (3) it adds a valuable—and
currently unavailable—capability to any PaaS.

To implement a circuit breaker in today’s PaaS, particu-
larly the service model, would face a number of challenges.
A circuit breaker service would need to be carefully designed
with a circuit-breaker-specific API to trigger callbacks to the
application in case of tripped circuits. It would face perfor-
mance challenges while interposing on requests, especially if
it was not placed near to the application in the data cen-
ter. It may be difficult to chain together with other network
functions. Or, it may require extensive libraries to be writ-
ten in every supported programming language to circumvent
some of these issues.

2.3 Lack of Support for Network Functions
To summarize, by focusing solely on the service model,

PaaS offerings do not provide network functions the support
they need to function well. In particular, the PaaS must
allow network functions to:

• Move close to data streams. Network functions
must be able to operate without requiring traffic to
be diverted back and forth between services running
elsewhere in the data center. Ideally, they must be
able to examine or modify traffic with minimal data
copying.

• Operate either at the packet or request level.

Some network functions, such as intrusion detection,
require access to a low-level packet stream to perform
their task. Others, like circuit breaking, operate at the
level of REST API calls. A PaaS must support both
granularities.

• Generate callbacks. Network functions should not
need to implement their own custom APIs or libraries
to generate callbacks to applications. Every network
function will have similar requirements.

• Easily chain together. Chaining of functions and
middleboxes is a common and natural process in the
network. The system should explicitly provide support
for chaining.

In the next section, we describe the middlepipe, a new
PaaS abstraction in which a PaaS can support network func-
tions.

3. MIDDLEPIPES
Rather than thinking of network functions implemented

as middleboxes (endpoint services), we advocate application
developers begin to view them as middlepipes. A middlepipe
is a first-class PaaS abstraction that connects applications
and endpoint services. Each middlepipe implements a net-
work function in the PaaS.

Users directly create instances of middlepipes (e.g., cf

create-middlepipe breaker). Users can bind services and
apps together with a middlepipe (e.g., cf bind-middlepipe

breaker myapp mongodb). This implies that all requests
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Figure 4: Architecture of Middlepipes

between myapp and mongodb will go through the breaker

middlepipe. If another middlepipe provides intrusion detec-
tion, then it is bound in a similar way: cf bind-middlepipe

bro myapp mongodb. Users can update or remove the mid-
dlepipes between components or stack different middlepipes
atop one another at any point during runtime.

Figure 4 depicts the components inside the PaaS that
make up the middlepipe abstraction. Network traffic exit-
ing an application or service flows through a series of filters.
Filters may implement a network function in its entirety, or
may periodically communicate with an aggregator to imple-
ment the network function. A scheduler executes filters on
network traffic in an order dictated by a filter chain, speci-
fied by the user. Finally, a middlepipe controller inserts and
removes filters, provisions aggregators, and interfaces with
a PaaS user.

In the remainder of this section, we describe in more detail
how, through the middlepipe abstraction, PaaS offerings can
provide support for network functions.

3.1 Moving Close to Data Streams with Fil-
ters and Aggregators

Each middlepipe is split into two parts: filters and aggre-
gators. Filters are light-weight modules that are installed in
each service instance or runtime container. Filters execute
in close proximity to the invocation path. This allows us
to (1) distribute computation across the underlying infras-
tructure, (2) minimize copying of requests and packets, (3)
reduce overhead on the network substrate, and (4) simplify
billing.

Aggregators are independent services that get provisioned
for each user. An aggregator asynchronously interacts with
all the filter instances, for example, to collect monitoring
information or provide per-middlepipe configuration infor-
mation. Depending on the middlepipe feature, filters and
aggregators can vary in complexity. A dependency monitor-
ing middlepipe, for example, only needs to collect high level
statistics about external request invocations. The aggrega-
tor can be a monitoring tool like Graphite [3]. A circuit
breaker middlepipe, on the other hand, requires that filters
are more sophisticated: it must return specific responses
when failure is detected. Alternatively, choke points can be

Figure 5: Optimizing Filter Access to Requests

implemented with filters and aggregators using synchronous
communication.

The middlepipe system does not mandate any particular
interface between filters and aggregators. The system, how-
ever, automates the creation and destruction of filters as
services and containers are scaled up or down, respectively.
The system also piggy backs on Cloud Foundry’s routing to
bind filters to aggregators. Specifically, filters do not need
to know where the location or number of instances of the
aggregator.

3.2 Operating on Packets and Requests
Components inside a PaaS talk to each other through

application-level requests (e.g., REST or API calls). At the
same time, network functions and middlepipes can operate
purely at the application (request) level, the packet level, or
both (e.g., IDS and load balancers inspect packets headers
and payloads). We, thus, provide hooks that can interpose
on both requests and packets, while minimizing the recon-
struction of requests from packets.

Interposing at the packet level is relatively straightfor-
ward. As application network traffic enters or exits the ap-
plication container it passes through the network stack of the
underlying OS kernel. In Linux, this presents an opportu-
nity to leverage the netfilter packet filtering framework.
Through libnetfilter_queue [8], user-space applications
can examine, modify or instruct the kernel to drop packets.

Relying on netfilter is not appropriate for interposition
at the request level. Reconstruction of requests from pack-
ets (making filters behave like proxies) carries overhead. In-
stead, we supply language specific libraries (e.g., a modified
version of Ruby’s httpclient gem) and use Cloud Foundry’s
buildpacks to distribute the libraries. The libraries provide
a hook into the request invocation. The library can subse-
quently transfer the request in its entirety to filters.

There are many possible implementations for the transfer
of requests. One efficient approach is for the PaaS to man-
age shared memory segments containing requests. Figure 5
shows a shared memory segment being used to transfer re-
quests between request-level filters, before the request exits
the application stack and enters packet-level filters.
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3.3 Callbacks
The circuit breaker middlepipe offers an interesting use

case in which the middlepipe can trigger an exception inside
the application. This is an example of a callback, which is
different from returning a default value, where the applica-
tion is oblivious to a failure on a downstream component.
A middlepipe propagates callback triggers through modifi-
cation of responses. In particular, middlepipes add mark-

ers to the response headers in a standard way. Applications
check for these markers and perform callbacks based on their
value. In the circuit breaker case, the callback will raise an
exception.

This facility also creates an opportunity for exceptions
to be handled either explicitly during the development of
the application or through orthogonal aspects, using any
number of aspect oriented programming5 support packages.

3.4 Chaining
When network traffic enters or exits an application, the

middlepipe filter scheduler gains control. The scheduler
transfers control over requests or packets to each filter, one
at a time. Filters are executed in a sequence according to
a chain, similar to iptables. Middlepipe chains are user-
specified. Our design automatically orders filters such that
those operating at the request level are executed before
those operating at the packet level. The consolidation of
many filters (implementing traditional middlebox function-
ality) onto a single scheduler is similar to the architecture
described in CoMb [21].

4. CIRCUIT BREAKER REVISITED
In this section, we describe how the circuit breaker would

be implemented as a middlepipe. For simplicity, we con-
sider the circuit breaker to monitor request latency and“trip
the breaker” if latency exceeds a fixed threshold. A request
through a tripped breaker results in an exception in the ap-
plication.

We assume a Ruby application (App1) and service
(service1) both running on Cloud Foundry. An instance
of the circuit breaker middlepipe is created via cf create-

middlepipe and used to connect App1 and service1 via cf

bind-middlepipe. Under the covers, the middlepipe con-
troller instantiates an instance of a circuit breaker filter in
the container running App1 and a circuit breaker aggrega-
tion service. The aggregation service maintains a listing of
broken circuits that filters periodically query.
App1 transmits network that are intercepted by the mid-

dlepipe scheduler. The middlepipe scheduler executes the
circuit breaker filter, which checks its local state to see if
the breaker is tripped. If not, the filter saves a timestamp
and releases the request back to the scheduler. The sched-
uler, finding no other filters to run, allows the request to exit
the application container. The transfer of control between
the application, filters and scheduler are efficient because
they are co-located in the same container.

When a response arrives, the middlepipe scheduler once
again exerts control and executes the circuit breaker filter.

5In aspect oriented programming, code that checks for
logged users or performs exception handling can be devel-
oped separately from the main body of the application.
This, in principle, simplifies adding and maintaining messy
code that implement cross cutting concerns separately.

The circuit breaker computes the latency of the request us-
ing the previously saved timestamp. Depending on the la-
tency, the filter updates its state and notifies the aggregator.
The response is returned to the application.
App1 receives the response and checks the standard mid-

dlepipe headers for any marked return values. In the case
that App1 makes a request and the breaker is tripped, the
filter will craft a response with the marked headers commu-
nicating that the breaker was tripped.

5. RELATED WORK
Our work draws inspiration from a large corpus of re-

search work in industry and academia in the area of cloud
computing, middleboxes and NFs. We have closely stud-
ied the leading PaaS clouds, namely CloudFoundry [2] and
Heroku [4], and have adapted their techniques to simplify
the consumption of network functions and middleboxes.

A fair amount of recent work exists on middleboxes
[14,18–20]. None of them are target *aaS environment and,
thus, do not address the deployability of middleboxes as a
service/solution and/or the ease of doing the same. Service
providers like Windows Azure [10], Amazon AWS [1], Cloud-
Foundry, Google App Engine [12], Heroku, offer middle-
box services like load balancing across clustered VMs/Apps.
They cannot support chaining of various network services.
Dixon et al. [16] propose an architecture in which middlebox
functionality is moved to the edge of the network and runs
on end hosts in an attested environment. Our work takes a
similar approach at the PaaS level.

CloudNaaS [15] aims at providing rich set of middlebox
functionalities for applications. Each of them require com-
plex fine grain configuration, thereby making its consump-
tion difficult. Our approach, on the other hand, tries to
simplify consumption.

APLOMB [22] aims to provide middlebox services to en-
terprises by outsourcing these functionalities to the cloud.
This approach will push the middlebox far from the appli-
cation, thereby impacting its performance and also the ease
of consumption. Our approach derives motivation from the
idea of netfilters/ipchains [7] and brings middlebox function-
ality closer to the application.

6. CONCLUSION
Today’s PaaS clouds offer an early glimpse of an environ-

ment where the OS and all that is beneath is deemed irrel-
evant. In such environments, the role of software defined
networking and network function virtualization must sup-
port the overall design goals: services, runtimes, and bind-
ings. In this paper, we provide our current vision for net-
work functions within a PaaS. Our middlepipe architecture
offers developers alternative implementations to the connec-
tivity fabric between services and runtimes. We show how
middlepipes can implement valuable services like the circuit
breaker design pattern. We are actively developing mid-
dlepipe implementations inside Cloud Foundry, and hope
that the framework fosters new ways to advance network
functionality inside PaaS environments.
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