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Abstract

Containers continue to gain traction in the cloud as

lightweight alternatives to virtual machines (VMs). This

is partially due to their use of host filesystem abstractions,

which play a role in startup times, memory utilization, crash

consistency, file sharing, host introspection, and image man-

agement. However, the filesystem interface is high-level and

wide, presenting a large attack surface to the host. Emerg-

ing secure container efforts focus on lowering the level

of abstraction of the interface to the host through deprivi-

leged functionality recreation (e.g., VMs, userspace kernels).

However, the filesystem abstraction is so important that some

have resorted to directly exposing it from the host instead of

suffering the resulting semantic gap. In this paper, we sug-

gest that through careful ahead-of-time metadata prepara-

tion, secure containers can maintain a small attack surface

while simultaneously alleviating the semantic gap.

1 Introduction

Filesystem abstractions like files and directories are univer-

sal and ubiquitous. They are fundamental to what contain-

ers are and how they are managed. Container workloads are

stored as files (executables, configuration files, etc), and dis-

tributed as image layers which are simply file archives. Data

sharing between containers is also defined at the file granu-

larity: operators routinely specify how host files and directo-

ries should be shared between multiple containers.

Today’s containers adopt an approach where the host im-

plements the filesystem and exports it to container processes.

This has many benefits, most of them due to having a single

host filesystem and cache shared by multiple containers: (i)

fast startup times due to efficient use of overlay filesystems

(ii) efficient use of memory due to a single page cache, (iii)

trivial container crash consistency as there is no filesystem

state maintained in container memory, (iv) trivial file sharing

and easy host introspection due to a single arbitrator for file

accesses, and finally (v) straightforward image layer creation

as the container filesystem is already layered at the same file-

based granularity as images.

However, relying on the host to implement the filesystem

abstraction is not without cost: the filesystem abstraction is

high-level, wide, and complex, providing an ample attack

surface to the host. Bugs in the filesystem implementation

can be exploited by a user to crash or otherwise get control of

the host, resulting in (at least) a complete isolation failure in

a multi-tenant environment such as a container-based cloud.

A search on the CVE database [13] for kernel filesystem vul-

nerabilities provides a sobering reminder of the width, com-

plexity, and ultimately danger of filesystem interfaces.

Efforts to improve the security of containers use low-level

interfaces to reduce the attack surface [42]. In general, the

abstraction level of the interface between a container process

and the host can be lowered by recreating host functionality

in a deprivileged mode. For example, Kata containers [7]

use virtualization to recreate host functionality in a (deprivi-

leged) guest. Google’s gVisor [6] implements host function-

ality as a (deprivileged) user space kernel process. Library

OS approaches [38, 30, 22], including unikernels [31], have

also been applied to processes [41] and containers [10], to

recreate host functionality in a library linked to the (deprivi-

leged) process.

Unfortunately, recreating the filesystem functionality in a

deprivileged mode creates a semantic gap [19]: the host only

sees underlying block accesses and any information about

files is obscured. Almost all of the previously mentioned

benefits from using the host filesystem are hampered by the

semantic gap. These benefits are so core to the container

ecosystem that, as a result, some secure container approaches

have decided to forgo the deprivileged functionality recre-

ation approach for the filesystem and adopt a passthrough

approach instead [8]. Unfortunately this does nothing to pre-

vent the exploitation of filesystem bugs.

In this paper, we make an observation that, through careful

ahead-of-time preparation of filesystem metadata, high-level

abstractions from the host can be safely utilized by the con-

tainer even as the interface to host storage is restricted to a



low-level block interface. With such an approach, containers

enjoy a small attack surface and encounter fewer issues due

to the semantic gap. We sketch a potential implementation

where the host prepares structures by directly exposing file

content in read-only mode through a series of memory maps.

It then creates filesystem metadata over the memory maps

as a copy-on-write filesystem [14], such as a log-structured

filesystem [37] (LFS). All metadata operations and all writes

to the host filesystem are handled in a deprivileged filesystem

persisted through the safer block interface.

2 Containers and the Filesystem

Filesystem abstractions comprise the units of abstraction that

developers and system administrators work with and form a

basis for the entire container ecosystem. For example, to-

day’s container images are stored and managed as sets of

files and directories. To facilitate development and image

management (e.g., to avoid duplication in storage and image

distribution), they are made of layers, where each layer is it-

self a collection of files and directories. Layers are combined

into a unified directory tree, called the container’s rootfs,

through the use of union filesystems [43]. Files and directo-

ries also form the basic unit of policy and sharing in today’s

container ecosystem. An operator can specify files or direc-

tories from the host to be shared with a container in one or

more volumes.

While the concepts of files and directories have persisted

over many years, there are design tradeoffs pertaining to

which layer in the stack implements them. Today’s container

platforms adopt an approach in which the host is the one im-

plementing the filesystem abstraction and directly exposing

it to containers.1 In the rest of this section, we discuss the

pros and cons of such an approach.

2.1 Benefits

The container storage system derives many benefits from di-

rectly exposing the host filesystem to containers:

• Fast startup. Preparing an image for execution re-

quires no format conversion or translation from the

files and directories specified in the container image.

Typically the only work the host filesystem must per-

form is to add a new writable filesystem layer, which

is a trivial operation for a modern union filesystem

like overlayfs [11]. The resultant fast startup is im-

portant for emerging domains like serverless comput-

ing [26, 28].

• Memory sharing. Filesystems in the host make use of

the page cache in the kernel. If the same file is opened in

1The host hides some paths via mount namespacing [12].

multiple containers, the corresponding memory pages

can be shared in copy-on-write mode.

• Consistency during container crashes. Filesystems

can contain a fair amount of runtime state in caches

or data structures. Fortunately, since the host—not the

container—maintains filesystem state, a container crash

does not result in a loss of this state.

• File sharing and host introspection. The host filesys-

tem provides a single arbitrator for file access, man-

aging the locking and other synchronization tasks re-

quired to safely enable concurrent filesystem access be-

tween multiple principals. Also, host files and directo-

ries conveniently match the granularity at which access

control policies are typically specified. This is useful

not just for sharing between containers, but also host

introspection: for example, it is trivial for the host to

examine the container filesystem to identify if any soft-

ware packages in the container exhibit known vulnera-

bilities [4, 27, 2, 1].

• Image layer creation. A layer for a container image is

a file-based diff from any initial filesystem state. Com-

puting such a diff is trivial for a host filesystem like

overlayfs where each layer is stored in a working di-

rectory. An image layer is simply an archive of that

directory.

2.2 Security Issues

Containers have often been criticized for a perceived lack of

security because their wide and high-level interface to the

host provides an ample attack surface. The filesystem ab-

straction is no exception.

For a practical demonstration of the attack surface of the

filesystem interface, we reproduced an exploit of a recently

discovered bug in the ext4 filesystem code: CVE-2018-

10840. In this case, removing the extended attributes of a

file on a crafted ext4 image leads to a kernel oops due to

a buffer overflow. The culprit syscall—part of the filesys-

tem interface—that allows a userspace program to trigger

this bug is removexattr, due to a missing check.

For a more abstract characterization of attack surface, as in

prior work [42, 41], we measure the amount of unique kernel

functions accessible through an interface with ftrace as a

proxy for attack surface. A lower amount of accessible code

suggests an implementation with lower complexity, and less

code is generally believed to contain fewer bugs [32, 21].

Fewer bugs generally lead to fewer exploitable vulnerabili-

ties, and a safer interface. We note that the density of bugs

has been refined based on metrics like code age [34] and code

popularity [30], but in general, the less code the better.

Figure 1(a) shows the number of unique kernel functions

accessed when directly using the filesystem interface with
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Figure 1: (a) The high-level filesystem interface exposes a

significantly larger attack surface than the low-level block

interface, evidenced by the number of kernel functions ac-

cessed when stressing the filesystem. (b) On-the-fly conver-

sion of filesystem layers to a disk image suitable for low-

level access increases startup time.

a filesystem stress test from the Linux Test Project [29].

The filesystem interface is wide: the test accessed over 600

unique kernel functions!

3 Secure Containers and the Semantic Gap

In response to security concerns, recent industry develop-

ments towards more secure containers have tried to lower the

level of host complexity (and thus the number of bugs and

vulnerabilities) beneath the interface to the host by recre-

ating OS abstractions in a less privileged layer. Figure 2

shows three recreation approaches: a) virtualization, used

by Kata containers [7], in which the guest kernel recreates

OS abstractions; b) a userspace kernel process that imple-

ments kernel functionality, embodied today by Google’s gVi-

sor project; and c) a library OS approach [22, 35, 40], which

has recently been applied in the context of containers as

IBM’s Nabla containers [10].

If a filesystem is recreated in the container, which we call

a deprivileged filesystem, then the lower-level abstraction in

the storage stack, namely the block layer, becomes the con-

tainer/host interface. Such an interface consists of reads and

writes of block sectors. As shown in Figure 1(a), the block

interface presents a significantly smaller attack surface to the

host, reducing the number of accessed kernel functions under

the filesystem stress test from over 600 to about 150. How-

ever, any information about the file content or metadata the

blocks contain is obscured. This phenomenon is known as

the semantic gap [19].

In the container ecosystem, secure container approaches

Figure 2: Secure containers employ deprivileged recreations

of OS abstractions through (a) virtualization (e.g., Kata con-

tainers [7]), (b) a userspace kernel process (e.g., gVisor [6]),

or (c) a library OS (e.g., Nabla containers [10]).

must adhere to the developer workflow popularized by con-

tainers, described in Section 2, as much as possible. In other

words, container images and volumes are based on files and

directories, yet for security reasons, deprivileged filesystems

encourage the use of block-level interfaces instead. Current

secure containers take one of two approaches: 1) conversion

to a low-level interface suitable for a deprivileged filesystem

and suffering the semantic gap, or 2) passthrough, poten-

tially with guarding.

3.1 Conversion for a Deprivileged Filesystem

Some secure container approaches utilize layered filesystem

images for containers, but convert them to a disk image suit-

able for a block interface (and deprivileged filesystem) im-

mediately before executing the container. For example, the

Nabla containers runtime [10] explicitly creates a formatted

disk image file and exports it to the container.2 However, the

semantic gap erodes many of the benefits of using a host-

implemented filesystem:

• Fast startup. Converting the high-level layered filesys-

tem image to a low-level disk image incurs overhead

akin to a file copy. For example, conversion could en-

tail creation of a file (e.g., dd), metadata creation (e.g.,

mkfs), then copying filesystem contents to the image.

Figure 1(b) shows the time for such a copy (labeled

copy) for the files comprising the ubuntu:16.04 con-

tainer image with cold and warm host caches. Even

in the warm case, copy takes over 193ms, compared

to using the host’s union filesystem (labeled overlayfs)

which takes 13ms. Ironically, this cost is paid in order

to create the semantic gap.

• Memory sharing. The host’s page cache can no longer

effectively share memory pages when identical files are

in use by two containers on the system. Block ac-

cesses do not provide information about files because

2We also consider block-based layering in the host, like devicemapper,

used by AWS Firecracker [3], to be a form of conversion, and such an ap-

proach encounters similar semantic gap issues.



of the semantic gap, so the system must resort to CPU-

intensive content-analysis based approaches to memory

sharing [9, 24].

• Consistency during container crashes. A container

crash implies a loss of runtime state in a deprivileged

filesystem. The deprivileged filesystem must be careful

to write data in the right order to the underlying block

layer to be able to reconstruct all state for consistency

(e.g., a log or journal [37, 14]). Maintaining consistency

in the face of filesystem crashes is complex, subtle and

continues to be an active area of research [14, 33, 18].

• File sharing and host introspection. Due to the se-

mantic gap, the host does not know how to arbitrate ac-

cess to files and directories. Thus the filesystem struc-

tures inside the opaque disk image can only be safely

mounted by one filesystem implementation (by either a

deprivileged filesystem or the host) at a time.3 Further-

more, file-based policies for access control, including

sharing are obscured in an opaque disk image.

• Image layer creation. Only modified blocks, not files,

are visible to the host. Creating a file-based diff is ex-

pensive: it entails traversing both the filesystem con-

tained on the new set of blocks and the original filesys-

tem and comparing the contents of all of the files.

3.2 Passthrough

In an attempt to avoid the semantic gap, several of the secure

container approaches that otherwise lower their interface to

the host through deprivileged recreation have chosen to di-

rectly expose the host filesystem. For example, Kata con-

tainers use the virtio 9P [8] protocol to pass filesystem sys-

tem calls directly to the host. Unfortunately, this exposes the

host to attack: we have successfully exploited CVE-2018-

10840 from within a Kata container (on a host with a vulner-

able kernel).

To mitigate the issue of a large attack surface, other ap-

proaches, like gVisor, also expose the host filesystem, but

through a trusted guard. gVisor uses gofer as a proxy to

the filesystem [6], which blocks the use of certain filesys-

tem operations, like following symbolic links outside of the

directory tree belonging to the container (e.g., to fix CVE-

2017-1002101).

4 Ahead-of-time Preparation

We now describe an approach that falls between the two ex-

tremes of passthrough and deprivileged recreation. Our pro-

posal, shown in Figure 3, is paradoxically both 1) high-level,

3The exceptions are symmetric clustered based filesystems, like RGFS

or PVFS2 [39].

Figure 3: By preparing memory-mapped structures ahead of

time, the storage interface can be both high-level enough to

avoid the semantic gap and low level enough for a small at-

tack surface.

largely avoiding the semantic gap, and 2) low-level, main-

taining a low attack surface. In particular, the only direct

access permitted to the host filesystem are reads of file con-

tent. All other filesytem operations are handled by the de-

privileged filesystem, backed by a block device in the host.

The key insight is that prior to starting the container, in a

safe, controlled fashion, the host can traverse the filesystem

and prepare structures without adding to the runtime attack

surface. We refer to this technique as ahead-of-time prepa-

ration, performed by a loader component (as shown in Fig-

ure 3). In the rest of this section, we sketch the basic design,

revisit the filesystem properties discussed in the previous two

sections to see where this design alleviates the semantic gap,

then describe how it maintains a low attack surface.

4.1 Basic Idea

Figure 3 shows an overview of our proposal, which pro-

vides a filesystem abstraction on top of two underlying stor-

age mechanisms: read-only data files from the host filesys-

tem and a read-write block device. To integrate well with

the existing container ecosystem, the deprivileged filesys-

tem can be constructed on top of any (mounted) file system

in the host. Internally, due to the multiplicity of underly-

ing data sources, it is useful to refer to two related repre-

sentations of the filesystem. The underlying block device

contains the on-disk, persistent representation. The persis-

tent representation contains filesystem metadata in its en-

tirety, but is incomplete: holes exist for some data pages.

The loader combines the incomplete persistent representa-

tion from the block device with memory-mapped files di-

rectly from the host filesystem to construct a complete, in-

memory representation. The two representations are identi-

cal in layout and content, except the persistent representation

contains holes where the in-memory representation contains

data. Before executing the container, the loader exposes the

in-memory representation to the deprivileged recreation as a

direct-access [5] block device. When the deprivileged recre-



ation finally runs, it will use a standard filesystem implemen-

tation to interact with the data.

Importantly, the deprivileged filesystem should not at-

tempt to write to the regions corresponding to the file data

backed by the memory-mapped files. We believe the con-

tainer can construct such a deprivileged filesystem if it takes

inspiration from union filesystems [43] and filesystems with

snapshot support [25, 16, 36]: basically any filesystem that

provides the ability to have a read-only base layer below

a writable layer. One such filesystem could be a modi-

fied log-structured filesystem (such as LFS [37]), where the

first part of the log is used for read-only data and metadata,

and the writable append-only part of the log handles all up-

dates, persisted via the host through the block interface. The

filesystem must not attempt to reuse the exposed (read-only)

host pages for any purpose; for example, garbage collection

in LFS must be modified to avoid collecting the read-only

pages.

4.2 Alleviating the Semantic Gap

This design mitigates the semantic gap as follows:

• Fast startup. Unlike the conversion approaches de-

scribed in Section 3.1, ahead-of-time preparation only

requires reading filesystem metadata, not copying con-

tent. Figure 1(b) shows that it only takes about 35ms

warm and 120ms cold to perform the ahead-of-time

preparation (labeled mmap), a significant improvement

over a full copy.

• Memory sharing. The host’s use of memory maps ef-

fectively eliminates the semantic gap for memory shar-

ing: multiple containers using the same base images

and accessing the same files will share the same pages.

It is important, however, that these pages do not get

cached again in the deprivileged filesystem to avoid

double caching inefficiencies [23]. For example, if the

deprivileged filesystem is part of Linux (e.g., in a VM),

its page cache can be avoided using filesystems that

support direct access (DAX) [5], memory-like devices.

• Container crash consistency. The deprivileged

filesystem will lose state on a container crash, even

though the read-only base layer will be kept consistent

by the host. Log-structured filesystems guarantee crash

consistency as no data is written in place. However,

most log-structured filesystems only guarantee consis-

tency for sector-addressable storage. Depending on

how the in-memory representation is constructed, es-

pecially to take advantage of direct-access memory-

like block devices, the block device may present byte-

addressable storage when forming the in-memory rep-

resentation. Fortunately, filesystems built for non-

volatile memory [20, 44] extend log-structured con-

cepts to byte-addressable environments.

• File sharing and host introspection. Sharing a con-

tainer volume requires simultaneously recreating the in-

memory representation on multiple containers and/or

the host. In our proposal, accessing unmodified files in a

read-only manner from an initial filesystem state is triv-

ial due to the direct access for reads to the host filesys-

tem. Many common container patterns, such as sidecars

or adapters [17], share volumes with a single writer and

multiple readers. In this case, each reader must inter-

pret the persistent representation of the volume, which

contains the writes in a filesystem log. As described

above with respect to crash consistency, a log-structured

filesystem guarantees that any such reader will read a

consistent view of the filesystem log state. However,

in order to ensure up-to-date contents, once again, no

caching should take place in the deprivileged filesystem

(e.g., via DAX [5]). If two or more containers are con-

currently writing into the same log, more heavyweight

synchronization mechanisms (i.e., like locking in clus-

tered file systems) are required.

• Layer creation. Diffs between layers contain the full

content of all the updated files and directories, but in the

case of LFS, the semantic gap remains because the log

is based on blocks. In order to create the list of modified

files, the LFS log must be replayed, mounted, and then

walked from the root comparing against the base layer.

4.3 Attack surface

The attack surface available to a container at runtime is

reduced to the read path, accessible through read-only

memory-mapped pages and block-level read/write for the

log. To estimate the attack surface, we partition the filesys-

tem access measurement for the number of unique kernel

functions accessed with a filesystem stress test into two sets:

1) reads and writes, that we would expect to remain with

ahead-of-time preparation, and 2) all other filesystem opera-

tions. Figure 1 shows the result: a larger attack surface (273

functions) than a strictly block-level interface (168 func-

tions), but significantly smaller than full filesystem access

(621 functions).

5 Summary

The semantic gap indicates that a safe, low-level block stor-

age interface is not sufficient for containers, which have

flourished by directly using the useful but insecure filesystem

of the host. As we think about how to improve the security

of containers, ahead-of-time preparation could help strike a

balance between high-level functionality and low-level at-

tack surface reduction.



6 Discussion Topics

Attack surface: runtime vs. pre-/post-runtime. In this

paper we focused on runtime attacks: for example, exploit-

ing a vulnerability through a carefully crafted system call

argument. There are also pre-runtime and post-runtime at-

tacks: for example, exploiting a vulnerability in setup code

through a carefully crafted image or in teardown code when

flattening a filesystem back into an image. Does ahead-of-

time preparation reduce the runtime attack surface at the cost

of increasing the pre- and post-runtime attack surface? Is one

more dangerous than the other? We believe, through image

provenance and ensuring that the host never interprets un-

trusted filesystem logs, pre- and post-runtimes attacks may

be mitigated.

Interfaces beyond filesystems and block devices. We

have been focusing on two interfaces: a high-level filesys-

tem and a low-level block device interface, but there may be

other interfaces that achieve a low attack surface with fewer

semantic gap issues. For example, a key-value store inter-

face may strike a middle ground. Do we, as a community,

have sufficient measurement methodology to evaluate both

the attack surface and semantic gap for various interfaces?

The deprivileged filesystem. We proposed leveraging

LFS as a layering mechanism atop the ahead-of-time meta-

data preparation in order to manage filesystem updates. LFS

uses copy-on-write (COW) at the block granularity [14], but

many other options exist. By doing COW at the block granu-

larity we increase memory sharing by not breaking the shar-

ing whenever a file is updated even by a byte. However, it

complicates the creation of image layers which have a dif-

ferent granularity (files instead of blocks). Instead, we could

consider using copy-on-write at the file granularity by using

a union filesystem [43] as the deprivileged filesystem, or we

could use operation logs [15] which could simplify file shar-

ing across containers. Is a log-structured filesystem the best

choice?

Container image layer representations. Many of the se-

mantic gap tradeoffs we identified, including startup time

and layer creation, as well as other characteristics of the con-

tainer system, like image size, stem from the fact that the

layer representations are based on the file granularity. Us-

ing a different granularity of copy-on-write or even opera-

tion logs4 for the image layers would change the size of the

semantic gap. Is there another format that is not tied to a

filesystem implementation (e.g., a least common denomina-

tor format) that could work within the container ecosystem?

4Image layering already uses some form of operation logs: files deleted

in a layer are marked as deleted by creating an empty file with the same

name (slightly modified to differentiate from an actual empty file with the

same name).
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