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Abstract—Intrinsic to “big data” processing workloads (e.g.,
iterative MapReduce, Pregel, etc.) are cyclical resource utilization
patterns that are highly synchronized across different resource
types as well as the workers in a cluster. In Infrastructure as a
Service settings, cloud providers do not exploit this characteristic
to better manage VMs because they view VMs as “black boxes.”
We present TideWatch, a system that automatically identifies
cyclicality and similarity in running VMs. TideWatch predicts
period lengths of most VMs in Hadoop workloads within 9%
of actual iteration boundaries and successfully classifies up to
95% of running VMs as participating in the appropriate Hadoop
cluster. Furthermore, we show how TideWatch can be used to
improve the timing of VM migrations, reducing both migration
time and network impact by over 50% when compared to a
random approach.

I. INTRODUCTION

Massively parallel data processing workloads, such as
MapReduce [8] and Hadoop [2], are designed for scale. They
are commonly deployed on Infrastructure as a Service (IaaS)
clouds as part of a growing trend towards “big data.”” By
design, these workloads are iterative or cyclical in nature. A
typical Hadoop workload, for example, consists of a number of
VMs. In each iteration, all VMs' executes similar MapReduce
operations that process different chunks of the underlying data.
In cloud deployments, however, [aaS providers do not typically
differentiate between workloads, mostly because they treat
VMs as black boxes. In this paper, we focus on the following
two questions: (1) how cyclical are Hadoop workloads, and
(2) how can cyclicality be efficiently detected and exploited by
a cloud provider without a priori knowledge about the running
workload?

There is a number of studies that have looked at VM
workload characterization and placement [21], [30], [27], [34],
[35], to name a few. Unlike previous work, we closely examine
the cyclicality of Hadoop workloads from the perspective of a
cloud provider. We analyze three popular data mining operators
(k-means, Dirichlet Process Clustering, and PageRank) on a
local Hadoop testbed and on Amazon EC2. We confirm that
Hadoop workloads are cyclical across CPU, memory, and
network. In particular, slave VMs experience periods of heavy
1/O (to read, write, or shuffle the data) followed by high CPU
utilization (to process the data). More importantly, cyclicality
within the same Hadoop cluster is highly synchronized across
all resources and across VMs in the same cluster.

'In reality, a master VM is used for coordinating the execution of slave
VMs
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We present TideWatch, a system that enables a cloud
provider to automatically fingerprints the cyclicality and sim-
ilarity within VMs, without a priori knowledge about the
workload inside the VM. TideWatch monitors resource utiliza-
tion, then detects the cyclicality of each VM in real time by
converting the utilization data into a square wave—from which
period length is computed. TideWatch also identifies groups
of VMs that are part of the same workload using dynamic
time warping (DTW) [6] to compute similarity between VM
resource utilization patterns and density-based clustering with
noise (DBSCAN) [11] to group them.

TideWatch can be applied to optimize VM management
techniques, including scheduling and placement. In particular,
by detecting the valleys within a workload cycle, TideWatch
can minimize the amount of (writable working set) memory
that needs to be transferred between physical hosts. We have
deployed TideWatch at the hypervisor-level of a local testbed
and have also used TideWatch to analyze data from Hadoop
deployments on Amazon EC2. TideWatch predicts period
lengths of most VMs in Hadoop workloads within 9% of actual
iteration boundaries and successfully classifies up to 95% of
running VMs as participating in the appropriate Hadoop clus-
ter. When applied to live VM migration, TideWatch reduced
migration time by 53% and reduced network cost by 52%,
when compared to a random approach. TideWatch also enabled
more predictable migration costs: standard deviation is reduced
by a factor of 15.

In this paper, we make the following contributions: (1)
we confirm the existence of resource utilization cyclicality
in iterative Hadoop workloads, (2) we present mechanisms
to automatically detect the existence and period length of
resource utilization cycles in VMs, (3) we describe techniques
to automatically group VMs operating on similar workloads,
and (4) we show how cycles and VM groups can be applied to
optimize VM management. All of the above is achieved while
treating VMs as a black boxes.

The rest of this paper is organized as follows. Section II
describes the experimental setup. Section III examines cycli-
cality in Hadoop data mining algorithms. Section IV presents
TideWatch, and how it detects cyclicality, estimates period
lengths, and identifies Hadoop clusters. Section V discusses
applications of TideWatch to optimize VM management. Fi-
nally, Section VI evaluates TideWatch, Section VII surveys
related work, and Section VIII concludes.
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Fig. 1. PageRank memory, CPU and network activities (on local testbed)

II. METHODOLOGY

We evaluate three popular data mining algorithms in
Apache Hadoop.

PageRank. PageRank [23] measures the importance of a node
in a graph by finding the principal eigenvector of the hyperlink
matrix defined by links among nodes. We use PEGASUS [17]
to run PageRank on top of Hadoop, which computes the
importance vector by running two MapReduce jobs in each
iteration.

Dirichlet process clustering. Dirichlet is a model-based clus-
tering algorithm that identifies the assignment of objects and
component parameters by sampling to maximize the posterior
probability of mixture models in iterations.

K-Means. K-means is a well known iterative refinement
algorithm for clustering objects into a user-specified number
(k) of groups.?

We measure the resource utilization (sampled every 5 sec-
onds) of three resources: memory, CPU, and network. Addi-
tionally, we apply exponential smoothing (with a smoothing

2We use the
(http://mahout.apache.org/)

implementation from Apache Mahout
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Fig. 2. Dirichlet memory, CPU and network activities (on local testbed)

factor of @ = 0.15) on the raw data to reduce the effects of
noise. We use the Linux command sar in the guest machine
to collect CPU and network utilization every 5 seconds.> We
also capture—on a page granularity—how much memory is
actively being written to during each sampling period. This
metric, called the writable working set (WWS) [7], is a version
of the working set concept [9] that has been utilized by various
memory-related VM management tasks, including live VM
migration [7]. To calculate the WWS periodically, we use
Xen’s shadow page tables [4], [7]. In particular, we periodically
read (from the hypervisor) statistics detailing how many pages
the VM has written.

We examine the algorithms on both a small local testbed
(two Dell Precision T7500 workstations, with every VM as-
signed 1 VCPU, 1.7 GB memory, and a 20 GB disk image) and
Amazon Elastic Compute Cloud (EC2). For consistency with
the local testbed, the experiment on EC2 uses small instances.*

For PageRank, on the local testbed, we use a 268 MB US
Patent citation network dataset’ (with 3,774,768 nodes and
16,518,948 edges). On EC2, we run PageRank on a 1.1 GB

3Hypervisor-level monitoring (e.g., xentop) is also possible.

4Each small instance has 1 EC2 Compute Unit (1 virtual core with 1.7 GB
memory). We cannot measure the writable working set (WWS) on EC2.

Shttp://snap.stanford.edu/data/cit-Patents.html
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Fig. 4. CPU utilization for k-means on EC2

LiveJournal social network dataset® (with 4,847,571 nodes and
68,993,773 edges). We apply k-means and Dirichlet to cluster
the 1.3 GB 1-gram English One Million dataset on the local
testbed, and the 25 GB 2-gram English One Million dataset’
on EC2.

IIT. WORKLOAD CYCLICALITY

We are interested in evaluating the cyclicality and synchro-
nization of the workload across various computing resources

®http://snap.stanford.edu/data/soc-LiveJournal .htm]
7http://books.google.com/ngrams/datasets
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Fig. 5. TideWatch architecture

and across worker VMs. Figure 1, 2 and 3 show the memory
dirty count, the CPU utilization and network activity of VMs
in our local cluster running PageRank, Dirichlet, and k-means
clustering, respectively. The starting point of each iteration and
map phase is delimited with an iter label.® Despite variation
and potential cyclicality within an iteration, memory and CPU
show a clear local minimum in the utilization at iteration
boundaries.

Figure 4 shows the CPU utilization on Amazon EC2,
running k-means on the larger dataset. Here, we are limited
to monitoring information within the VM. The figure confirms
that CPU utilization exhibits cyclicality that matches the iter-
ations.

More importantly, we are also interested in the robustness
of the synchronization across workers. We slowed down the
CPU of one VM by 50% (using Xen’s processor capping
feature [4]) to simulate resource contention. Figure 3 demon-
strates how all VMs synchronize to follow the iteration bound-
aries of the slowest VM.’

Overall, this cyclical and highly synchronized behavior
matches the intuition behind the design of iterative data mining
frameworks, like Hadoop. From a cloud provider’s perspective,
it creates an opportunity to transparently detect these workload
and optimize certain cloud management operations.

IV. TIDEWATCH

We present TideWatch, a system that detects cyclicality
in VM workloads while maintaining a black-box approach.
TideWatch can also detect groups of VMs that are likely part
of the same Hadoop cluster. The architecture of TideWatch is
shown in Figure 5.

The input to TideWatch is in the form of resource uti-
lization data. Each hypervisor gathers resource utilization
data from VMs using the techniques discussed in Section II.
In particular, each hypervisor tracks the memory (writable
working set), CPU and network utilization, and sends them
to TideWatch. TideWatch is a logically centralized entity. One
instance of TideWatch can be run per machine, per rack, per
pod (multiple racks) or per data center. In this section, we
assume that distributed systems challenges in providing data

8The master VM follows a different utilization pattern, but may also be
cyclic and share the cycle period.

9Without any slowdown, all VMs have a cycle of 345 seconds (not shown
in the figure). The introduction of a slow VM increased the period for all
VMs to 380s.
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Fig. 6. Example of exponential smoothing

to TideWatch have been met and instead focus on processing
the resource utilization data.

As shown in Figure 5, TideWatch first applies exponential
smoothing [14] to remove noise from the raw resource utiliza-
tion data (see Figure 6). The smoothed data is processed in
two ways. First, period prediction identifies cycle periods in
each VM. This is accomplished using digital signal processing.
Second, clustering identifies VMs that belong to the same
Hadoop workload. This is accomplished through a combination
of Dynamic Time Warping (DTW) [6] and density-based
clustering with noise (DBSCAN) [11].

The output of TideWatch is a period duration estimation
for each VM and a grouping of VMs that are suspected to
be working on the same Hadoop workload. In Section V, we
apply this output to minimize the impact of management tasks,
such as live VM migration, on the underlying infrastructure.
The remainder of this section describes the analyses performed
by TideWatch in more detail.

A. Period Prediction

On each VM, TideWatch estimates—in real-time—the pe-
riod of resource utilization cyclicality. As shown in Section III,
iteration boundaries involve the biggest change in resource
utilization. For example, both memory and CPU measurements
show their lowest values at iteration boundaries. In order
to distinguish iteration boundaries from smaller variation in
resource utilization, TideWatch uses a threshold to further
smooth out the data. As shown in Figure 7, it digitizes the
time series X by computing a threshold 7. We found that
setting the threshold as the midway point is both robust and
sufficient. Specifically,

Xmam Xmln

T:Xmln %7
* 2
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where X0, and X,,;, are the maximum and minimum value
of time series X, respectively. The time series X 1is then
converted into a square wave SW with values 1 and 0.

0, ifX(i)<T;
SW (i) = {

1, otherwise.

The resulting square wave has the same period—aligned on
iteration boundaries—as the Hadoop slaves that contributed
the raw data.

The square wave SW is segmented into {sw;}, which
consists of the duration between 0 — 1 transitions. The
estimated period time of X is determined by the median length
of segments {sw;}. By computing the median, noise which
was not removed with exponential smoothing is effectively
ignored.

As a side-effect of this digital signal processing, TideWatch
can also calculate the duty cycle, which is the ratio of ON
status during a period [29]. In our work, the ON state duration
is the time when the square wave ST has value 1. The duty
cycle

5= length(SW =1)
~ length(SW = 1) + length(SW = 0)
measures the occupation rate of one workload on one resource.

As discussed further in Section V, the duty cycle can be used
to inform VM placement decisions.

B. Clustering

TideWatch groups VMs that have similar resource utiliza-
tion patterns. For Hadoop workloads, these groups correspond
to slave VMs that are operating as part of the same Hadoop
cluster. Grouping VMs together allows TideWatch to gather
more sample points and increase confidence in observed re-
source utilization patterns.

Despite the application of exponential smoothing, there is
likely to be some variation in the resource utilization data from
two VMs even if they are part of the same Hadoop cluster.
However, all VMs in the same Hadoop cluster will continue
to share the same basic cyclical patterns and period length as
one another even if the period duration changes due to resource
contention or a decrease in the number of slave machines.
TideWatch uses DTW [6], to measure the distance between
two time series that may vary in length and in evolving speed
but have the same cyclical behavior.

DTW compares two time series in certain non-linear varia-
tions in the time dimension. It computes the distance between
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two time series X (of length M) and Y (of length V) based
on a “local match” score matrix [12]

S(i, ) = d(X(i),Y(5)), 0<i < M,0<j <N,

where d(x,y) can be any difference measure, e.g., Manhattan
distance (absolute value of the difference). This M x N matrix
S evaluates the local cost measure for each pair of elements
of the sequences X and Y. Then, dynamic programming is
used to find an alignment between X and Y having minimal
overall cost. An accumulated cost matrix D is defined as

D(i,j) = S(i,5)+min{D(i—1,7),D(i,j—1),D(i—1,7—1)},
0<i<M,0<j<N,
Finally, the DTW distance of X and Y is [18]
DTW(X,Y)= D(M,N).

After computing the DTW distance of each pair of
VMs [10], [31], TideWatch employs DBSCAN [11], a density-
based clustering algorithm, to identify groups of VMs that
are working on the same Hadoop job. DBSCAN does not
require TideWatch to specify the desired number of clusters,
which is difficult to know in advance. Given the DTW distance
measure among VMs, DBSCAN will gather VMs having the
lowest distance to each other in one group and predict that
they are working on the same workload. Two parameters of
DBSCAN, neighborhood radius ¢ and minimal number of
neighbors Npeighpor, are set to be € = 0.1 and Nyeighvor = 2
since the minimal number of slave nodes is 2 and 90% of
VMs have distance less than 0.1 to their 2nd nearest neighbors.
DBSCAN also reports outliers, which are very different from
and cannot be grouped into any clusters. In a Hadoop cluster,
master nodes can behave differently from slave nodes and
therefore may be classified as outliers.

The process of detecting clusters is O(n?), where n is
the number of VMs being considered. Depending on the
size of n, cluster detection may be run frequently with low
overhead. For example, clustering can be limited to the VMs
instantiated by a single cloud user. Clustering of 240 VMs
can be completed within 13 seconds. If clustering needs to be
run more frequently, an online clustering algorithm may be
used [5].

V. TIDEWATCH FOR OPTIMIZING VM MANAGEMENT

In this section, we describe how a cloud provider can use
the output of TideWatch to optimize the live migration and
placement of VMs.

A. Live VM Migration

Live VM migration is a VM management feature that is
available on all major virtualization platforms [7], [22], [20].
It enables a running VM to be moved to another physical
machine with virtually no downtime for reasons of mainte-
nance [7] or balancing load across physical machines [35],
[33].

While live VM migration has little impact on the perfor-
mance of the migrating VMs, it is an operation that generates
a large amount of traffic on the cloud provider’s network. A
migration operation can also be slow to take effect due to
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long total migration time, which limits its applicability for load
balancing [33]. The hypervisor executes live VM migration by
transmitting the memory pages allocated to the migrating VM
across the network while the VM is still running. Importantly,
the hypervisor tracks which pages have been modified since
they were transmitted and retransmits those pages. This process
proceeds in iterations until the set of modified pages are small
enough for the VM to be suspended at the source and resumed
at the target.

The amount of network traffic generated and total migration
time of a live migration operation are a function of the
amount of memory allocated to the VM, and the rate at
which the VM modifies (dirties) pages. Figure 8 shows how
the cyclicality of memory utilization (specifically the writable
working set described in Section II) exposed by TideWatch can
be used to schedule migration operations. When the writable
working set is minimal (¢2 in Figure 8), less memory must
be transferred resulting in a reduction in network traffic and
migration duration.

B. VM Placement

The cloud provider can select where in a data center each
VM is placed. It has the flexibility to use VM placement to
optimize a number of aspects of the data center, including
overall utilization, utilization of a specific shared resource like
the network, or the performance of VMs [35], [19], [36]. In
this subsection, we discuss how the information exposed by
TideWatch complements or informs placement strategies.

The cyclical resource utilization behavior of VMs identified
by TideWatch can be used to predict utilization and reduce
overprovisioning. Overprovisioning is a common technique
used by cloud providers in which VMs are allotted more
resources than they actually need, just in case a resource
utilization spike occurs. By recording the peak CPU or network
utilization value in previous cycles, a cloud provider can
improve hotspot prediction for any placement strategy (e.g.,
[35], [33D.

TideWatch also creates opportunities to align workloads
that share resources on a physical machine or a network
segment, improving on [21], [27]. For example, consider
workloads with low duty cycles for a particular resource,
such as network utilization for k-means (Figure 3(c)). By co-
locating this workload with a similar workload that uses the
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network at complementary times, network utilization would be
less bursty, with less contention.

Finally, TideWatch can help reduce the effect that “noisy
neighbor” VMs [24], or VMs that create contention on shared
resources like the network, have on Hadoop workloads. VMs in
an iterative Hadoop workload operate in synchrony with each
other. If one VM is slowed down (e.g., due to contention with
a noisy neighbor), all slave VMs may be stalled before they
can continue with subsequent iterations. By detecting VMs that
are in the same cluster, TideWatch enables a cloud provider to
calculate the number of VMs that may be affected and then
either avoid or rectify detrimental placement decisions.

VI. EVALUATION

In this section, we evaluate TideWatch—both period pre-
diction and clustering—and its application to live VM migra-
tion. For consistency, we use the monitored resource utilization
data gathered in Section III as input to TideWatch. For all
experiments, TideWatch first applies exponential smoothing
(with @ = 0.15) on the raw data to reduce the noise in the
collected data.

A. Period Prediction

To evaluate the period prediction aspects of TideWatch,
we first examine how much data TideWatch requires before
the period prediction converges. Figure 9 shows the smoothed
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memory dirty rate (blue curves) of one slave VM from
each Hadoop workload running on the local testbed, and the
corresponding predicted periods (red curves) by TideWatch in
real time. The value of the period predicted at each point
in time is shown on the right y-axis. At the start of the
experiment, the predicted period increases linearly because
TideWatch does not find multiple 0 — 1 transitions in the
square wave (Section IV-A). In all cases, after approximately
two iterations, the period estimate converges.

Figure 10 shows the values that the period prediction
converges to after processing the data stream (only for slaves).
TideWatch calculates the period time for each VM indepen-
dently. The six bars in every group correspond to the period
time estimated by TideWatch for all six slave VMs in each
workload. The actual period time reported in the Hadoop logs,
which represents a “ground truth” that is not readily accessible
to the cloud provider, is labeled on the y-axis, with “K” for
k-means, “D” for Dirichlet, and “P” for PageRank. For k-
means in Figure 10(a), the period predicted of 4 VMs out
6 have less than 9% error. For Dirichlet in Figure 10(a), 4
out of 6 of the predicted period have less than 6% error.
For PageRank in Figure 10(a), all the VMs have less than
8% error, 4 of them have less than 2%. The larger prediction
errors for some VMs in the k-means and Dirichlet workloads
stem from noise in the workload that prevents the threshold
to be crossed at an iteration boundary or causes the threshold
to be crossed at another time. We expect the prediction to
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improve significantly with more iterations in the time series,
because using the median prediction should eliminate outliers.
Using CPU utilization to predict period length, shown in
Figure 10(b) and 10(c), similarly yields good results for k-
means and PageRank. TideWatch has good results for three
(50%) of the Dirichlet VMs in Figure 10(b) and four (66.7%)
of the Dirichlet VMs in Figure 10(c).

B. Clustering

TideWatch uses DTW and DBSCAN to detect groups of
VMs running the same Hadoop workloads. In this subsection,
we evaluate the efficacy of DTW as a distance measure and
how well VMs are clustered with DBSCAN. We also evaluate
the performance of detecting clusters and the robustness of
Hadoop clusters in the face of heterogeneous resource con-
tention.

Figure 11 shows the DTW distance of local testbed exper-
iments using the memory utilization data. Figure 12 shows the
DTW distance of Amazon EC2 experiments using the CPU
utilization data. Each workload consists of 7 VMs: one master
and six slaves. Both figures show a 21 x 21 grid, where the -
and y-axes correspond to unique VM ids. The DTW distance
of VM, and VM; is indicated by a color value in cell(7, j). In
Figure 11, the first node (labeled 1) on the z- and y-axes is the
master node of the k-means Hadoop workload, the next six are
the slave nodes of k-means Hadoop workload; similarly, the
remaining values correspond to VMs in the Dirichlet process
clustering workload and the PageRank workload.
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The figures show that the slave nodes of the same Hadoop
workload have low DTW distance with each other, correspond-
ing to a high degree of similarity (depicted by the three dark
boxes along the y = = diagonal). On the local testbed (Fig-
ure 11), there is one slave node of Dirichlet with higher DTW
distance with other slave nodes of the same cluster, because
it was configured to perform reduce jobs. Furthermore, the
master node of each Hadoop workload usually has high DTW
distance compared to the DTW distance between the slaves.
In particular, the master nodes of Dirichlet and PageRank have
higher DTW distance with slave nodes in the same clusters.
On Amazon EC2 (Figure 12), similarly, the slave nodes of the
same workload have low DTW distance with each other.

Figures 13 and 14 show DBSCAN clustering results using
the DTW distances on the local testbed and Amazon EC2
respectively. The x-axes consist of the 21 VM ids, in the same
order as Figures 11 and 12. The y-axes show the clusters
that result from DBSCAN, as well as outliers. On the local
testbed (Figure 13), only two of the 21 VMs are misclassified.
The master node of Dirichlet is misclassified into the k-means
cluster, and one slave node of Dirichlet (the slave configured
to perform reduce tasks) is misclassified as an outlier. It is
not an error that the master node of the PageRank cluster
is classified as an outlier, since master nodes can behave
differently from slave nodes in one Hadoop workload. On
Amazon EC2 (Figure 14), all of the VMs were classified
correctly except for the master node of k-means.

In Figure 15, we show the computation time for DTW and
DBSCAN as the number of VMs increases. To generate this
plot, we represent each VM by a time series made from 100
random numbers. This time series can be memory dirty count
(like the local testbed experiments) or CPU utilization (like the
EC2 experiments). The performance of DTW and DBSCAN
is shown in the figure for clustering various numbers of
VMs, and fit with a quadratic polynomial. If TideWatch limits
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TABLE L AVERAGE TOTAL MIGRATION TIME AND NETWORK COST

[WITH STANDARD DEVIATION]

Total time (s)

33.68 [8.80]
21.84 [0.56]

Data transmitted (GB)

2.80 [0.73]
1.85 [0.04]

Random
TideWatch

clustering—e.g., to VMs that all belong to an individual cloud
user account—it will perform well. For example, TideWatch
can cluster 120 VMs in 3.2 seconds.

As seen in Section III, slaves in a Hadoop cluster tend
to be synchronized in their cyclicality. This suggests that, by
identifying the Hadoop cluster, a cloud provider can calculate
which VMs may be affected by resource contention, for
example, from a noisy neighbor.

C. Live VM Migration

In this subsection, we evaluate the benefits TideWatch
brings to live VM migration. On the local testbed, we run the k-
means workload (Section III) and live migrate one of the slave
VMs between workstations. Figures 16(a) and 16(b) show the
migration time and data transmitted over the network during
the migration, respectively, for migration operations triggered
at different moments in time. Migrating a VM around the
iteration boundary is relatively inexpensive. This is because,
as shown in Figure 3(a), memory is modified at a slower rate
around the iteration boundary, leading to fewer memory copy
iterations during live migration.

Table 1 shows the total migration time and network cost
performance for two migration strategies, random and in-
formed by TideWatch. The results are averaged over 21 migra-
tions. On average, TideWatch outperforms the random strategy
by reducing total migration time by 35% and data transmitted
by 34%. The random strategy also has much higher variability,
as evidenced by a factor of 15 higher standard deviation.
For the random strategy, total migration time varies between
20.91s and 46.36s, while the traffic generated on the network
varies between 1.79 GB and 3.85 GB. In the worst case,
TideWatch can reduce total migration time by up to 53% and
data transmitted by up to 52%.

VII. RELATED WORK

TideWatch detects Hadoop [2] clusters and the cyclicality
of their resource utilization in cloud computing environments,
while treating VMs as black boxes. As data-intensive com-
putations, like Hadoop workloads, become more popular in
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these environments [13], some cloud providers are offering
new interfaces to cloud users that enable them to identify
such workloads and manage them efficiently. For example,
Amazon Web Services [1] provides a service called “Elastic
MapReduce,” where users can submit Hadoop jobs directly.
TideWatch, on the other hand, identifies these workloads for
efficient management while maintaining the standard VM
interface, enabling users to run customized Hadoop config-
urations or implementations.

We apply TideWatch to optimize the scheduling of live
VM migration. VM migration across distinct physical hosts
is a popular VM management technique. Although “non-live”
migration techniques exist [25], [26], live migration [7], [22],
[16], which has little impact on the running applications,
is more popular, with implementations in most hypervisors
(Xen [7], VMware [22], and KVM [20]). Live migration can
be either pre-copy, in which memory is sent in iterations before
the VM is suspended and resumed on the target, or post-copy,
in which memory is fetched after the suspend and resume
operations. TideWatch optimizes the more popular pre-copy
live migration, by ensuring the number of iterations (and the
number of pages copied in each iteration) is minimal.

Other systems schedule VM migration operations based
on utilization. Wood et al. [35] use migration to alleviate
hotspots in consolidated data centers. In an effort to limit
the impact of VM migrations, Andreolini et al. [3] use a
trend analysis instead of triggering migration when machine
utilization passes a threshold. Stage and Setzer [28] advocate
long-term migration plans involving migrations of varying
priority in order to avoid network link saturation. By using
TideWatch, a cloud provider can not only reduce the impact
of each migration operation, but minimize the migration time,
thereby enabling a cloud provider to better respond to hotspots.

TideWatch enables opportunities for informed VM place-
ment. Many existing systems attempt to optimize VM place-
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ment to achieve a various objective. Khanna et al. [19] use
heuristics to try to consolidate VMs on the fewest physical
machines possible. Hermenier et al. [15] and Van et al. [32]
attempt to consolidate VMs while minimizing the number of
VM migrations to achieve the placement objective. Predictable
cyclicality implies that VMs can be packed to fully utilize
physical resources, without needing to constantly adjust VM
placement with migration operations.

VIIL

We present TideWatch, a system that enables a cloud
provider to monitor and predict the cyclicality of cloud work-
loads, while maintaining a “black-box” approach. The output
of TideWatch, in particular the period duration and grouping
of VMs, can be exploited to optimize VM management in a
number of dimensions. To date, we have applied TideWatch
to the scheduling of live VM migration operations, with
promising results. TideWatch enables up to a 53% reduction in
migration time and up to 52% reduction in network cost—with
significantly lower variation—when compared to a random
approach. As TideWatch is applied to optimize an increasing
set of VM management tasks, we expect cloud providers to
be able to increase the quality of their service and lower their
costs, without requiring explicit cooperation from cloud users.

CONCLUSION
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