
Optimal Parameter Selection for Efficient Memory Integrity Verification Using
Merkle Hash Trees

Dan Williams and Emin Gün Sirer
{djwill, egs}@cs.cornell.edu

Department of Computer Science
Cornell University
Ithaca, NY 14853

Abstract

A secure, tamperproof execution environment is critical
for trustworthy network computing. Newly emerging hard-
ware, such as those developed as part of the TCPA and Pal-
ladium initiatives, enables operating systems to implement
such an environment through Merkle hash trees. We exam-
ine the selection of optimal parameters, namely blocksize
and tree depth, for Merkle hash trees based on the size of the
memory region to be protected and the number of memory
updates between updates of the hash tree. We analytically
derive an expression for the cost of updating the hash tree,
show that there is an optimal blocksize for the leaves of a
Merkle tree for a given filesize and update interval that min-
imizes the cost of update operations, and describe a general
method by which the parameters of such a tree can be de-
termined optimally.

1. Introduction

Trustworthy network computing fundamentally requires
the ability to reason about the state of a computation on
remote nodes. Such reasoning relies on two mechanisms.
First, a node needs to be able to represent the state of a local
computation such that other nodes in the network can make
an intelligent decision on whether or not to trust the results
of that computation. Previous work on attestation [8, 10, 1]
addresses precisely this issue; a certificate chain rooted in
secure hardware can attest that a given version of the op-
erating system executed a particular version of an applica-
tion. Using such a certificate chain, a remote game server,
for instance, may decide to permit (or reject) a client at-
tempting to connect to the game with a good (or hacked)
game client. Similar intelligent trust decisions on whether
a client will obey a desired protocol may be made in other
distributed computing settings, including peer-to-peer sys-

tems and ad hoc networks, using the same mechanism. In
essence, the certificate chain can establish that certain pred-
icates over the code, usually represented compactly through
code version numbers or cryptographic hashes, hold at a
certain point in time.

But attesting to the state of a client at a given point in
time is not sufficient to establish trust. A second mech-
anism, namely, an isolated, secure, tamperproof execu-
tion environment, is required to reason about the state of
the computation subsequent to the attestation. In the ex-
ample above, a game server should allow clients to con-
nect only if their binary is verified to not be hacked at
the time of connection (achieved through attestation), and
if the connected game client can execute in a tamper-
proof environment where the binary cannot be modified af-
ter connection (achieved through tamperproof execution).
This latter mechanism has been the subject of much re-
cent work [12, 11, 18, 6, 7], buoyed by the emergence of
hardware support for secure execution in general-purpose
computers [19] and industry support for secure execution
as in Microsoft’s Palladium [4]. All mechanisms for tam-
perproof execution proposed to date rely on costly crypto-
graphic hashes to detect modifications to memory; however,
none minimize the cost of hashing.

This paper focuses on the use of cryptographic hashes
to secure memory against unauthorized modifications, and
derives an expression for optimal hash parameters. A well
known method to ensure that the contents of a data struc-
ture stored in untrusted storage (memory, disk or tertiary
storage) have not been tampered with is to compute a hash
of that data upon creation and store the hash in a secure
location. The next time an element in the data structure is
used, the hash is recomputed and checked against the stored
hash; unauthorized modifications to the data structure will
be caught through a hash mismatch. However, this naı̈ve
use of hashing can become extremely expensive when used
on large data structures.

Merkle hash trees have been proposed as a means to re-
duce the cost for hashing large data structures[14, 15]. They
are used to take a secure summary snapshot of a memory
region, which can then be used to detect tampering. A
memory region is divided into smaller blocks, the hashes
of which form theleaf hashesat the leaves of a complete
binary tree. The value of an inner node of the tree, aninner
hash, is obtained by concatenating and hashing the values
of its child nodes. After a set of updates to a memory re-
gion that constitute a transaction, a new secure summary
snapshot of the data structure is obtained by incrementally
recomputing the leaf hashes corresponding to the modified
blocks, as well as the inner hashes from each modified leaf
to the root of the tree. Once a new Merkle hash tree is com-
puted, the hashes can be stored in a secure location, such as
a secure coprocessor, and used to ascertain the integrity of
the data structure kept in ordinary memory. Overall, Merkle
hash trees constitute a very simple and effective way to take
a secure summary snapshot of a data structure.

The blocksize is the critical parameter of a Merkle hash
tree. A large blocksize reduces the depth of the tree at the
cost of increasing the leaf hash cost. A small blocksize
makes leaf hashes cheaper to compute, though it also in-
creases the depth of the tree, and correspondingly, the time
spent computing inner hashes.

This paper examines the optimal selection of blocksize
for Merkle hash trees. We derive an analytical model that
describes the cost of incremental updates to a Merkle hash
tree given the total size of a memory region to be protected
and the number of modified memory locations in each trans-
action, and we can numerically determine the blocksize that
minimizes the cost of performing updates to the tree. This,
in turn, enables an efficient mechanism for implementing
tamperproof execution using commodity memory and stor-
age devices.

This paper makes two contributions. First, it shows that
there is a minimum update cost that can be achieved by a
hash tree through careful selection of the blocksize at the
leaves of the tree. Second, it derives this optimal blocksize
given simple parameters, easily determined in practice. The
choice of optimal parameters for tamperproof memory in
turn leads to efficient systems for secure, trustworthy exe-
cution. Surprisingly, the optimal parameters in many com-
mon settings differ from natural choices that designers may
be tempted to pick, such as the native cacheline and page
size.

In the next section, we discuss related work in the ar-
eas of tamper-proof memory and Merkle trees. Section 3
describes our system model to help put the problem in con-
text. An analytical model of the problem and results are
presented in Section 4. Section 5 discusses the implications
of this work for implementing tamperproof execution hard-
ware, the cornerstone of trusted network computing, and

Section 6 summarizes the contribution and concludes.

2. Related Work

Merkle trees were originally presented as a method in
which two entities can agree on a shared secret using a
public key infrastructure [14, 15]. As an alternative to cer-
tificate based schemes in which a CA must be trusted to
disseminate the correct bindings between an entity and its
public key, Merkle proposed that a file containing all the
mappings be hashed and the result be widely publicized. If
B then wishes to verify that a particular public key corre-
sponds to A, B simply needs to hash all the values of all of
the mappings and check that the new hash matches the well
known hash. Due to the infeasible requirement of knowl-
edge of every mapping and the need to compute a hash of
the potentially enormous file, Merkle suggested that a hash
tree be used. A hash tree requires only a few intermediate
values on the path from the mapping to verify to the root of
the tree in order to reconstruct the hash. These intermediate
values are known as the authentication path.

Other applications of Merkle hash trees have been in
fast digital signature schemes for flows and multicasts [21]
and verification of signatures on read only file systems [5].
There has also been some work focused on the integrity of
persistent storage in databases [13] and DRM systems [16].

Blum et al. [2] use Merkle hash trees to provide general
memory integrity, in a manner similar to the system model
used in this paper. Their analysis shows that2 log(n) cells
must be accessed for a read or a write (the cells on the path
to the root and the authentication path) andlog(n) hash op-
erations for verification or update of the tree; however, this
work does not examine how to determine the hash block-
size.

Recent work on trustworthy execution platforms [12, 11,
17, 6, 18, 4] has examined practical mechanisms for attes-
tation [10, 22, 20] and tamperproof execution. This work
spans a large space including the design of secure copro-
cessors and security enhancements to ordinary processors
to provide a trustworthy execution environment, the attes-
tation of the underlying system to the integrity of its appli-
cations, the structure of the underlying operating system to
provide secure attestation, and finally, on the trustworthi-
ness of applications.

The eXecute Only Memory (XOM) architecture [12]
provides a trusted environment for applications through ad-
ditional hardware in the processor that creates an isolated,
secure, tamperproof execution environment to applications.
The additional hardware encrypts memory and register val-
ues as they are transferred into and out of the processor.
This additional hardware enables tamperproof execution
guarantees to be provided to applications without having to
trust the underlying operating system [11]. XOM, however,

suffers from replay attacks in which data in a compartment
can be replaced by old data from that compartment. The
memory integrity scheme described in this paper can com-
plement the XOM architecture to efficiently provide tam-
perproof memory immune to replays.

Terra [6] takes a different approach to trusted execution
by providing each application a virtual machine to execute
on, managed by a trusted virtual machine monitor. When
seeking to verify some amount of data, Terra divides the
data into blocks to avoid the high cost of hashing a large
object, computes hashes of each block, and then stores the
hash of these hashes into the VM descriptor, essentially cre-
ating a tree with two levels and a high branching factor. The
scheme we propose in this paper can be used to replace the
memory integrity scheme used in Terra with an efficient,
optimal approach.

AEGIS [18] can run with a security kernel on top of the
hardware, similar to Microsoft’s Palladium [4], or without
trusting the OS, similar to XOM [11]. The memory integrity
scheme used by AEGIS is a Merkle hash tree, integrated
within the memory hierarchy [7]. AEGIS provides an effi-
cient hardware implementation of Merkle trees by embed-
ding the hash values in processor caches, but does not con-
sider the optimal parameters for the hash tree. Our work
can inform architects of secure processors on how to effi-
ciently determine hash block sizes, which interact with the
determination of cacheline sizes.

Other techniques have been introduced to provide mem-
ory integrity. A fractal-based approach [9] has been pro-
posed to minimize the traversal of a Merkle hash tree; this
work also takes the Merkle hash tree as a given and does
not examine the selection of blocksize for the hash tree. In-
cremental multiset hash functions [3] have been proposed
as a means to improve memory integrity verification perfor-
mance by the ability to quickly update read and write logs
in trusted storage, to be verified at a later time. This work
focuses on sequences of reads and writes, and outperforms
a hash tree only in the case of infrequent memory verifica-
tion.

3. System Model

The motivation for our work comes from the desire to de-
velop a small trustworthy operating system that can provide
applications a safe environment in which to execute. We
have been building a new operating system, called Nexus,
that provides attestation and secure, tamperproof execution
based on the TCPA hardware (known as the TPM) [19].
While the design and implementation of this system is be-
yond the scope of this paper, we outline the system in order
to provide a context for the use of Merkle hash trees to pro-
vide tamperproof execution.

The Nexus is a secure native operating system that pro-

Hardware

Nexus

Applications

DIR

App 1

App 2

Figure 1. The Nexus provides a protected
memory abstraction. Each application may
have differently sized protected memory re-
gions with different update characteristics,
requiring different configurations of Merkle
hash trees for efficient checking. The tree is
stored in data integrity registers (DIR) in the
trusted coprocessor that is part of the newly
emerging TCPA standard.

vides trustworthy attestation and tamperproof execution ser-
vices to its applications. It is arranged as a highly compo-
nentized system, where each component operates in a sepa-
rate, isolated execution environment. The small size of the
Nexus reduces the amount of code that operates with system
privileges, permits the base system to be audited, and most
importantly, enables the principle of least privilege to be
used effectively in practice. Whereas in a monolithic oper-
ating system, all applications are dependent on, and need to
trust, the implementation of all services in the kernel, Nexus
applications need to trust only those components that they
directly interact with. Figure 1 illustrates the structureof
the Nexus.

The Nexus provides interfaces by which secure certifi-
cate chains, rooted in theplatform keyembedded in the
TPM hardware, can be extended to applications. The plat-
form key is a key embedded by the manufacturer from
which other keys can be derived and using which certificate
chains can be extended from the boot loader all the way to
applications. This, in turn, enables the Nexus to sign cer-
tificates that say “The hardware manufacturer attests that it
booted this particular version of the Nexus, which attests
that it executed this version of the game client.” These cer-
tificates enable remote nodes to make informed trust deci-
sions.

As discussed before, extending trust based on a certifi-
cate requires that the system be capable of retaining predi-
cates established at the time of certificate generation. The

Nexus does this by creating a tamperproof execution envi-
ronment, where the contents of memory can only be modi-
fied by the applications that have been authorized to modify
them. The Nexus protects memory regions against tamper-
ing by computing a Merkle hash tree over each region and
storing parts of the hash tree in the secure TPM hardware.
The Nexus provides a very general interface by which ap-
plications direct the kernel to create a protected memory
region of a given size, using a given blocksize. A toolkit,
located in user space, is responsible for determining the op-
timal blocksize for the Merkle hash tree - thus, the interface
is general-purpose, and the complexity of blocksize selec-
tion is left out of the kernel. The technique, shown below,
is used by the toolkit to determine the optimal blocksize for
the Merkle hash tree. We note that many of the other tam-
perproof execution schemes cited in Section 2 could use the
same technique to determine the optimal blocksize in their
use of Merkle hash trees.

4. Analytical Model and Results

In this section, we derive an expression for the cost of
maintaining a Merkle hash tree in the presence of uniformly
distributed updates, and describe a process by which the op-
timal blocksize (and hence, the depth) of the tree can be
determined.

Without loss of generality, consider an application wish-
ing to create and use a tamperproof memory region. We will
call the size of this memory the filesize in bytes, denoted by
f . We wish to divide the memory region into blocks and
build a Merkle hash tree over them in order to achieve an
efficient hashing based memory integrity implementation,
as shown in Figure 2.

Our goal is to determine the optimal blocksize,b (in
bytes), for the leaves of the tree. The Merkle tree con-
structed on top of the memory region is a complete binary
tree, which yields the following expression, whered is the
depth of the tree, that relates the blocksize to the size of the
memory region and the depth of the tree:

f = b 2d

We assume, without loss of generality, that the memory
region can be modifiedn times between updates to the hash
tree that protects the region.n can be conservatively set to
one, which will yield a data structure over which the hash
tree is recomputed after every modification. In some set-
tings, where the protected data structure in the tamperproof
region is being modified as part of a transaction, there may
be more than one modification between subsequent recom-
putations of the hash tree. The use of then parameter cap-
tures such transactions, andn > 1 enables performance to
be increased where timely updates to the secure summary
are not necessary.

DIR

memory region to be protected (f bytes)
2d blocks of b bytes

depth
 d

h(h , h)01 23

h = h(h(b), h(b))0 101
h = h(h(b), h(b))3223

h(b)0 h(b)1 h(b)2 h(b)3

b0 b1
b2 b 3

Figure 2. A Merkle tree constructed on top of
f bytes of memory using a hash function h.

There are two components contributing to the cost of
committing an update to a memory region. First, every leaf
responsible for the block on which a modification is made
must recompute its hash. Then, every interior node on the
path from the affected leaf to the root of the tree must re-
compute its hash value.

4.1. Cost of Hashing:Hl(b) and Hi

Each of the2d leaf nodes in the tree is thus responsible
for computing the hash of a block of sizeb bytes. We model
the cost of this hashing operation, referred to as the cost of
a leaf hash inµseconds, by:

Hl(b) = αb + β

Our motivation for choosing a linear model for the cost
of hashing a data block of sizeb is based on experimen-
tal measurements of the SHA1 hash function performed on
an IntelR© PentiumR© 4 CPU 1700MHz machine, which
yielded parametersα = 0.0122348 µsec/byte andβ = 1
µsec.

In addition, each of the2d − 1 interior nodes are respon-
sible for hashing the concatenation of the values of its two
child nodes. Due to the characteristics of Merkle trees, each
of the child nodes contains bytes, the size of the result of a
hash operation. In the case of SHA1,s = 20 bytes. Thus
the cost (inµsecs) of an inner hash operation is:

Hi = 2αs + β

4.2. Leaf Hash Updates:Ul(b)

In order to determine the number of leaf hashes that must
be recomputed aftern uniformly distributed modifications
to a memory region consisting of2d blocks, we can first
consider the probability of one particular block containing
a modification. The probability that the first modification is
in a different block is:

2d − 1

2d

The probability that the second modification is also not
in our block is equal to the probability that the first mod-
ification was not in our particular block multiplied by the
probability that the second modification was not in our par-
ticular block. Similarly, the probability that alln modifica-
tions were not in our one particular block is:

(

2d − 1

2d

)n

On the other hand, the probability that our particular
block was touched in one of then modifications is:

1 −

(

2d − 1

2d

)n

Finally, we have2d blocks, each with equal probability
of being touched, so we can now write the expected number
of leaf hashes that need to be recomputed as the expected
number of leaf nodes touched aftern modifications, or:

Ul(b) = 2d

(

1 −

(

2d − 1

2d

)n)

Recall thatf = b 2d, allowing eachd appearing in the
right side of the equation to be written in terms ofb as
log2 (f

b
). This substitution has been omitted for clarity.

4.3. Inner Hash Updates:Ui(b)

The expected number of inner hashes can be computed
in a similar fashion to the leaf hashes. First we consider
the inner nodes comprised of the immediate parents of the
leaf nodes. Each of these inner nodes has two leaf nodes as
its children and will get updated if either of the leaf nodes
are updated. So we can think of each inner node on this
level responsible for a “block” twice the size of the original
blocks, one for each of the memory regions covered by the
two child leaf nodes. Then the familiar leaf hash formula
will apply and we can see that the number of inner hashes
on the lowest level of the tree is:

2d−1

(

1 −

(

2d−1 − 1

2d−1

)n)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 1 8 64 512 4096 32768 262144

co
st

 (
us

ec
s)

blocksize (bytes)

Leaf/Inner/Total Cost of Hashes

Leaf hash data
Inner hash data
Total cost data

Figure 3. The relationship between the total
cost of inner and leaf hashes when the num-
ber of updates is n = 10, and the filesize is
f = 240 bytes. Notice the log scale on the x

axis (blocksize).

A similar argument applies all the way to the root of the
tree, which considers the memory region to be two large
“blocks”. The root node, at depth zero has a probability of
1 that it will be updated as long asn > 0. We can write
the total number of expected inner hashes that must be per-
formed aftern uniformly distributed updates to the memory
region as:

Ui(b) =

d−1
∑

i=0

2i

(

1 −

(

2i − 1

2i

)n)

In order to find a closed form for the number of inner
hashes, it is useful to notice that the graph of the number
of inner hashes, shown in Figure 3, consists of a straight
line when viewed in terms ofd, a log in terms of blocksize,
followed at some point by a curved tail. Since the cost of
leaf hashes as the blocksize increases dominates the graph,
we focused on writing an equation for the linear part of the
graph.

The following formula depicts the expected number of
inner hashes:

Ui(b) = nd −

n
∑

i=2

(−1)i

(

n

i

) (

1

1 − 1

2i−1

)

+

n
∑

i=2

(−1)i

(

n

i

) (

1

1 − 1

2i−1

) (

1

2i−1

)d

In order to make our formula simple, and yet still get
an accurate approximation for the number of inner hashes
in the tree, we make the observation that the region we are
concerned with is one in whichd is relatively large. Thus

the terms consisting of fractions raised to a larged become
largely unimportant, and we can rewrite the formula for the
number of inner hashes as:

Ui(b) ≈ nd −

n
∑

i=2

(−1)i

(

n

i

) (

1

1 − 1

2i−1

)

Notice that this is simplynd plus a constant term and be
rewritten in terms ofb by substitutinglog2 (f

b
) for d. This

accounts for the linear nature of the number of inner hashes
as a function of the blocksize on alog scale.

4.4. Minimizing Cost

The total cost of updates to a Merkle hash tree aftern

modifications can be computed by combining the formulas
for the expected number of leaf hashes and updates to inner
nodes. This yields the following:

C(b) = Ui(b)Hi + Ul(b)Hl(b)

Taking the derivative of this function with respect tob

can yield the critical points:

C′(b) = −
βf

b2
+

βf
(

1 − b
f

)n

b2

+ αn

(

1 −
b

f

)n−1

+
βn

(

1 − b
f

)n−1

b

−
αsn

b ln 2
−

βn

b ln 2

This expression does not lend itself readily to an analyt-
ical solution. The roots can be determined, however, using
a numerical method. We use Newton’s method to find the
roots of this equation. Newton’s method consists of making
an estimatexn for the root, measuring an approximate error
term:

εn = −
C′(xn)

C′′(xn)

and updating the current estimate accordingly by adding the
error:

xn = xn−1 + εn−1

Newton’s method has the property of converging quadrati-
cally to the minimum, which makes it an acceptable method
for finding the minimum of our function.

 150

 200

 250

 300

 350

 400

 450

 500

 10 20 30 40 50 60 70 80 90 100

op
tim

al
 b

lo
ck

si
ze

 (
by

te
s)

n

Optimal blocksize vs n for various filesizes (f in bytes)

f = 2^10
f = 2^11
f = 2^12
f = 2^13
f = 2^14
f = 2^15
f = 2^16
f = 2^17
f = 2^18
f = 2^40

 150

 200

 250

 300

 350

 400

 450

 500

 10 20 30 40 50 60 70 80 90 100

op
tim

al
 b

lo
ck

si
ze

 (
by

te
s)

n

Optimal blocksize vs n for various filesizes (f in bytes)

f = 2^10
f = 2^11
f = 2^12
f = 2^13
f = 2^14
f = 2^15
f = 2^16
f = 2^17
f = 2^18
f = 2^40

Figure 4. Optimal blocksize in bytes for a va-
riety of file sizes f (bytes) and update inter-
vals n using hash parameters α = 0.0122348
µsec/byte, β = 1 µsec and s = 20 bytes.

4.5. Results

The optimal blocksize is dependent on the size of the
memory region to be protected (f) and the number of up-
dates (n) to the protected region before the hash tree is up-
dated. Figure 4 illustrates that the optimal blocksize has an
asymptote at a constant fraction of the filesizef after which
point the optimal blocksize is equal tof , the total filesize.
Intuitively, this is the point at which enough blocks have
been updated that the overhead of the inner hashes is not
worthwhile, and it is faster to collapse the Merkle hash tree
down to a single leaf hash over the whole region.

The minimum blocksize is constant between all filesizes
because it is dependent only on the parameters of the hash
function. To see why this is true, consider one update to a
tree with filesizef . The cost of this update, as determined
by the cost equationC(b), is:

log
2

(

f

b

)

Hi + Hl (b)

the derivative of which becomes simply:

α −
Hi

b log (2)

Setting this equation equal to zero, we can solve for:

b =
Hi

α log (2)

Note that this solution for the optimal blocksize is entirely
dependent on the parametersα, β, ands of the hash func-
tion. Intuitively, asn increases, the optimal blocksize will
increase above this value because each added update could

addd more inner hashes but only one more leaf hash. In-
creasing the blocksize and thus decreasing the depth of the
tree relieves this pressure.

5. Implications

A natural tendency when constructing a Merkle tree is to
use architectural constants, such as the native page size of
the processor cache line size, for the block size. Figure 4
shows that such quantities often lead to inefficient choices.
On our platform, the optimal blocksize is much less than
the typical page size for large files, while it is much greater
than the typical cache line size for small files. Using the
expressions derived above, it is possible to determine the
optimum precisely and pick the block size that minimizes
the cost of updates to the Merkle hash tree.

5.1. Non-Uniform Distribution of Writes

It is typical for an application to exhibit locality of mem-
ory modifications, leading to a distribution of updates that
is not uniform. Our analysis has considered update distribu-
tions that are uniform. Under a more skewed distribution,
we would expect more collisions on the blocks, reducing
the leaf hash number, and also earlier collisions as updates
propagate up the tree, leading to less inner hashes to com-
pute. This implies that the optimal blocksize curve seen for
a particular filesize with respect ton would grow at a slower
rate, producing deeper optimal trees.

It is also possible to construct a skewed (non-balanced)
Merkle hash tree to reduce the number of inner hashes en-
countered when updating a very popular region of memory.
Ideally, a tree constructed in this way would maintain a low
leaf cost due to a small blocksize, and also a low inner hash
cost depending on the frequency of memory accesses.

5.2. Caches

Gassend et al. use blocks in the L2 cache as the size of an
inner hash so that they can easily cache the inner nodes of
the hash tree and then on only worry about propagating the
update up to the first inner node contained in the cache[7].
They experiment with two sized L2 block sizes (64B and
128B) in various sized L2 caches and note that increasing
the size of the L2 cache block reduces the verification cost
by shrinking the tree and increasing its branching factor.
However, if the branching factor grows very large, the cost
of computing the inner hashes can become a large factor,
essentially increasing they-intercept of the line represent-
ing the cost of inner hashes, pushing the optimal blocksize
larger.

Thus, even in a situation where the inner hashes are being
cached and the branching factor is chosen to improve the

performance of the cache, it is still necessary to determine
the optimal blocksize given the chosen branching factor of
the tree. Our framework is general enough to discover the
optimal blocksize for anm-ary tree simply by modifying
the relationship between filesize and depth accordingly to
f = b md and the inner hash cost toHi = mαs + β.

6. Summary

We have considered the problem of implementing a tam-
perproof memory region abstraction through the use of one-
way hash functions. We examine the use of Merkle hash
trees, whose simplicity makes them ideally suited for an ef-
ficient implementation. Yet the choice of natural parameters
for hash trees, such as the native cacheline size or the native
page size, often lead to inefficiencies and excessive costs
when recomputing the Merkle hash tree.

This paper analytically derives an expression for the cost
of updating the tree, shows that there is an optimal size
given a particular combination of filesize and number of
memory locations affected by each transaction, and devel-
ops a numerical technique for finding the blocksize that op-
timizes the cost of maintaining the tree. This work is di-
rectly applicable to the design of operating system mecha-
nisms, as well as hardware techniques, for providing tam-
perproof memory. We hope that an analysis of the optimal
parameter selection for increasingly ubiquitous Merkle hash
trees will enable the newly available trusted hardware to be
used to its full potential.

Acknowledgements

We would like to thank Fred B. Schneider for encourag-
ing us to consider a flexible, general-purpose interface for
creating protected memory regions.

References

[1] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A Secure
and Reliable Bootstrap Architecture. InProceedings of the
IEEE Symposium on Security and Privacy, pages 65–71,
May 1997.

[2] M. Blum, W. Evans, P. Gemmell, S. Kannan, and M. Naor.
Checking the Correctness of Memories. InProceedings of
the 32nd annual symposium on Foundations of computer sci-
ence, pages 90–99. IEEE Computer Society Press, 1991.

[3] D. Clarke, S. Devadas, B. Gassend, M. van Dijk, and E. Suh.
Incremental Multiset Hashes and their Application to In-
tegrity Checking. InProceedings of the ASIACRYPT 2003
Conference, Nov. 2003.

[4] P. England, B. Lampson, J. Manferdelli, M. Peinado, and
B. Willman. A Trusted Open Platform.Computer, 36(7):55–
62, July 2003.

[5] K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and Secure
Distributed Read-only File System.ACM Transactions on
Computer Systems, 20(1):1–24, 2002.

[6] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh. Terra: A Virtual Machine-Based Platform for
Trusted Computing. InProceedings of the 19th Symposium
on Operating System Principles, Oct. 2003.

[7] B. Gassend, D. Clarke, G. E. Suh, M. van Dijk, and S. De-
vadas. Caches and Hash Trees for Efficient Memory In-
tegrity Verification. InProceedings of the Ninth Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA-9), Feburary 2003.

[8] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. Dis-
tributed System Security Architecture. InProceedings of the
12th NIST-NCSC National Computer Security Conference,
pages 305–319, 1989.

[9] M. Jakobsson, T. Leighton, S. Micali, and M. Szydlo. Frac-
tal Merkle Tree Representation and Traversal. InRSA-CT,
2003.

[10] B. Lampson, M. Abadi, M. Burrows, and E. Wobber. Au-
thentication in Distributed Systems: Theory and Practice.
ACM Transactions on Computer Systems, 10(4):265–310,
1992.

[11] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing an
Untrusted Operating System on Trusted Hardware. InPro-
ceedings of the nineteenth ACM symposium on Operating
systems principles, pages 178–192. ACM Press, 2003.

[12] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. C. Mitchell, and M. Horowitz. Architectural Support for
Copy and Tamper Resistant Software. InArchitectural Sup-
port for Programming Languages and Operating Systems,
pages 168–177, 2000.

[13] U. Maheshwari, R. Vingralek, and W. Shapiro. How to Build
a Trusted Database System on Untrusted Storage. InPro-
ceedings of the 4th Symposium on Operating Systems De-
sign and Implementation, pages 135–150, 2000.

[14] R. C. Merkle. Protocols for Public Key Cryptosystems. In
IEEE Symposium on Security and Privacy, pages 122–134,
1980.

[15] R. C. Merkle. A Certified Digital Signature. InProceedings
on Advances in cryptology, pages 218–238. Springer-Verlag
New York, Inc., 1989.

[16] W. Shapiro and R. Vingralek. How to Manage Persistent
State in DRM Systems. InDigital Rights Management
Workshop, pages 176–191, 2001.

[17] S. W. Smith and S. Weingart. Building a High-Performance,
Programmable Secure Coprocessor, April 1999.

[18] G. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. De-
vadas. Aegis: Architecture for Tamper-evident and Tamper-
resistant Processing, June 2003.

[19] TCPA. Main Specification, Version 1.1a, November 2001.
[20] J. Tygar and B. Yee. Dyad: A System for Using Physi-

cally Secure Coprocessors. Technical Report CMU–CS–91–
140R, Carnegie Mellon University, May 1991.

[21] C. K. Wong and S. S. Lam. Digital signatures for flows and
multicasts.IEEE/ACM Trans. Netw., 7(4):502–513, 1999.

[22] B. Yee. Using Secure Coprocessors. PhD thesis, Carnegie
Mellon University, May 1994.

