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Abstract
This paper presents the Extension Interface Model (EIM) and
bpftime, which together enable safer and more efficient exten-
sion of userspace applications than the current state-of-the-art.
EIM is a new model that treats each required feature of an ex-
tension as a resource, including concrete hardware resources
(e.g., memory) and abstract ones (e.g., the ability to invoke a
function from the extended application). An extension man-
ager, i.e., the person who manages a deployment, uses EIM
to specify only the resources an extension needs to perform
its task. bpftime is a new extension framework that enforces
an EIM specification. Compared to prior systems, bpftime
is efficient because it uses extended Berkeley Packet Filter
(eBPF)-style verification, hardware-supported isolation fea-
tures (e.g., Intel MPK), and dynamic binary rewriting. More-
over, bpftime is easy to adopt into existing workflows since it
is compatible with the current eBPF ecosystem. We demon-
strate the usefulness of EIM and bpftime across 6 use cases
that improve security, monitor and enhance performance, and
explore configuration trade-offs.

1 Introduction

Developers extend their software to customize it for the
needs of a particular deployment. For example, extensions
can improve application performance [2, 40], add custom
features [48, 50], enhance security [46, 62], and enable ap-
plication observability for performance monitoring [61, 77]
and debugging [39, 45]. Software extensions do not require
modifying the original application, which enables customiza-
tion while ensuring that the deployment can easily inte-
grate maintenance updates from upstream repositories. Many
software applications support extensibility, including web
browsers [21,43], HTTP servers [17,25], text editors [24,64],
and databases [49, 59].

To extend software, a developer defines new logic for the
program as a set of extensions, and associates each exten-
sion with a specific location in the host application, called
an extension entry. When a user invokes the application, the

system loads the host application and the user’s configured
extensions. Each time an application thread reaches an ex-
tension entry, the thread jumps to the associated extension. It
executes the extension in the extension runtime context; once
the extension completes, the thread returns to the host at the
point immediately after the extension entry.

This paper presents a new approach for specifying the in-
terface between an extension and a host, called the Extension
Interface Model (EIM), and a new extension runtime system,
called bpftime, that together provide safer and more efficient
software extensions. EIM and bpftime are motivated by the
challenges current extension frameworks face in balancing
key extensibility features.

First, current extensibility frameworks struggle to navigate
the tradeoff between extension interconnectedness and safety.
On the one hand, enabling extensions that perform mean-
ingful work requires interconnectedness, i.e., the ability to
observe or modify the host application’s state and to execute
functions defined by the host. On the other hand, application
deployments require that their extensions are safe, i.e., that
an extension failure cannot harm the health of the host appli-
cation and the underlying system. Achieving safety requires
restricting an extension’s behavior to limit both the system
resources it consumes (e.g., the memory it uses, the files it
opens) and the host interactions it performs (e.g., the host
state it reads). Interconnectedness and safety are in tension
because interconnectedness often necessitates allowing an
extension to modify the host in potentially unsafe ways. We
introduce the term extension manager to describe the person
who is responsible for configuring the extensions on a given
deployment and thus must navigate the tradeoff between in-
terconnectedness and safety.

To maximize system safety, an extension manager should
follow the principle of least privilege, granting extensions
only the minimal set of features their use cases require. For
example, a deployment that supports observability extensions
for debugging and monitoring may have different intercon-
nectedness/safety needs than one that supports extensions
for customizing application behavior. Unfortunately, current



extension frameworks poorly support specifying and enforc-
ing such deployment-specific interconnectedness/safety trade-
offs. Many frameworks (e.g., safe language runtimes [23, 38],
NaCl [75]) cannot express an interconnectedness/safety trade-
off. Instead, they rely on applications to enforce their own
safety, which is ad hoc and error-prone (see §2). Other frame-
works (e.g., lwC [37], RLBox [44], Shreds [11]) do not sup-
port fine-grained limits on extensions. They either cannot
restrict certain unsafe extension behaviors or cannot do so
on a per-extension-entry basis. Finally, some frameworks
(e.g., Orbit [31], Wedge [7]) do support fine-grained inter-
connectedness/safety tradeoffs, but they are not designed for
extensibility and require modifying host application source
code to impose different tradeoffs.

Our first contribution, EIM, supports fine-grained intercon-
nectedness/safety tradeoffs. EIM’s key idea is to represent the
extension features needed for interconnectedness or restricted
for safety through a single abstraction called a resource. For
example, a resource can represent an extension’s ability to
call a host function or read a host variable. EIM represents
the ability to use resources with capabilities [55, 60, 71]. An
EIM specification is produced by two parties: the original
application developer and the extension manager. First, devel-
opers define capabilities that represent the resources the host
application can provide to extensions, essentially enumerat-
ing the extension interconnectedness that the host application
supports. Then, during deployment, the extension manager
creates extension classes that specify the set of capabilities al-
lowed at a particular extension entry, essentially choosing the
interconnectedness/safety tradeoff for each extension entry.
In sum, EIM specializes interfaces for fine-grained protec-
tion, such as those for access control of OS objects (e.g.,
SELinux [54]) or browser manifest files [22], to support the
fine-grained tradeoffs necessary for software extensions.

EIM specifications are runtime-agnostic, and we could en-
hance an existing extension framework to enforce them. How-
ever, current extension frameworks poorly navigate the trade-
off between three properties: extension safety, as specified
in an interconnectedness/safety tradeoff; extension isolation,
which prevents a host application from harming an extension
and is necessary for security monitoring extensions; and ex-
tension efficiency, which requires that extensions execute at
near-native speed. Current frameworks are inefficient because
they employ heavyweight techniques for isolation and safety.
For example, many frameworks (e.g., Orbit [31], lwC [37],
Wedge [7]) provide new operating system-level isolation ab-
stractions and require context-switch-like overhead to switch
between a host and an extension. Other frameworks (e.g.,
Wasm [23], NaCl [75]) enforce safety and isolation using soft-
ware fault isolation (SFI), which is much slower than native
execution [29].

Our second contribution is bpftime, a new extension run-
time that efficiently supports EIM and extension isolation
using two design principles. First, the system uses lightweight

approaches to provide extension safety and isolation. It en-
forces the safety in an EIM specification without any run-
time overhead using extended Berkeley Packet Filter (eBPF)-
style verification, and it enforces isolation with minimal over-
head using ERIM-style intraprocess hardware-supported iso-
lation [66, 72]. Second, bpftime introduces concealed exten-
sion entries, which improve efficiency by eliminating run-
time overhead from extension entries that are not in use by
a running process. Concealed extension entries use binary
rewriting [10, 14, 18, 70] to inject an extension entry into a
host only when a user loads an associated extension. While
prior work uses techniques similar to bpftime’s verification,
isolation, and rewriting techniques, bpftime is the first system
combine them to satisfy EIM’s requirements.

Additionally, bpftime is fully compatible with eBPF,
streamlining the system’s path to adoption. With eBPF com-
patibility, not only can current users of eBPF extensions (e.g.,
uprobes) seamlessly adopt bpftime1, but bpftime extensions
can also share state and interact closely with eBPF kernel
extensions, thereby supporting extensibility use cases that
require extending both the kernel and applications.

We maintain bpftime as an open source project 2; bpftime
has 1,000 stars on GitHub, more than 20 contributors, and
several PRs per month. Our users currently rely on bpftime
and EIM for many use cases, including observability, fault
injection, hot patching, and other application customizations.
Inspired by these users, we present 6 use cases that highlight
the benefits of bpftime and EIM. These use cases explore
design tradeoffs, improve security, monitor performance, and
enhance system efficiency. In particular, we use bpftime to
monitor a microservice application, create new durability con-
figurations in Redis, cache metadata operations in FUSE, im-
plement an SSL-supporting distributed tracing tool, monitor
system calls for performance analysis, and enhance webserver
security.

We evaluate bpftime’s performance on the aforementioned
6 use cases. We find that bpftime improves the throughput
of profiling microservices by a factor of 1.5 compared to
eBPF. bpftime enables a Redis durability configuration that
loses orders of magnitude less data in a crash while decreas-
ing throughput by only about 10%. bpftime enables FUSE
caching that accelerates operations by orders of magnitude.
The system adds only 2% overhead when extending Nginx,
which is up to 5× lower than state-of-the-art alternatives such
as WebAssembly, Lua, ERIM [66], and RLBox [44]. bpftime
reduces the overhead of SSL traffic monitoring by a factor of
3.79 compared to native eBPF. Moreover, bpftime offers con-
figurations that prevent monitoring overhead from affecting
unmonitored processes, a feature eBPF cannot provide. We
also use microbenchmarks to illustrate the key features that
enable bpftime’s performance advantages and demonstrate
bpftime’s compatibility with eBPF.

1Note: eBPF uprobes do not support all bpftime features.
2available at https://github.com/eunomia-bpf/bpftime.

https://github.com/eunomia-bpf/bpftime
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Figure 1: A process extended with two extensions, ext1 and
ext2, with associated extension entries, entry1 and entry2,
respectively. The application developer(s) and extension de-
veloper(s) write the host application and extension program,
respectively. The User uses the host application. The Exten-
sion Manager decides which extensions to allow and use in
the deployment.

In sum, our contributions are:
• EIM, which allows users to specify fine-grained intercon-

nectedness/safety tradeoffs.
• bpftime, an efficient extension runtime system that enforces

EIM specifications and isolation through two separate veri-
fication techniques and concealed extension entries.

• An evaluation of EIM and bpftime demonstrating their use-
fulness and efficiency in 6 use cases.
In the rest of the paper, we motivate EIM and bpftime (§2),

describe EIM (§3), explain the design and implementation of
bpftime (§4), discuss 6 use-cases (§5), evaluate bpftime(§6),
describe related work (§7), and conclude (§8).

2 Motivation

System extensions augment an application without modifying
its source code to customize behavior, enhance security, add
custom features, and observe behavior. By supporting appli-
cation modifications without requiring source code changes,
extensions allow a customized deployment to integrate main-
tenance updates from upstream repositories easily and can
provide assurances of security and safety. The rest of this sec-
tion discusses the principal roles of system extensions (2.1),
provides an example web-server use-case (2.2), articulates
the key properties of extension frameworks (2.3), discusses
limitations of the current state-of-the-art (2.4), and articulates
the threat model (2.5).

2.1 Roles

The system extension usage model considers four key prin-
cipals. The application developers are a group of trusted
developers who write the original application, while the ex-
tension developers are a group of trusted developers who
create the extensions. System extensions assume that both
the application developer(s) and extension developer(s) are
trusted but fallible, so applications and extensions might be
exploitable but are not intentionally malicious. Next, the sys-
tem extension model includes an extension manager, a trusted
individual that installs and manages the extensions; the model
relies on the manager to be both trusted and infallible. Finally,
users are untrusted individuals who interact with the extended
application; users can be malicious and may try to craft inputs
that would trigger vulnerabilities in otherwise benign code.

Figure 1 provides a representation of an extended appli-
cation and shows the role of each principal. The application
developers write the host application. The extension devel-
oper creates the extension program, which can read and write
application state and execute application-defined functions.
The extension manager is responsible for deciding which ex-
tensions to use at each extension entry. Finally, users produce
input that interacts with the host application and, indirectly,
the extension program.

2.2 Web-Server Example

Consider an instance of Nginx deployed as a reverse proxy.
The application developers write the server, while the ex-
tension developers provide a suite of possible extensions to
deploy on the system for monitoring, firewalls, and load bal-
ancing. The extension manager determines the extensions for
the deployment and the privileges to provide each extension.
First, the manager uses an extension program that monitors
traffic to detect reliability issues [27]. Second, the manager
deploys an extension program that implements a firewall that
returns a 404 response for URLs that are indicative of SQL
injection and cross-site scripting attack. Finally, the man-
ager deploys an extension program to perform load balancing
across the possible servers downstream from the proxy by pe-
riodically contacting downstream servers to measure system
load [26].

2.3 Key Extension Framework Features

Extension use-cases require three key features:
Fine-grained Safety/Interconnectedness tradeoffs. Ex-

tensions must be interconnected, i.e., able to interact with the
host application. Host interactions include reading/writing
host state and executing host-defined functions. The Nginx
example extension programs highlights both of these features:
extensions in the observability use-case require read access
to host state, while the firewall, load balancing, and statistics



Bug Software Summary
Bilibili [73] Nginx Livelock (infinite loop) in an ex-

tension caused production out-
age.

CVE-2021-44790 [47] Apache Buffer overflow in httpd’s lua
module causes application to
crash.

CVE-2024-31449 [42] Redis Stack overflow in Lua script
leads to arbitrary remote code
execution.

Table 1: Example issues caused by extension safety violations.

extensions call Nginx functions to parse user requests and
return responses.

At the same time, an extension manager wishes to ensure
that extensions are safe, i.e., do not harm the health of the de-
ployment. Safety does not aim to thwart malicious extensions,
but rather to ensure that a bug in the extension cannot harm
the reliability or security of the host. Extension bugs have
lead to catastrophic consequences in production, including
livelock, system crashes, and remote code execution; Table 1
provides examples.

There is no single definition of safety appropriate for all
extension use-cases, since safety and interconnectedness are
in tension. Instead, the manager should be able to follow
the principle of least privilege and allow each extension to
perform only the actions necessary for the interconnectedness
required for its task. For example, the Nginx observability
extensions only need to read from specific host states, but
would be unsafe if allowed to write to them. In contrast, the
Nginx firewall extension needs to read/write to a different set
of host states, but would be unsafe if it were allowed to read
the observability states.

Safety rules that can be applied to each individual exten-
sion are fine-grained safety/interconnectedness tradeoffs. We
note two desirable properties. First, the same extension entry
may need to support different safety/interconnectedness trade-
offs since it may be useful for separate extension use-cases.
Second, while the universe of possible interconnectedness
features depends on the host application and thus requires
a knowledgeable application developer to modify the host
source code, the manager should be able to modify the safe-
ty/interconnectedness tradeoffs for their extensions without
changing the original application.

Isolation. Extensions must be isolated, i.e., not be harmed
by the host application. Isolation does not thwart a malicious
host application, but rather ensures that attackers cannot cir-
cumvent extension-based security by exploiting bugs in the
host application. Isolation requires ensuring that host appli-
cations cannot modify extension states. The Nginx firewall
extension is an example that relies upon isolation.

Efficiency. Extensions should be efficient, i.e., execute at
near-native speed, since they may be deployed on the hot path
of production systems. For example, the Nginx load balancer

extension is invoked on the hot path for all user requests.

2.4 The Limitations of State-of-the-Art

We describe the limitations of existing extension frameworks.
Native Execution. A number of extensibility approaches

execute the application and extension in the same execution
context, essentially treating the extension as a component
of the original program. Such approaches include those that
use dynamic loading (e.g., LD_PRELOAD) and dynamic binary
instrumentation [8, 39, 45]). These systems provide efficiency
but neither isolation nor support fine-grained safety/intercon-
nectedness tradeoffs.

SFI-based tools. Many extension frameworks use SFI [69]
to provide isolation, including XFI [16], NaCL [75], RL-
Box [44], and language-based sandboxes such as WebAssem-
bly [23] and Lua [38]. Some of these tools (e.g., Lua, We-
bAssembly, and NaCL) do not provide an interface for safe-
ty/interconnectedness tradeoffs. Instead, they rely on the host
application to check for safety violations, an approach that has
proven buggy (see Table 1). Other tools (e.g., RLBox, XFI)
lack fine-granularity or the ability to limit certain extension
behaviors. Additionally, SFI-based tools are typically ineffi-
cient since they validate extension behavior at runtime [29].

Subprocess Isolation. Subprocess isolation systems, such
as Wedge [7], Shreds [11], lwC [37], and Orbit [31], sepa-
rate extensions from the host application through operating
system isolation abstractions. Such systems ensure isolation.
However, some lack fine-grained interconnectedness/safety
tradeoffs (Lwc and Shreds), while others (Orbit and Wedge)
could provide such tradeoffs, but only after code changes to
the host application, because they are not designed for ex-
tensibility. Finally, such systems struggle to be efficient for
frequently-executed extension use-cases, since they require
context-switch-like overheads when switching between the
host application and its extensions.

eBPF uprobes. While it is usually used for kernel exten-
sions, the extended Berkeley Packet Filter (eBPF) framework
provides userspace extensions through the uprobe interface.
eBPF uprobes are isolated from the host application, but do
not support fine-grained interconnectedness/safety tradeoffs.
Moreover, eBPF uprobes are not efficient. eBPF uprobes place
a software breakpoint on every extension entry, causing the
system to trap into the kernel to execute each extension.

Aspect-oriented programming.. Aspect-oriented pro-
gramming allows extensions, but existing aspect-oriented lan-
guages do not support safety/interconnectedness tradeoffs.
For example, if an AspectJ extension were exploited [34],
the attacker would have unrestricted ability to observe and
modify the original host application.



2.5 Threat Model
The system extension threat model is as follows. First, it as-
sumes that the extension manager accurately and completely
identifies the correct safety/interconnectedness tradeoff for
each extension entry. This means that a buggy extension can-
not corrupt, crash, or hang an application through the interface
that the extension manager allows. Second, the model assumes
that the control-flow of the application cannot be modified or
corrupted even if an application is compromised—essentially
equivalent to control flow integrity [1]—since an attacker
could otherwise circumvent extension execution. Given these
limitations, the threat model considers two key threats. First,
it considers buggy extensions that accidentally crash or hang
the application through errant pointers, infinite loops, or stack
corruption that are outside of their allowed safety/intercon-
nectedness tradeoff. Second, it considers compromised appli-
cations that modify or corrupt the state used by extensions to
alter the extension’s behavior.

3 Extension Interface Model (EIM)

The Extension Interface Model (EIM) is a new model for
specifying fine-grained interconnectedness/safety tradeoffs.
Using the model, an extension manager can follow the princi-
ple of least privilege and specify a tradeoff that would enable
extensions to perform their tasks (i.e., sufficiently intercon-
nected) with minimal potential harm to the system (i.e., are
sufficiently safe). The model is sufficient to prevent past ex-
tension bugs from harming production; e.g., an extension
manager can use EIM to prevent each of the bugs in Table 1.
An extension framework (e.g., bpftime) can later ensure that
the extensions loaded into an application follow their EIM
specification, thereby ensuring their safety.

EIM’s key idea is to represent the extension features that
might be necessary for interconnectedness or restricted for
safety as a resource. Such resources include both classical
systems resources, such as compute cycles, and host applica-
tion interactions, such as the ability to call a host function or
read/write to a host variable. EIM models the ability to use
a resource as a capability [55, 60, 71]. An EIM specification
encodes fine-grained interconnectedness/safety tradeoffs by
specifying the set of capabilities that a loaded extension is
allowed to use when configured for a given extension entry.

An EIM specification consists of two separate components.
First, the EIM specification includes a development-time con-
figuration, prepared by an application developer, that speci-
fies the set of possible safety and interconnectedness features
(§3.1). Second, an EIM specification includes a deployment-
time configuration, prepared by an extension manager, that
specifies precise interconnectedness/safety tradeoffs (§3.2).

3.1 Development-time EIM Specification

1 State_Capability(
2 name = "readPid",
3 operation = read(ngx_pid))
4

5 Function_Capability(
6 name = "nginxTime",
7 prototype = (void) -> time_t ,
8 constraints = {rtn > 0})
9

10 Extension_Entry(
11 name="processBegin"
12 extension_entry = "ngx_http_process_request",
13 prototype = (Request *r) -> int))
14 Extension_Entry(
15 name="updateResponseContent"
16 extension_entry = "ngx_http_content_phase",
17 prototype = (Request *r) -> int*)

Figure 2: An EIM development-time specification for a sim-
plified version of the Nginx observability use-case.

The development-time EIM specification encodes the pos-
sible interconnectedness features and extension entries of
the host application. Since these features are tightly coupled
with the host application, the development-time EIM is cre-
ated by an application developer while developing the host
application. A development-time EIM specification defines
three sets of entries: state capabilities, function capabilities,
and extension entries. Figure 2 provides an example of a
development-time EIM specification for the Nginx observ-
ability use-case.

State Capability. A state capability expresses the abil-
ity to read or write to a global state located in the host. A
state capability includes a name and an operation of the form
read(var) or write(var), which specify the capability to
dereference and read or write to a variable, var, respectively.
Figure 2 includes a state capability, readPid, that enables
reading the global variable in Nginx that stores the process id
of the current worker process (Lines 1– 3).

Function Capabilities. A function capability expresses the
ability to execute a host-provided function. An application
developer defines a new function capability by providing the
capability a name, the function prototype of the function,
and a set of constraints that provide pre- and post-conditions
for the function. Figure 2 includes a function capability in
Lines 5–8. The capability specifies the ability to call Nginx’s
function for getting a timestamp. The function constraints
provide the post-condition that its return value is positive.

Constraints. Constraints ensure that extensions safely use
host-provided functions and can encode two things. First, con-
straints can encode binary relationships between arguments
and return values, high-level semantic facts, and boolean op-
erators over other constraints. Second, constraints can encode
high-level fats about the function that an extension frame-
work could support. Currently, EIM supports allocation facts
indicating that a function’s return was allocated, IO facts in-



1 Extension_Class(
2 name = "observeProcessBegin",
3 extension_entry = "processBegin",
4 allowed = {instructions <inf, nginxTime ,

readPid , read(r)})
5 Extension_Class(
6 name = "updateResponse",
7 extension_entry = "updateResponseContent"
8 allowed = {instructions <inf, read(r),

write(r)})

Figure 3: A deployment-time EIM specification for the sim-
plified Nginx observability use-case.

dicating that the function requires the capability to perform
IO, annotation facts that indicate a relationship between argu-
ments equivalent to those that linux provides through current
eBPF annotations [35], and read/write facts indicating that the
caller must hold read/write capabilities for a specified field
within a function argument.

Extension Entry. An extension entry specifies the points in
the host application that an extension can override. EIM sup-
ports extension entries that specify a function—i.e., extending
an EIM extension entry replaces the definition of the associ-
ated function. An extension entry includes a name, the name
of the original function from the host application, and the
prototype of the function. Conveniently, many applications
already include extensibility support through function inter-
position that an application developer can reuse for the EIM
specification. However, developers may need to define and
call new functions in the host application to support emerging
extension use-cases. Figure 2 includes two extension entries,
processBegin, for extending Nginx immediately after it is
finished parsing a request, and updateResponseConent, for
modifying the response that Nginx returns to a client.

3.2 Deployment-time EIM Specification

Deployment-time EIM specifications identify the intercon-
nectedness/safety tradeoffs for a deployment. In particular,
the specification identifies the capabilities that an extension re-
quires for its task. Extension Managers write the deployment-
time EIM specifications, since identifying the right tradeoff
requires reasoning about a deployment’s extension use-cases
and available resources.

A deployment-time EIM specification includes a set
of Extension Classes, each representing an interconnected-
ness/safety tradeoff at an extension entry. An extension class
includes a name, the name of an extension entry from the
development-time EIM specification, and a set of capabilities
allowed by the class. An extension class’ allowed capabili-
ties can include capabilities outlined in the development-time
EIM specification, state capabilities over the arguments in the
extension entry’s prototype, and resource capabilities, which
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specify an ability to consume a hardware resource. EIM pro-
vides two such resources, instructions and memory.

Figure 3 is a deployment-time EIM for the simplified Nginx
observability use-case. The specification includes constraints
that prevent extension bugs; e.g., it prevents the extension
livelock that caused a production outage to an Nginx deploy-
ment [73]. The specification includes two extension classes,
one for each of the extension entries defined in Figure 2. The
allowed capabilities (Lines 4 and 8) include state capabilities
(e.g., read(r)), resource capabilities (e.g., instructions <
inf), and function capabilities (e.g., nginxTime).

4 bpftime Design

EIM specifications are platform independent, so we could
expand existing extension frameworks to enforce them. How-
ever, existing frameworks provide safety and isolation through
inefficient heavyweight operating-system supported isola-
tion [7, 11, 31, 37] or software-fault isolation [23, 38, 44, 75].
Expanding such systems to enforce EIM’s capability model
would further degrade their efficiency and yield an unusual
system.

So, we designed and implemented bpftime, a new exten-
sion framework for extending compiled applications (e.g.,
those written with C,C++,Go, etc.). bpftime efficiently en-
forces EIM specifications and supports extension isolation
by employing two design constraints. First, the system uses
separate lightweight approaches for EIM enforcement and for
isolation, similar to how KFlex [15] uses two separate ver-
ification techniques for kernel extensions. Namely, bpftime
enforces EIM safety/interconnectedness tradeoffs without im-
posing any runtime overhead by employing eBPF-style verifi-
cation and provides efficient extension isolation using ERIM-
style [66] intra-process hardware-supported isolation. Second,
bpftime introduces concealed extension entries, which use
binary rewriting [10, 14, 18, 70] to inject extensions into the



host application so that extension entries are zero-cost when
not in use by an extension.

bpftime is compatible with eBPF: it provides nearly identi-
cal development model, execution models, and even reuses
some architecture from eBPF. Thus, existing eBPF uprobe
use-cases can seamlessly employ bpftime, and users can easy
deploy bpftime extensions alongside kernel eBPF extensions.
Alas, ensuring eBPF compatibility is challenging. Linux’s
eBPF ecosystem consists of tightly coupled components—
compilers, runtime libraries, and the kernel—that are nearly
impossible to disentangle. Instead of decoupling them, prior
user-level eBPF systems [28, 53] re-implementing the en-
tire eBPF technology stack and ultimately failed to provide
reasonable performance and compatibility. Instead, bpftime
identifies a narrow waist in the current eBPF ecosystem and
interposes at this point. In particular, the system interposes on
eBPF-related system calls and on the shared map mechanism
for sharing data across extensions.

We implemented bpftime in 13,000 lines of code; Figure 4
provides the high-level design. bpftime’s trusted computing
base includes the kernel eBPF verifier, the binary rewriter,
the operating system, and hardware-supported intra-process
memory protections. Our current implementation only sup-
ports isolation on Intel x86, but different hardware vendors
have similar technology that bpftime could employ to add
support (e.g., ARM memory domains).

The rest of this section describes bpftime’s usage model
(§4.1), the bpftime loader (§4.2), and the bpftime runtime
(§4.3).

4.1 bpftime Usage
bpftime follows a usage model similar to eBPF. Application
developers first create development-time specifications for
their application. Extension developers then write programs
using eBPF. Extension managers later create deployment-time
EIM, and load the extension into the host application with
eBPF system calls. The bpftime loader intercepts these calls,
validates extensions against their class-defined capabilities,
initializes bpftime maps, sets up the bpftime runtimes, and at-
taches extensions to their extension entries. During execution,
the runtime enforces extension isolation.

We elaborate on bpftime’s support for EIM and bpftime
extension programs.

4.1.1 bpftime support for EIM

To reduce the challenge of maintaining consistency between
an application and its EIM specification, bpftime supports
development-time EIM specifications through the use of an-
notations. Namely, application developers annotate their code
using a set of annotations that are based upon eBPF’s kfunc
annotations [35] to specify state capabilities, function capa-
bilities, and extension entries. During compilation, bpftime

uses static analysis to extracts the development-time EIM
specification from the annotations as well as symbol and type
information from the application’s debug symbols. The sys-
tem encodes the resulting specification at the binary level that
could, in principle, support any compiled language; the tool
currently supports C/C++.

In addition to the application-specific development-time
EIM specification, bpftime adds generic extension entries
and function capabilities. The system adds uprobe and
uretprobe execution entries for every host-defined func-
tion; the host logically executes these entries at the beginning
and return of their affiliated function, respectively. Similarly,
bpftime adds sysenter and sysexit execution entries for
system calls. The prototype for the uprobe and sysenter en-
tries include the arguments for the associated function or sys-
temcall, respectively, while the prototype for uretprobe and
sysenter includes the return value for the associated func-
tion or systemcall return, respectively. Additionally, bpftime
defines a number of runtime-defined helper functions for com-
mon tasks and encodes them as function capabilities in the
development-time EIM specification. For example, it adds a
function capability to modify the return value for uretprobe
and sysexit probes and separate capabilities to interact with
bpftime-provided shared memory for process-local memory,
inter-process memory, or process-kernel memory.

bpftime supports concealed extension entries when it gen-
erates the development-time EIM specification. The system
removes the calls to all defined extension entries from the
compiled program, both the developer-specified and automat-
ically generated ones, thereby ensuring that any entries that
are not used by an extension do not impose a runtime cost.

bpftime supports deployment-time EIM specifications
through a YAML configuration language. In addition to ex-
tension classes that an extension manager defines, bpftime
supports two built-in extension class types that auto-generate
useful extension entries. First, bpftime supports observabil-
ity, which adds an observability extension class for all auto-
generated entries (i.e., uprobes, uretprobes, sysenters,
and sysexits). Each observability extension class allows
capabilities to read the entry’s arguments, use a bounded num-
ber of instructions, and use a subset of the bpftime-provided
function capabilities. Second, bpftime supports customizabil-
ity, which adds customizability for all auto-generated entries.
Each customizability extension class allows capabilities to
read/write the entry’s arguments using a bounded number of
instructions and to use many of the bpftime-provided func-
tions.

4.1.2 bpftime support for extension programs

bpftime supports extension programs that are similar to those
supported by traditional eBPF. A developer writes an event-
based program consisting of two parts: (1) a set of bpftime
extensions and (2) a userspace control application that loads



and communicates with the extensions. Each user-defined
extension specifies an associated extension class from EIM.
Meanwhile, the eBPF application uses standard APIs (e.g.,
libbpf) to share data and interact with extensions through
bpftime maps.

4.2 bpftime Loader
The bpftime loader prepares the extensions for execution by
loading them into the host application and initializing the bpf-
time maps required for the eBPF application. To cope with the
complexity of ensuring compatibility with eBPF, the loader
is a thin interposition layer between eBPF applications and
the kernel. The loader exposes the eBPF-related system calls
interface from the eBPF ecosystem to userspace, but imple-
ments them using standard POSIX abstractions (files, unix
sockets, etc.). Thus, bpftime supports control applications
that use standard eBPF runtimes (e.g. bcc and libbpf) and are
compiled using a standard eBPF compiler without requiring
kernel modifications. The loader consists of two key compo-
nents, the verifier, which implements bpftime’s eBPF-style
verification of extension safety, and the binary rewriter, which
supports extensions that use concealed extension entries.

The Verifier. The verifier ensures that extensions are al-
lowed by their associated extension class in the EIM specifica-
tion. It receives each extension as an eBPF bytecode program.
The verifier first performs a few basic verification checks:
it ensures that an extension’s function signature matches its
extension class and that the extension only calls functions
allowed by the extension class’ function capabilities.

Next, the verifier converts the EIM specification into con-
straints that it adds to the eBPF bytecode program and uses
the eBPF verifier to verify the extension. First, bpftime parses
DWARF debugging information from the host application to
produce BTF information to add types to the eBPF bytecode.
The verifier supports function capabilities by replacing each
call to a function capability in the extension with a mock new
eBPF kfunc that it generates; using mock kfuncs allows bpf-
time to reuse the eBPF verifier’s support for external functions.
Additionally, the verifier converts all function capability con-
straints into assertion statements that it inserts into the eBPF
bytecode before the generated kfunc. Next, the verifier uses
the extension class’ capability to add additional constraints.
It supports state capabilities by modifying the function proto-
type (e.g., adding const for read only arguments) and encodes
resource capabilities using verifier-supported clauses 3. Fi-
nally, the verifier uses the verifier to ensures that the extension
upholds the EIM specification, is memory and type safe, and
will not execute a hardware exception.

Once verified, extensions pass through a userspace JIT
compiler, which compiles them into native code. The JIT
compiler passes the compiled extensions to the rewriter.

3The Linux kernel provides minimal support for custom resource con-
straints, so our implementation falls back to using PREVAIL [19] for these.

The Rewriter. The rewriter uses ptrace to pause the host
application and load the bpftime user runtime (§4.3) into it,
which allows the system to support use-cases that extend
live applications; the system could use existing live-update
solutions, such as MCR [20] and KUP [33], to improve perfor-
mance. The rewriter instruments the program’s instructions
using Frida [18] and libcapstone [36] to ensure that extensions
are invoked when the host reaches their associated extension
entry. For extension entries that relate to a single instruction
(e.g., uprobes, uretprobes), the rewriter uses a standard in-
struction trampoline: it replaces the instructions that were
originally at the hook point with a call into a preamble for
the point’s associated eBPF function and places the over-
written instructions at the end of its preamble. Supporting
extension entries that relate to system calls is more complex
since an application can execute a system call instructions
(e.g., sysenter) at any point throughout their application.
Thus, the runtime iterates through all of the instructions in
the application and places a trampoline on all system call
instructions. Since sysenter is smaller than a trampoline,
the system uses zpoline [74], which uses the zero page to
accommodate two-byte call instructions. The current imple-
mentation only supports a single extension per entry point;
users requiring multiple extensions can use a dispatcher pat-
tern to individually call each extension, similar to the design
used by libxdp.

4.3 bpftime Runtime

The bpftime runtime executes extensions in the same process
as the original application to ensure efficiency. The runtime
implements bpftime’s intra-process isolation approach to pro-
vide extension isolation, which is less expensive than the
isolation techniques of existing extension frameworks (e.g.,
software-fault isolation). Finally, the runtime implements bpf-
time maps, which are compatible with eBPF maps.

Intraprocess Isolation. The bpftime runtime uses ERIM-
style intraprocess isolation to ensure extension isolation [66].
The runtime ensures that the application cannot modify exten-
sion logic by setting the memory pages that contain extensions
and extension trampolines to be non-writable. The runtime
ensures the integrity of extension memory using intra-process
memory protections. During loading, the bpftime loader al-
locates a memory protection key for the extension’s mem-
ory. The loader adds instructions that use the allocated key
(i.e., WRPKRU) immediately before all userspace extensions,
and adds instructions to reset the key immediately before re-
turning to the original application. To protect the key itself,
bpftime loads the key’s value directly into the extension and
sets the extension’s memory permissions to be non-readable.
The system is currently susceptible to the syscall-based at-
tacks on ERIM [13], but could adopt Jenny’s syscall filtering
defenses [56] to resolve the issue.

bpftime Maps. Conventional eBPF provides maps to store



state across extension invocations. Unfortunately, eBPF maps
support access to userspace programs through expensive sys-
tem calls. So, bpftime provides a new map implementation to
support system call free access across extension invocations,
including bpftime extensions, eBPF kernel extensions, and
bpftime control applications. Additionally, bpftime maintains
compatibility with the existing eBPF ecosystem by interpos-
ing on eBPF map system calls and adding logic that uses bpf-
time maps instead of traditional eBPF ones. bpftime maps sup-
port three sharing modes: local process (nonshared), shared
across multiple processes, and shared across processes and the
kernel. bpftime maps provide a wide-range of data structures,
including hash maps, arrays, LPM tries, ring buffers, perf
event arrays, per-CPU variants. Additionally, bpftime maps
are highly efficient: they offer per-cpu variants to remove
contention and use lock-free synchronization when necessary.

5 Use Cases

We maintain bpftime as an open source project and have culti-
vated a small use-base. EIM and bpftime have many use-cases,
including observability, hot patching, and security enforce-
ment. Inspired in part by the experiences of our users, we craft
6 use-cases of EIM and bpftime that explore design tradeoffs,
improve security, monitor performance, and improve perfor-
mance.

Nginx Plugin. An extension manager manages an Nginx
deployment that frequently receives suspicious traffic and
wishes to deploy an extension to ensure that the system re-
mains secure. While Nginx currently supports extensions
through Lua and WebAssembly, the extensions framework of-
fer poor safety/interconnectedness trade-off and impose high
overhead since the extensions copy data to-and-for Nginx
instead of operating over the same objects. Since Nginx is
already designed for extensibility, creating the development
time EIM specification only requires an application developer
add annotations to current Nginx extension functions. The
extension manager specifies the deployment time EIM by
adding a single extension class to an extension entry that cor-
responds to processing request. The extension class supports
reading from an argument representing the current request
and writing to the return value. The manager then deploys
an extension that implements a firewall to return a 404 re-
sponse when a request’s URL is indicative of SQL injection
and cross-site scripting attacks.

sslsniff. Distributed tracing tools struggle to provide use-
ful results when used on encrypted traffic. sslsniff, a tool
from the bcc [52] project, allows an extension manager to
intercepts all SSL/TLS data within userspace to enable better
distributed tracing for encrypted data. sslsniff uses eBPF
uprobes on SSL/TLS encryption and decryption functions in
OpenSSL. It suffers from high overhead due to eBPF uprobe
inefficiencies. bpftime’s automated uprobes and observabil-
ity extension classes enable sslsniff to work on bpftime

without requiring changes.
Syscount. Syscount [3], another bcc tool, allows aggregat-

ing system call activity for a process on a running system by
using system-wide extensions on sysenters and sysexits.
To limit monitoring to a single process, the tool must observe
the system calls of every process on the system and perform
manual filtering in the extension. As a result, Syscount im-
poses overhead on every process, even those that are not
monitored. An extension manager can run Syscount on bpf-
time without any modifications by using bpftime’s automated
sysenter extension entries and its automated observability
extension classes. Since bpftime adds Syscount extensions
into only the monitored process, the Syscount overhead is
localized to the monitored processes.

DeepFlow. DeepFlow is an open-source observability plat-
form for observing a microservice’s behavior across the kernel
and userspace with eBPF. Unfortunately, Deepflow can lead
to as much as a 50% drop in application throughput due to the
overheads of eBPF uprobes. We ported DeepFlow to bpftime,
modifying 10 out of the 5,000 lines of eBPF code, so that
the tool could benefit from bpftime’s efficiency. DeepFlow
extensions use bpftime’s automated uprobe and system call
extension entries. DeepFlow uses the system’s automated ob-
servability extension classes with one caveat: it adds support
for using process-kernel shared maps.

FUSE Caching. The Filesystem in Userspace (FUSE)
framework offers reliability and security advantages com-
pared to in-kernel alternatives, but imposes considerable run-
time overhead because it requires numerous additional context
switches for every I/O systemcall [67]. ExtFuse [6] eliminates
much of the overhead from using FUSE by enabling a FUSE
filesystem to push its logic into the kernel. However, Ext-
Fuse is invasive: it requires a custom kernel module that is
difficult to maintain. In this use-case, an extension developer
uses bpftime to implement and support the same benefits of
ExtFuse without requiring a custom and difficult to maintain
kernel model. They configure bpftime’s automated customiz-
ability extension classes on the system’s automated syscall
tracepoints and add function capabilities for bpftime helpers
that interact with file paths, such as realpath, and for using
process-kernel shared maps. Then, they configure the deploy-
ment to use two extensions, written by an extension devel-
oper, that accelerate applications that use FUSE. The first is a
metadata cache that accelerates repeated lookups to the same
file system entries by extending open, close, getdents, and
stat. It exploit’s bpftime’s compatibility with eBPF to main-
tain cache consistency using a kprobe extension on unlink
in the kernel 4. The second extension implements a blacklist
to accelerate permission checking for functions that access
filesystem entries (e.g., open).

Redis Durability Tuning. Redis, a key-value store, offers
durability through a write-ahead log (called an Append-Only

4The second extension must operate in the kernel since non-extended
processes may unlink a cached file.



1 int writeback_fin_cnt;
2

3 SEC("user_define_ops/fsync_ext")
4 int BPF_UPROBE(start_fsync, int __fd) {
5 if (writeback_fin_cnt == 0) {
6 io_uring_wait_and_seen();
7 } // else fsync is complete so no wait
8 successful_writeback_count = 0;
9 io_uring_prep_fsync(__fd);

10 io_uring_submit();
11 return 0;
12 }
13

14 SEC("kretprobe/file_write_and_wait_range")
15 int BPF_KPROBE(file_write_and_wait_range,
16 struct file *file, loff_t start,
17 loff_t end) {
18 ... // Check if fsync was from redis/AOF
19 __sync_fetch_and_add(&writeback_fin_cnt, 1);
20 return 0;
21 }

Figure 5: The Redis Delayed fsync extension.

File (AOF)). By default, Redis offers three durability config-
urations that tradeoff durability and performance overhead:
no AOF, which does not provide durability; everysec, which
ensures that writes are durable every second; and alwayson,
which ensures that every write is immediately durable. The
durability gap between alwayson and everysec is substantial:
a crash under everysec can lead to the loss of tens of thousands
of updates. Unfortunately, alwayson also reduces throughput
by a factor of six compared to everysec.

Redis can use bpftime to provide customizable durability
through extensions. Since Redis AOF is not currently de-
signed for extensibility, the application developer needs to
add new functions to the source code to support extensibility.
The developer defines three new functions and call them at the
top of Redis’s functions for write, fsync, and fdatasync.
Then, they use bpftime annotations to identify the new func-
tions as extension entries. Altogether, this change required
about 20 lines of code.

With the updated Redis, the extension manager can ex-
plore a custom durability policy for their deployment. They
first configure an extension that converts synchronous I/O op-
erations into batched ones by using Linux’s io_uring. The
extension batches b I/O operations (calls to write and fsync)
before waiting on them to complete, which ensures that the
system loses at most b updates in an untimely crash. To use
the extension, the extension manager creates two extension
classes for write and fsync that have bounded computation
and function capabilities to execute io_uring and bpftime
map helpers for process-local memory.

However, the performance of highly durable configura-
tions (i.e., small values of b) remains poor. So, the extension
manager tries another extension. The new extension, delayed-
fsync (Figure 5), extends the behavior of fdatasync so that
it waits for the previous call to fdatasync. This design en-
sures that the system loses at most 2 updates. The extension

also implements a fast-path optimization that extends the ker-
nel to expose a shared variable to userspace that tracks the
number of completed fdatasync operations on each of a pro-
cess’ open files. The fdatasync extension reads from the
shared variable and only execute system calls in the event that
the previous fdatasync has not completed. To use delayed-
fsync, the extension manager creates an extension class for
fdatasyc that has bounded computation and function capa-
bilities to execute io_uring and bpftime map helpers for
process-kernel shared memory.

6 Evaluation

We implement the 6 case studies on bpftime and answer the
following questions:

1. How does bpftime’s performance overhead compare to
state-of-the-art extension tools, including eBPF, Lua,
WebAssembly, ERIM [66], and RLBox [44]?

2. Why does bpftime impose lower runtime overhead than
existing tools,?

3. How compatible is bpftime with existing extension use-
cases and kernel eBPF runtime?

Experimental Setup. We evaluate bpftime running on two
servers. Server A is a dual-socket Intel Xeon Gold 5418Y
Processor (24 cores, 2.00 GHz, 45 MB LLC) with 256 GB
DDR5 memory. Server B is a dual-socket Intel Xeon E5-2697-
v2 processor (48 cores, 2.7 Ghz, 30 MB LLC) with 256 GB
DDR3 memory. Unless otherwise mentioned, each metric is
the average of 10 trials. We report averages using geometric
mean when that is appropriate (e.g., when calculating an
average speedup). We compare bpftime to two baselines: the
native execution on each system (native) and the performance
running the extension on the linux eBPF ecosystem.

6.1 bpftime Performance
This section evaluates bpftime’s performance across the 6
case studies. In summary, we find that bpftime offers a sig-
nificant improvement compared to the current state-of-the-art
extension frameworks such as eBPF, Lua, WebAssembly, RL-
Box [44], and ERIM [66].

6.1.1 Nginx Plugin

We evaluated bpftime performance improvements for extend-
ing Nginx against the current plugins approaches, including
Nginx’s builtin support for Lua and WebAssembly, and prior
state-of-the-art systems including ERIM [66] and RLBox [44].
We deployed security and tracing modules for each frame-
work in Nginx on System A and benchmark the system using
wrk (8 threads, 64 connections, 30s tests, averaged over 20
runs). Figure 6 shows throughput results: bpftime introduces
2% overhead compared to native Nginx. In contrast, Lua and
WebAssembly incur 11% and 12%, so bpftime achieves 5.5×
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Figure 6: Comparison of extension approaches for Nginx
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Figure 7: Deepflow throughput overhead

and 6× lower overhead, respectively. ERIM and RLbox im-
pose 11% and 9%, so bpftime achieves 5.5× and 4.5× lower
overhead, respectively. In summary, this experiment illumi-
nates a tradeoff between the current extension approaches and
bpftime: bpftime and EIM will require more development
time to write the specification and pass the verifier when com-
pared to prior work, but significantly improve efficiency and
safety.

6.1.2 Deepflow

We deploy Deepflow on System B and use it to monitor a
microservice that returns a random string for each request,
implemented on a Golang server, and configured to use either
HTTP and HTTPS. We route traffic to the service using wrk,
configured to use 10 threads with 500 concurrent connec-
tions for a 10-second test duration. We execute the tests with
three configurations: native microservice execution without
Deepflow, Deepflow using eBPF, and Deepflow-bpftime using
bpftime.

We measure the server’s throughput as the response size
increases from 1KB to 256KB (Figure 7). Without Deep-
Flow, the microservice achieves 250,000 requests/s for small
responses and 47,000 requests/s for large responses. With
DeepFlow using eBPF, throughput drops by up to 54%. bpf-
time improves DeepFlow throughput by at least a factor of
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Figure 8: Redis throughput with bpftime Batch-I/O and
Delayed-fsync extensions

1.5. DeepFlow’s remaining overhead comes from the system’s
large set of probes that it uses throughout both the kernel and
in userspace.

6.1.3 Durability Tuning

We evaluate the Durability Tuning use-case on System A and
use redis-bench [65] to send 1M set requests with 5 paral-
lel clients and 3 byte payloads. We execute Redis with the
built-in configurations (alwayson, everysec, and No AOF),
varied batch sizes (1, 3, 12, 24, and 48), delayed-fsync, and
delayed-fsync with the fast-notify optimization. We configure
Redis with alwayson when configured to use a batching and
delayed-fsync. Figure 8 shows the throughput of each of the
configurations.

The batched-I/O exposes interesting durability/perfor-
mance tradeoffs. Using a batch size of 48 improves Redis
alwayson throughput by a factor of 4.17, and incurs a modest
durability cost of losing 24 updates in the event of a crash
(roughly half of the function in a batch are writes). For com-
parison, the everysec configuration can lose 72,000 updates
in the event of an untimely crash. Thus, a batch size of 48
reduces data loss relative to everysec by three orders of magni-
tude. Additionally, we observe that the batched-I/O implemen-
tation improves Redis performance even for small batches:
e.g., a batch size of 1 improves Redis alwayson throughput
by a factor of 1.51.

Delayed-fsync presents a powerful configuration. On its
own, delayed-fsync achieves a throughput of 40k request-
s/second, which is 4.15 times larger than the Redis alwayson’s
throughput. Adding the fast notify user-kernel interaction fur-
ther accelerates Redis to 65k request/second, more than 5



Test Native (s) bpftime (s)
Passthrough, fstat 3.65 .176
LoggedFS, fstat 7.40 .184
LoggedFS, openat 17.0 0.074
Passthrough, find 5.1 1.6

Table 2: FUSE operation latency.
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Figure 9: SSlsniff test with nginx

times larger than Redis alwayson. In sum: delayed-fsync with
fast notify is only 10% slower than Redis everysec, but it
reduces the number of updates that could be lost in a crash by
5 orders of magnitude.

6.1.4 FUSE

We evaluate the performance improvement from using bpf-
time to implement caching in FUSE when running on System
A. We deploy two FUSE file systems: Passthrough, which
passes filesystem operations to the underlying file system
directly, and LoggedFS [41], which logs all file system op-
erations to a file before passing them to the underlying file
system. We measure the end-to-end latency of three work-
loads: one that issues 100000 fstatat calls to a file in the
FUSE directory, one that issues 100000 openat calls to a file
in the FUSE directory, and one that uses the linux utility find
to travel through the linux 6.7 source code directory. Table 2
shows the results on FUSE and with bpftime caching. We
observe that the caching extension implemented with bpftime
accelerates the latency of the workloads by a factor of up to
2.4 orders of magnitude.

6.1.5 Sslsniff

We evaluate sslsniff on System B while monitoring Nginx.
Using the wrk benchmark, configured with 4 threads, 512
concurrent connections, and a 10-second test duration. The
evaluation includes three configurations: native, sslsniff
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Figure 10: syscount test with nginx

Bench Type eBPF(ns) bpftime (ns)
Uprobe 2561.57 190.02

Uretprobe 3019.45 187.10
Syscall Tracepoint 151 232
User memory read 23.3 1.5
User memory write 23.9 1.4
hash_map_update 50.8 23.8
hash_map_delete 19.5 10.1
hash_map_lookup 9.8 22.0

Table 3: Microbenchmark comparison of bpftime and eBPF

with eBPF, and sslsniff with bpftime. We measure nginx
throughput when varying response size from 1 KB to 256
KB; figure 9 shows the results. eBPF sslsniff significantly
impacts Nginx’s performance, reducing throughput by up
to 28.06% compared to native execution. In contrast, bpf-
time sslsniff has a much smaller effect, with a worst-case
throughput reduction of only 7.41

6.1.6 Syscount

We evaluate syscount on System B using the same Nginx
server config as in the sslsniff evaluation. Figure 10 compares
the measured throughput across five configurations. eBPF
Syscount reduce throughput on monitored and unmonitored
processes by 10.3% and 9.6%, respectively. In contrast, bpf-
time syscount reduces throughput on the monitored process
by 3.36% and does not affect the unmonitored process.

6.2 Microbenchmark Performance
We use microbenchmarks to analyze bpftime’s performance.

bpftime vs. eBPF. Table 3 compares bpftime perfor-
mance to eBPF on microbenchmark operations. First, we
create microbenchmarks that measure the overhead of each
type of extension entry (uprobe, uretprobe, or syscall
tracepoint) on System A. bpftime is more than an order of
magnitude faster than eBPF for uprobe and uretprobe, but
about 1.5x slower for syscall tracepoint. Then, we mea-
sure the latency of using helper functions to access userspace
memory and eBPF maps and to update and delete hash entries
on System A. We observe that bpftime operations are up to an
order of magnitude faster than comparable eBPF operations,
since bpftime’s extension compiler can inline calls and does
not require the address space of kernel eBPF
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Figure 11: Performance comparison of bpftime, ubpf, rbpf, and native on microbenchmarks.

bpftime execution engine efficiency:. We evaluate the ef-
ficiency of bpftime’s runtime compared to ubpf [28] and rbpf
[28] on 8 micro-benchmarks, including integer heavy com-
putation (‘log2’, ‘prime’), memory heavy workloads (‘mem-
ory a+b’, ‘memcpy’), cstring benchmarks (‘strcmp match’,
‘strcmp mismatch’), and control-flow benchmarks (‘return
directly’, ‘switch’). Figure 11 shows the latency of each mi-
crobenchmark and indicates that bpftime is significantly faster
than existing userspace eBPF runtimes. Namely, bpftime ac-
celerates average benchmark latency by a factor of 1.53 and
1.72 compared to ubpf and rbpf, respectively.

bpftime Load latency. We evaluate the latency of loading
an extension with bpftime on system A. We write an extension
that monitors malloc in libc, load it into a running process,
and observe a 48ms load latency. For comparison, we load the
same extension using LD_PRELOAD, and observe a 30ms
load latency.

bpftime Cost Breakdown. We isolate the performance im-
provements of bpftime’s two key optimizations: MPK isola-
tion and concealed extension entries. We create a microbench-
mark that repeatedly executes a null extension function. The
microbenchmark calls the extension function with three set-
tings: first, through its trampoline; second, without the tram-
poline but with the bpftime execution engine; and third, with-
out the trampoline or execution engine. We observe that the
average latency of calling the extension function with the
trampoline is 190ns, without the trampoline but with the ex-
tension entry is 106ns, and without both is 1.35ns. This means
that concealed extension entries save 1.35ns for every unused
extension entry that the application executes dynamically;
since extension managers often use bpftime’s automated ex-
tension entries (see §5), these small per entry savings yield
large end-to-end performance improvement. The tradeoff is
that concealed extension entries require a trampoline that
adds an additional 84ns for every executed extension. We
reran the experiments with MPK isolation on and off, and
did not observe a measurable difference in average extension
execution.

6.3 bpftime Compatibility

We evaluate the compatibility of bpftime with existing eBPF
extensions. We test 17 BCC [52] and bpftrace [68] tools on
bpftime without code changes. Also, bpftime fails only one
test in the the bpf-conformance test suite [32], whereas ubpf
and rbpf fail 22 and 23, respectively.

7 Related Work

EIM and bpftime improve the safety and efficiency of soft-
ware extensions in userspace. EIM allows extension manager
to specify fine-grained interconnectedness/safety tradeoffs,
while bpftime enforces the tradeoffs efficiently. We outline
the related work on userspace extensions, kernel extensions,
Intra-process Isolation, and Userspace eBPF.

Userspace Software Extensions. Userspace software ex-
tensions fall into three categories. Some systems execute
extensions in the same execution context as the host appli-
cation and thus provide efficiency but not safety or isolation,
such as dynamic binary instrumentation tools [8, 39, 45] and
LD_PRELOAD-based tools. Other systems use SFI [69] to pro-
vide isolation, but either do not support safety/interconnect-
edness tradeoffs [23,38,75] or lack the ability to specify such
tradeoffs at a fine granularity [16, 44]. Moreover, such sys-
tems are typically inefficient due to the overhead of SFI’s
runtime checks. Finally, some systems [7, 11, 31, 37] use sub-
process abstractions for isolation. These systems were not
designed for extensions and would be inefficient for extension
use-cases since they require context-switch-like overheads
to switch between contexts. Moreover, some [11, 37] lack
support for specifying fine-grained interconnectedness/safety
tradeoffs. Others [7, 31] could support fine-grained intercon-
nectedness/safety tradeoffs, but their usage models do not
support extensions: a user of these tools would have to mod-
ify their application to extend it.

Kernel Extensions. Many systems support kernel exten-
sions [5, 9, 15, 58, 63]; none of these systems support EIM’s
rich set of fine-grained interconnectedness/safety trradeoffs.
Moreover, most [5,9,58,63] use SFI to enforce safety and iso-
lation, which imposes runtime overhead. eBPF has emerged as
the de facto extension framework in linux and is increasingly



used in academia [15,76] and industry [4,12]. eBPF provides
an interface for specifying per hook interconnectedness/safety
tradeoffs, but (1) does not support EIM’s fine granularity since
eBPF bundles large sets of features into sets called program
types, (2) does not support all of EIM’s features (e.g., eBPF
lacks constraints on host-provided functions), and (3) has poor
userspace extension support. bpftime’s concealed extension
entries approach is inspired by recent efforts to support kernel
eBPF extensions without traps [30].

Intra-process Isolation. bpftime’s use of intra-process
memory protection is adopted from the approaches taken by
Donky [57], ERIM [66] and libmpk [51]. bpftime’s key dif-
ference between these systems is its target domain—bpftime
applies these ideas to extend an existing application without
requiring source-code changes, whereas prior work uses intra-
process memory protection to provide lightweight protection
domains that a rewritten application can use.

Userspace eBPF. ubpf [28] and rbpf [53] implement vir-
tual machines for userspace eBPF. These systems have high
runtime overhead and incomplete eBPF support.

8 Conclusion

In this work, we presented EIM and bpftime, which together
provide software extensions that are safer and more efficient.
EIM is a new model that allows an administrator to spec-
ify fine-grained interconnectedness/safety tradeoffs, effec-
tively reducing the potential for a buggy extension to harm
the extended application or underlying system. bpftime is
a new extension runtime that enforces EIM specifications.
bpftime is more efficient than existing extension frameworks
because it uses eBPF-style verification, hardware supported
intra-process isolation features, and binary rewriting tech-
niques. Plus, bpftime is easy to adopt since it is compatible
with the current eBPF ecosystem. We released bpftime as an
open-source project and have cultivated a small user-base. We
evaluated EIM and bpftime using 6 use cases to show that
they are useful and efficient.
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