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Abstract

The emergence of agentic Al—reasoning Al agents that can
connect to tools and take actions—offers an enormous po-
tential in performing tasks that currently require highly
skilled humans to perform. In this position paper, we discuss
AT agents in one such role: performance engineer. A perfor-
mance engineer is typically highly trained and highly trusted
to run performance diagnostic tools—which more often than
not require root or administrator privileges—on production
machines to diagnose performance issues. Critically, perfor-
mance engineers are trusted not to cause harm to the produc-
tion systems they are investigating, including crashing or
hanging the systems, extracting sensitive information from
them, or negatively affecting their performance. In this paper,
we argue that current Al agents have the training, but lack
the trust to be performance engineers. We outline four com-
ponents: prevention, detection/auditing, aborting/rollback,
and retry/refocus and highlight gaps where the approaches
taken for human-based performance engineers fall short.
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1 Introduction

Agentic Al, or groups of Al agents that can connect to our
systems and carry out actions, promises to change the way
we manage our systems. One role that has generally required
highly skilled humans is that of a performance engineer. A
performance engineer must diagnose performance issues
in production systems. Performance issues may be subtle,
unique, novel, and infrequent; they may involve any compo-
nent in the complex system stack or interactions between
components, and the root cause may be obscured by vari-
ous symptoms. In addition to general systems knowledge,
the performance engineer must make hypotheses, utilize or
create tools to gather data to test those hypotheses, and ana-
lyze results until a conclusion is made. Further complicating
matters is the fact that the experiments performed must not
negatively impact likely production workloads.

Due to the nature of their tasks, especially the ability to
observe any component in the system (or their interactions),
performance engineers require high privilege in the system
and are trusted not to abuse this privilege. This is in contrast
to systems like ChatDBG [26] or CoverUp [14] that con-
nect LLMs to existing debugging tools that do not require
privileged access to production systems. We characterize
our trust in performance engineers into two aspects: safety
and liveness. Performance engineers are trusted to maintain
safety: they must not crash systems, degrade performance, or
steal any of the potentially sensitive information they have
access to in their role. Obviously we also expect liveness:
any performance engineer worth their title should be able
to make progress and diagnose issues without hallucinating
or getting stuck in a loop.

In this paper, we examine how Al agents fare as perfor-
mance engineers and outline the systems that must be in
place for them to achieve the properties of safety and liveness.
We first describe our experience using an LLM-based chat-
bot to debug a performance issue with a human-mediated
connection to the system, concluding that they are already
capable of performing the basic steps of a performance engi-
neer. We then identify the systems components required to
take the human out of the loop.
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We organize the required system components into four
categories: prevention, detection/auditing, aborting/rollback,
and retry/refocus. We discuss prevention, both via prompt-
based techniques and sandboxing techniques including veri-
fication for agent-written probe programs. Then, we describe
the importance of detection, monitoring, and auditing on the
target systems and ensuring the information feeds back into
the agent. We outline a requirement for aborting commands
and rolling back their effects. Finally, we describe techniques
to keep the Al performance engineer on track.

2 An Al Performance Engineer is Born

A performance engineer is generally tasked with debug-
ging performance issues on production systems, as shown
in Figure 1. Given a production system running production
workloads, this task involves three iterative steps:

1. Create Hypothesis: based on data gathered about the
system so far, the performance engineer hypothesizes a
cause of the problem.

2. Run Tools to Gather Data: in order to prove or disprove
the hypothesis, and to aid in creating future hypotheses,
the performance engineer runs system administration
tools to gather data on the system. These tools generally
require privilege as they may need to interpose on sen-
sitive parts of the system—both in terms of performance
sensitivity and data sensitivity—such as the OS kernel.

3. Interpret Data: based on the results of the tools, the
performance engineer may rule out a hypothesized root
cause or otherwise use the new data to create or refine the
hypothesis, in either case returning to step 1. Alternatively,
the performance engineer may ultimately confirm a root
cause, providing a recommendation to developers (with
accompanying analysis to justify the recommendation).

In the rest of this section, we describe a simple perfor-
mance engineering task, and how ChatGPT can already de-
bug the root cause of the issue. For this section, the appli-
cation we are debugging is a logging application! that calls
fsync() after every write—regardless of its size—with no
buffering. This results in a large amount of I/O waiting and
poor latency.

1Example inspired by Brendan Gregg’s BPF perf workshop lab001, 2019. [23]
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2.1 Experimental Setup

We set up the experiment as follows. We run the poorly
performing logging application on a local laptop with 8 Intel
i7 2.8GHz CPUs, 64 GB RAM, and a 500GB NVMe Samsung
SSD. The laptop has a full suite of performance engineering
tools installed, including iotop, bpftrace and others. Most
performance engineering tools require root access, provided
via sudo and some—particularly bpftrace—accept custom
user programs to create one-off custom tools, in a similar
way as shell scripts.

For the Al, we utilize the free tier of the default ChatGPT
based on GPT-4, specifically the GPT-4o variant (as of June
2024). We utilized a manual connector between ChatGPT
and the system; in other words, we copy/pasted command
line instructions from the chat window to the terminal and
vice-versa for output. In future work, we will automate this
process with a reasonable protocol, such as the Model Con-
text Protocol (MCP).

For the initial prompt, we used:

We are debugging an application that has higher-than
expected latency, including latency outliers. We want
to know why, and how can performance be improved?
The system has all of the tools for debugging the issue
installed. Tell me what to type into the command line
and I will give you the output of the command.

2.2 Performance Debugging with ChatGPT

ChatGPT successfully debugged the performance issue using
a series of tools, summarized in Table 1. Some steps it took
were superfluous, but it did manage to iteratively refine
hypotheses until determining that the application performed
too many f'sync operations, recommending batching writes,
alternately configuring fsync or using alternatives with more
control over writeback.

ChatGPT begun by examining whether the system was
overloaded, using uptime. After seeing that the system was
not overloaded, it next investigated whether processes were
blocked on the system using vmstat, finding non-trivial I/O
waiting. It then identified the process that was most respon-
sible for I/O (via writes) using iotop, and counted how many
write system calls were being performed and their latency
distribution with two different bpftrace custom scripts.
When no obvious issues were found with writes, ChatGPT
took a misstep by hypothesizing reads were the issue, but
rejected that hypothesis after observing no reads, again us-
ing bpftrace. Next, ChatGPT counted all system calls being
performed by the process in question with bpftrace, finding
lots of calls to fsync. After confirming latency outliers up
to 2-4 seconds from fsync, ChatGPT generated recommen-
dations for fixing the program as described above.

This example demonstrates that ChatGPT does have the
capability to perform the iterative performance engineering



Hypothesis Tool Data Gathered Insight Priv?
System is overloaded uptime load average system not overloaded | No
Something is blocking vmstat blocked processes, I/O wait | non-trivial I/O waiting | No
Something is waiting on disk I/O iotop pid responsible for I/O pid, mostly writes Yes
Pid is writing a lot bpftrace | count write syscalls lots of writes Yes
Pid’s writes are slow bpftrace | latency histogram of writes | writes are fast Yes
Pid’s reads are slow bpftrace | latency histogram of reads | no reads Yes
Pid is doing another slow I/O syscall | bpftrace | all system calls lots of fsyncs Yes
Pid’s fsyncs are slow bpftrace | latency histogram of fsync | up to 2-4 seconds Yes

Table 1. Hypotheses and system tools used by ChatGPT during performance debugging experiment

workflow. It generated hypotheses and determined the appro-
priate tools to run/data to gather to confirm or evolve those
hypotheses. In the next section, we explore the question of
whether it should be trusted to run these tools.

3 We Trust Performance Engineers

Performance engineers are generally granted administrator-
level permissions on production systems in order to run the
relevant tools, some of which are not known in advance
(e.g., custom scripts). A competent performance engineer
can diagnose issues on these systems while maintaining two
properties: safety and liveness. In this section, we discuss
threats to each in turn.

Safety. Exacerbated by administrator-level privileges, we
are concerned with three broad threat classes from an errant
performance engineer:

¢ Crashing systems: With administrative privileges, it be-
comes trivial to crash an application or an entire system,
for instance by sending a process a signal or installing
a kernel module that immediately panics the kernel on
purpose or inadvertently (e.g., through a null pointer deref-
erence). While many existing tools will be trusted not to
crash systems, custom scripts or modules developed by
the performance engineer introduce a higher likelihood
of crashing systems.
e Degrading performance: The performance engineer nec-
essarily runs tools to observe the system. Many tools can
dramatically impact the performance of the target system
and are frequently avoided for in-production debugging
(e.g., ptrace-based tools including strace).
Stealing information: Via running observability tools
with administrator-level privileges, the performance engi-
neer has access to sensitive data in the system, including
access to process memory, cryptographic keys, user data,
etc. Leaking this data constitutes a major compromise of a
system.

Liveness. By liveness, we refer to the performance engineer’s
ability to make progress and solve problems. We consider
the following threats to liveness:
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Figure 2. System overview

o Stuck tools: Sometimes, the tools used to observe systems
can themselves not make progress, exhibiting behavior
like infinite loops, even as the system continues to operate
correctly. Tools may wait for an event which will never
happen due to an incorrect hypothesis about the system
state. As a concrete example, consider a tool that monopo-
lizes the shell; performance engineers must know how to
regain control.

e Hallucination: While the term “hallucination” is rarely
applied to human performance engineers, the phenom-
enon of taking action based on incorrect assumptions,
leading to incorrect diagnoses and the design of irrelevant
experiments is common, especially for less experienced
engineers.

o Looping: We refer to a specific form of hallucination as
looping, in which a performance engineer enters a loop of
actions, repeatedly trying the same experiment, or switch-
ing between a few experiments, not making progress on
identifying the root cause. In dynamic systems, where the
same experiment may produce different numbers even
while showing the same trend.

4 Enabling Al Performance Engineers

In order for Al agents to be performance engineers we must
ensure that they are able to achieve both safety and liveness.



We advocate that the technical aspects of threat mitigations
(such as system sandboxes, monitoring, auditing, etc.) uti-
lized by current human performance engineers continue to
be strengthened and enhanced, and highlight areas where
AT agent specific policies are needed. We present a proposed
system overview in Figure 2. A core Al agent workflow is
augmented using four techniques: Prevention, Detection and
Auditing, Aborting and Rollback, and Retry and Refocus. While
the former two techniques are largely similar for human and
Al performance engineers, the latter two are more unique to
Al performance engineers and subsequently lack the years
of development and maturity of the former. We now describe
each technique in more detail.

Prevention. The first strategy is to attempt to prevent
safety or liveness violations before they happen. In current
systems with human performance engineers, technical sys-
tem safeguards, such as sandboxing can mitigate issues. For
example, the power of “the omnipotent root” can be managed
via jails [25], zones [30], or container configurations that
contain curated lists of safe tools.? Similarly, finer-grained
policies utilizing role-based access control [22] and system
configurations like SELinux [27] or the use of sub-root capa-
bilities [15] can be used to implement least-privilege sand-
boxes. More recently, technical sandboxing approaches uti-
lizing bytecode verification (e.g., BPF) have become popular,
in which probes installed by a benign but error prone perfor-
mance engineer are verified before executing in the kernel.
Note that these sandboxes are not perfect: a malicious BPF
user can crash a system despite the verifier with a variety of
techniques, such as stack overflow [33], interface misuse [24],
and verifier exploits [1-4, 35]. Improvement of sandboxes is
an active area of research in computer systems; for example,
in the context of BPF, work is ongoing to improve BPF’s
guarantees to prevent crashes [16, 17], to prevent perfor-
mance degradation [19, 31, 32], and to prevent information
stealing [21].

Although many of these systems sandboxing approaches
were designed with human performance engineers in mind,
they are also useful for Al performance engineers. Specific to
agents, E2B [6] utilizes lightweight VMs [13] as a sandbox for
agents or tools, while FIDES adds an information flow control
component to data input and output from the tools used by
agents [18]. Furthermore, Al-specific model and prompt mit-
igations that involve training or fine-tuning the model [29],
prompt engineering [5, 34] and adding guardrails [7, 8, 10, 20]
around inputs and outputs of the model have been explored
to avoid problematic outcomes. For example, the model may
be prompted to avoid suggestions that use expensive moni-
toring tools like strace and to instead prefer bpftrace (as
in the preceding example). Such mitigation strategies are
imprecise, but are necessary as they capture intuition well.

2For examples, see https://hub.docker.com/search?q=debug
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Detection and Auditing. Distributed systems monitor-
ing [28] is a critical component of modern deployments, with
arange of tools including Prometheus, Grafana, OpenTeleme-
try, etc. providing dashboards that convey the health of the
system and applications running therein. For human perfor-
mance engineers, these systems provide two services: 1) they
give feedback to the performance engineer on the impact of
running diagnostic tools on the system, and 2) they log the
performance engineers actions, providing a disincentive to
deliberately cause harm to the system via purposely crashing
systems, degrading performance, or steal information, since
review of the logs carries a threat of losing employment or
legal action.

For Al performance engineers, monitoring and auditing is
also important [12]. Access to monitoring metrics provides
additional signals for the Al agent, and may provide addi-
tional context to help diagnose performance problems. A
running auditing system that records performance metrics
and Al agent actions is important to allow for transparency
in the effectiveness of an Al performance engineer. External
system operators need indications of the success (or failure)
of the Al in order to decide if the agent should be deployed
or if it is not functioning properly.

Aborting and Rollback. In current systems with human
performance engineers, threats to liveness are closely related
to engineer competence and coarsely measured human pro-
cesses like annual performance reviews. Issues are generally
mitigated through training, experience and best practices.
A trained human performance engineer is unlikely to not
know how to recover from a stuck tool and regain control.
Similarly, the usage of monitoring tools for feedback allows
the human to determine if performance degradation has oc-
curred, but the human is expected to know how to undo
whatever they did to cause the degradation.

However, we identify a gap: current descriptions of tools
and ways to connect Al agents to them [9] do not contain
instructions about what to do to if an tool gets stuck or an
agent forgets what it did to cause a performance degrada-
tion. We propose that the underlying system and tools must
support rollback operations, or risk safety and liveness vi-
olations. As a start, tools should implement timeouts and
cancellations to support aborting and rollback.

Retry and Refocus. Similar to the above, in current sys-
tems with human performance engineers, threats to liveness
related to lack of focus are closely related to engineer com-
petence and coarsely measured human processes like annual
performance reviews. Issues are generally mitigated through
training, experience and best practices. Human performance
engineers are expected not to forget their task!

As described, hallucinations and looping behavior are
threats to liveness that do not have technical solutions in
the human-based world. However, we believe that many of
the strategies used by human performance engineers to be


https://hub.docker.com/search?q=debug

effective can be applied. For instance, education about tool
usage and the practice of note keeping and writing down
assumptions can be incorporated into prompts to encourage
an LLM to stay focused on the task at hand. There are ef-
forts in this area: special prompts including few shot prompt
or chain of thought and more task oriented dialogue man-
agement systems, such as Rasa [11], can act as a wrapper
around the LLM to filter and/or track conversation state in
a specified way to keep the LLM on track. Agents can also
leverage their own memory to detect repeated patterns and
gauge progress.

5 Summary

In this work we posit that while existing Al models already
have the knowledge to debug performance issues in pro-
duction systems, they currently lack the necessary trust to
be deployed on a production system as a performance engi-
neer. We advocate for continued work on prevention with
traditional systems sandboxing, including verification of cus-
tom code as in BPF, as well as augmented prevention via
prompt-based methods. We advocate for continued work
on traditional monitoring, with dashboard outputs fed back
into the AT agent. We advocate augmenting tool descriptions
and implementations with rollback capabilities. Finally, we
advocate dialogue management to keep Al agents on track.
With these components, Al performance engineers can de-
bug novel subtle performance bugs in production systems
while maintaining safety and liveness.
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