
Pico Replication: A High Availability Framework for Middleboxes

Shriram Rajagopalan†‡ Dan Williams† Hani Jamjoom†

†IBM T. J. Watson Research Center, Yorktown Heights, NY
‡University of British Columbia, Vancouver, Canada

Abstract

Middleboxes are being rearchitected to be service ori-

ented, composable, extensible, and elastic. Yet system-

level support for high availability (HA) continues to in-

troduce significant performance overhead. In this paper,

we propose Pico Replication (PR), a system-level frame-

work for middleboxes that exploits their flow-centric

structure to achieve low overhead, fully customizable

HA. Unlike generic (virtual machine level) techniques,

PR operates at the flow level. Individual flows can be

checkpointed at very high frequencies while the mid-

dlebox continues to process other flows. Furthermore,

each flow can have its own checkpoint frequency, out-

put buffer and target for backup, enabling rich and di-

verse policies that balance—per-flow—performance and

utilization. PR leverages OpenFlow to provide near in-

stant flow-level failure recovery, by dynamically rerout-

ing a flow’s packets to its replication target. We have

implemented PR and a flow-based HA policy. In con-

trolled experiments, PR sustains checkpoint frequencies

of 1000Hz, an order of magnitude improvement over

current VM replication solutions. As a result, PR dras-

tically reduces the overhead on end-to-end latency from

280% to 15.5% and throughput overhead from 99.5% to

3.2%.

Copyright c© 2013 by the Association for Computing Machinery, Inc.

(ACM). Permission to make digital or hard copies of portions of this

work for personal or classroom use is granted without fee provided

that the copies are not made or distributed for profit or commercial ad-

vantage and that copies bear this notice and the full citation on the first

page in print or the first screen in digital media. Copyrights for compo-

nents of this work owned by others than ACM must be honored. Ab-

stracting with credit is permitted. To copy otherwise, to republish, to

post on servers, or to redistribute to lists, requires prior specific permis-

sion and/or a fee. Request permissions from Permissions@acm.org.

SoCC’13, 1–3 Oct. 2013, Santa Clara, California, USA.

ACM 978-1-4503-2428-1.

http://dx.doi.org/10.1145/2523616.2523635

1 Introduction

Middleboxes [36–42] pervade data center networks of

various scales. Recently, middlebox architectures are be-

ing re-engineered to be more service oriented [13, 43,

47, 52], composable [24], extensible [5] and dynami-

cally scalable [21]. In this new vision, services like pro-

tocol acceleration, load balancing, and intrusion detec-

tion/prevention can be easily customized, managed, and

scaled to match the needs of the flows in the data cen-

ter. Despite the renewed interest in middleboxes, high

availability support is limited and requires that each mid-

dlebox service implements its own HA mechanism and

policy.1 This paper re-examines system support for HA

in middleboxes.

Current middlebox HA approaches often deploy a

cluster of replicas or configure a pair replicas in ac-

tive/standby or active/active replication setups [29, 31].

In such configurations, middlebox failure is typically

not transparent to the endpoints. Failure causes existing

flows in the failed replica to drop [30]; endpoints must

explicitly reestablish the lost connections. Router redun-

dancy protocols like HSRP [56] and VRRP [62] only

address part of the problem: how to re-route flows to a

standby appliance in case of a failure. These protocols

do not address the problem of persisting session (flow)

state, which is essential to maintaining end-to-end con-

nectivity. This paper shows that preserving flow state—

a key ingredient for graceful recovery—can be achieved

without introducing substantial design complexity in the

middlebox or sacrificing performance.

One straightforward approach to achieving generic

middlebox HA is to directly apply HA solutions for vir-

tual machines (VMs). VM-level checkpointing [9, 17]

and event logging [11, 12, 23] techniques can be used to

protect arbitrary middleboxes, transparently. However,

such approaches are heavyweight because (1) the entire

VM must be suspended to ensure a consistent check-

point, (2) all flows—including delay-sensitive flows—

1High availability is crucial for middleboxes, as evidenced by re-

cent outages related to middlebox services [44, 45, 50].

Class State Access Pattern Examples HA

Flow Independent N/A Stateless Firewalls No Sync

Flow Dependent
write once, then read NAT, Vyatta [41, 42] Sync Once

read/write for every packet IPS [61], IDS [18], ADC [36–40] Sync Continuously

Table 1: Taxonomy of Middleboxes for the purposes of HA

are delayed for every checkpoint, and (3) all flows are

replicated to the same target, limiting the scope of pos-

sible recovery policies.

In this paper, we introduce and fully implement Pico

Replication (PR)—a system level HA framework specif-

ically tailored towards middlebox applications. Pico

Replication operates on individual flows. It takes ad-

vantage of how flows in a middlebox represent separate

execution contexts that can be migrated between repli-

cas [21]. This allows PR to independently and transpar-

ently replicate flow-specific state using techniques from

VM replication systems [9, 15, 23], specifically through

continuous live migration [8] and output buffering [27].

Unlike existing approaches to VM replication, the mid-

dlebox state machine continues to process packets be-

longing to other flows in the system during checkpoint-

ing. More specifically, PR fragments the set of flows on

a replica into disjoint subsets called replication groups.

Each replication group has its own output buffer, check-

point frequency and a replication (middlebox) target, in-

dependent of other groups in the same replica. PR lever-

ages OpenFlow to track the location of individual flows

(and flow-specific state) across the system. On failure,

individual flows are re-routed to their respective backup

targets by updating the flow forwarding rules in the

OpenFlow network.

The flow-level granularity of control has two key ad-

vantages. First, it allows PR to operate at much higher

frequencies than existing VM-based replication. In our

evaluation, PR is able to achieve replication frequen-

cies of 1000Hz, an order of magnitude higher than

Remus. When compared to Remus, PR only increases

end-to-end latency by 8.5 ms (over 54.5 ms base la-

tency), a 264% drop; PR also minimizes the through-

put overhead from 99.5% to 3.2%. The second advan-

tage of flow-level granularity is that it allows PR to con-

trol the replication frequencies and targets of different

flows independently. This creates new opportunities for

balancing performance and utilization and to embed a

broad set of HA policies, including those popularized

by Chord [26]. Most importantly, these policies can be

mixed and matched depending on the needs of the each

flow.

To summarize, Pico Replication makes the following

contributions:

• system-level support for middlebox HA that en-

ables custom per-flow replication with transparent

failure recovery,

• an order of magnitude improvement in replication

performance over existing system-level HA solu-

tions, and

• a middlebox aware HA policy framework that en-

ables various dynamically adaptive policies.

The rest of the paper proceeds as follows: Section 2

presents a classification of middleboxes and limitations

of existing solutions. Section 3 and 4 describe the design

and implementation of the Pico Replication framework,

respectively. Section 5 provides example Pico Replica-

tion policies. Section 6 evaluates Pico Replication and

Section 7 concludes the paper.

2 Middlebox HA

In cloud environments, design for failure is critical, in-

cluding middlebox failure.2 In this section, we look into

which categories of middleboxes can benefit from HA

solutions, the requirements for providing effective HA

for middleboxes, and the current state of the art.

2.1 Middlebox Classification

Middleboxes cover a broad spectrum of applications.

Some act as gate keepers (e.g., firewalls), inspecting

packet headers and making decisions independent of

previous or future packets. Others analyze packets at

line speed and maintain state for each flow (e.g., intru-

sion prevention systems). We classify middlebox appli-

cations into two types based on their per-flow stateful-

ness (Table 2).

Flow Independent. Flow independent refers to a mid-

dlebox that either maintains no state, contains state that

2With even moderately long-lived flows (on the order of few min-

utes), commonly found on ecommerce websites, session-oriented web

applications [16], etc., losing middlebox state results in widespread

outage. Previous work [3] has shown that middleboxes can indeed re-

duce end-to-end availability to 99.9%, compared to the five 9s that

today’s users typically expect. Apart from disrupting connectivity, loss

of a middlebox increases resource usage at the server, as hung TCP

connections linger for 50s or more, until a TCP timeout [2].

Figure 1: Middlebox Types

depends only on the packet being inspected (indepen-

dent of past or future packets), or contains state can

be regenerated automatically (Figure 1(a)). Examples of

applications in this class include stateless firewalls that

block all traffic matching a specified set of rules.

From an HA perspective, flow independent middle-

boxes can be made highly available by having redundant

instances. When one or more instances fail, traffic to the

failed instance can be re-routed via the remaining active

instances, without any impact to end-to-end connectiv-

ity.

Flow Dependent. Flow dependent middleboxes gener-

ate per-flow state (Figure 1(b)). Some do so only during

flow establishment, while others update flow state on ev-

ery packet. In flow dependent middleboxes, the per-flow

state is vital to maintaining the end-to-end connectivity.

Middleboxes like NAT, for example, only create

state—a port mapping—during flow establishment. Pro-

cessing of other packets in the same flow involves only

reads from the port mapping table. Vyatta’s vRouter [41,

42] is one example of a commercial product that gener-

ates flow state on flow establishment. On failure, since a

new flow state is created only during flow establishment,

merely re-routing ongoing flows to standby hosts will

not suffice. The standby hosts would drop the packets.

For HA, middleboxes like NAT require flow state syn-

chronization only once during flow establishment. This

approach is commonly found in Netfilter Connection

Tracking based HA systems, such as those employed by

Vyatta [31].

Flow dependent middleboxes can also manipulate the

state for every packet in the flow. For example, an inline

Intrusion Prevention System (IPS) such as Suricata [61],

intercepts each packet entering or exiting the network,

performing deep packet inspection (DPI), tracking the

protocol state machine, etc. Other common examples

include full proxies, layer-7 firewalls, protocol accel-

erators, traffic managers, web content optimizers, etc.

These are collectively known as application delivery

controllers (ADC) [36–40]. To provide HA to this class

of middleboxes, the per-flow state has to be continuously

replicated and kept up to date, should one wish to ensure

a seamless failover. In case of an inline IPS with no HA

support, simply failing over to a redundant instance po-

tentially terminates all existing TCP streams since the

backup instance possess no knowledge of prior traffic.

Existing HA solutions for flow dependent middlebox are

either ad hoc, such as the one employed by F5’s BIG-

IP [29] or decide to drop flows altogether causing down-

time, such as one used by Riverbed’s Stingray Traffic

Manager [30].

2.2 Requirements for Middlebox HA

Our goal in this paper is to develop a generic, system

level HA solution for flow dependent middleboxes. We

assume a fail-stop failure model, in which network parti-

tions are not tolerated. We present the following require-

ments that an ideal middlebox HA solution should sat-

isfy.

R1. Recovery-transparency. The middlebox is often

an invisible entity that lies along the network path

between two end points.Thus, it is insufficient to

transparently failover to a redundant middlebox for

new flows. State from the failed middlebox must be

recovered with consistency, so that existing flows

can continue with minimal interruption.

R2. Low Performance Overhead. Middleboxes pro-

cess millions of packets per second. The perfor-

mance overhead of the HA framework (latency and

throughput) on individual flows must be minimal.

R3. Tunable Policies. When attempting to provide a

transparent HA mechanism for a wide array of mid-

dlebox applications, the policy developer should

be able to easily create HA policies that control

where to place the backup for a given set of flows

and when (with what frequency) to checkpoint the

flows. These two parameters allow the designer to

make tradeoffs between end-to-end latency and the

overall system utilization in the middlebox cluster.

2.3 State of the Art

When considering the applicability of previous work, we

focus on systems that can preserve the runtime state of

the middlebox application in the failed replica, ensure

transparent failover and maintain consistency of state af-

ter recovery. We find that none of the existing solutions

can be readily applied to virtual middlebox applications

in a cloud infrastructure.

Ad Hoc Solutions. Commercial middlebox products use

ad hoc HA implementations. For example, one common

approach involves a clustered configuration with DNS

load balancing and failover [30]. When a node fails, on-

going client connections are lost. Another typical ap-

proach is to use active-standby or active-active configu-

rations with custom state replication techniques [29, 31]

to provide transparent failure recovery. However, with

such point solutions, the management complexity in-

creases dramatically as the number of middleboxes in

the network increases. This is apparent in enterprise net-

works today where there are as many middleboxes in

the network as L3 devices [25], frequently resulting in

device sprawl, network downtime due to misconfigura-

tion, etc. Thus, at large scale, it becomes infeasible to

configure and manage different HA solutions specific to

each middlebox vendor. Our goal is to develop a generic

framework at the system level that can be leveraged by

a large class of applications, whose inner workings are

well understood.

VM Replication. VM level HA techniques [7, 9, 11, 12,

15,17,20,23] can be applied to arbitrary applications, to

provide a completely stateful, consistent and transpar-

ent recovery (R1). However, these solutions do not sat-

isfy requirement R2, since the coarse-grained protection

granularity (the entire VM) degrades the performance

of the middlebox application during normal operation.

Similarly, at the VM granularity, very few HA policies

can be instituted (R3).

The root cause of the performance degradation in

replication based solutions arises from output buffering,

a critical requirement for achieving consistent and trans-

parent failover. Output buffering and commit involves

buffering the VM’s output (e.g., network packets) during

an epoch and releasing the output only after the check-

point for that epoch is committed at the backup. Sus-

pending and resuming the entire VM, as is done for ev-

ery checkpoint in systems like Remus [9, 17], delay the

release of the output buffer and limit the frequency of

checkpointing.

Figure 2: High level design of Pico Replication

3 Pico Replication

The Pico Replication framework proposes a new ap-

proach to preserving state. Instead of suspending and

checkpointing an entire middlebox at the VM level,

Pico Replication capitalizes on the unique structure of

middlebox applications to enable fine-grained flow-level

replication. By operating on this fine-grained level, the

middlebox can continue to process packets from other

flows even as one flow is suspended for checkpointing.

With Pico Replication, the most valuable pieces of data

in a middlebox are replicated at very high frequencies

(1000 checkpoints per second), with little impact on the

application’s execution; satisfying all three requirements

mentioned in Section 2.2.

Figure 2 shows the high level components that make

up the Pico Replication framework. We assume a de-

ployment model in which a dynamically scaling middle-

box cluster comprises a number of replica VMs. Each

replica runs three modules. First, the State Manage-

ment Module (SMM) is responsible for managing flow-

related state. The SMM manages and controls access to

both a set of primary flow states for flows that are cur-

rently being processed by the local replica and a set of

backup flow states for flows that are currently being pro-

cessed elsewhere. Second, the Packet Management Mod-

ule (PMM) is responsible for ensuring that packets enter

and exit the middlebox at appropriate times. In partic-

ular, the PMM buffers incoming and outgoing packets

HA Operation Pico Replication Component

Identify State State module

Replicate State State, packet, and replication modules

Failover State module and SDN

Table 3: Pico Replication components involved in each HA

operation

Figure 3: Anatomy of Middlebox State

in one of a set of per-flow or per-group-of-flow buffers

to maintain output consistency in case of failure. Third,

the Replication Module (RM) implements a replication

policy by instructing the PMM to plug or unplug input

buffers, while copying state from the SMM over the net-

work to other replicas.

Finally, each replica is placed on a Software Defined

Network (SDN) (e.g., an OpenFlow [60] network). The

SDN controller assigns network flows to replicas and

sets up flow forwarding paths in the network. The SDN

controller also detects replica failure and reroutes net-

work flows to failover.

The three fundamental operations involved in any

state replication based HA system are: identify state,

replicate state and failover. The Pico Replication frame-

work is no exception; Table 3 describes the components

responsible for providing each of these operations. The

remainder of this section describes each component in

more detail.

3.1 State Management Module

Pico Replication relies on the middlebox application to

interface with the State Management Module to identify

flow-related state. State identification reduces the over-

head of replication and eliminates the need to suspend an

entire VM for checkpointing. To identify critical pieces

of state in the middlebox, we leverage concepts from our

earlier work, Split/Merge [21].

Identifying Flow State. Figure 3 shows the Split/Merge

classification of middlebox state. Split/Merge classifies

the state inside a middlebox VM into two types: in-

ternal and external. Internal state is specific to every

replica in a middlebox cluster, such as the operating sys-

tem’s buffer cache, other processes in the replica, etc.

and does not need to be replicated. External state is fur-

ther classified into partitioned or coherent. Partitioned

state represents the set of per-flow states maintained

by the middlebox application. Each replica exclusively

owns a subset of the per-flow states. The per-flow states

(partitioned state) represent the critical pieces of data

that need to be persisted across failures, to ensure un-

interrupted end-to-end connectivity. Coherent state rep-

resents global shared data such as static configuration

information, non-critical statistics counters, etc. Since it

is already shared (and likely replicated), we do not con-

sider further replication of coherent state.

Flow-State Transactions. Like the Split/Merge system,

the State Management Module exposes an interface to

the application to not just identify, but control access

to flow states. Importantly, it maintains a notion of a

transaction. In other words, the State Management Mod-

ule keeps track of when the middlebox is in the mid-

dle of processing a packet belonging to a particular flow

and accessing the corresponding state. This transaction

boundary provides information as to whether or not it is

safe to replicate flow state over the network. The Repli-

cation Module (§3.3) will not copy flow state for flows

that are in the middle of a transaction.

One-time Checkpointing. As described in Section 2.1,

some flow dependent middleboxs create the per-flow

state once during flow establishment (e.g., stateful NAT)

and the state remains read-only throughout the lifetime

of the flow. The SMM allows an application to indicate

whether the flow’s state was modified or not during the

course of packet processing. By querying the SMM, the

Packet Management Module (§3.2) or Replication Mod-

ule (§3.3) will perform less work for unmodified state.

Active vs. Standby States. Unlike Split/Merge, the

State Management Module also contains a set of flow

state that consists of backups of other replica’s state,

called standby state. Figure 4 depicts three replicas, each

storing a set of active and standby state. In contrast to

active state, standby state is not released to the applica-

tion unless a failure has been signaled to the SMM (from

the SDN controller §3.4). The transition from standby

state to active state is simple: the SMM simply begins

responding with the state when a middlebox application

requests access to it. This transition is depicted in Fig-

ure 5.

Overall, the Split/Merge [21] system provides the

ability to classify middlebox application state and con-

trol access to it; howerver, it does not provide HA ca-

Figure 4: Pico replication of state

Figure 5: Transparent failure recovery

pabilities. PR and Split/Merge together provide robust

system support for both elasticity and HA.

3.2 Packet Management Module

The Packet Management Module ensures per-flow state

replication maintains consistency. It does this through

input and output buffers and acting as an intermediary

between a middlebox application and the network.

Output Buffering. Using output buffering, the sys-

tem ensures that the network output from a middlebox

replica is not seen by the external world until a check-

point of the flow states is committed at the backup node.

The rate at which the output buffer is released corre-

sponds to the checkpoint frequency. Output buffering

can introduce delay and burstiness into the egress net-

work traffic if the checkpoint frequency is lower than

the arrival rate of packets at the middlebox. In order to

minimize the impact of output buffering, the checkpoint

frequency has to be high.

PR leverages the independence of flows in a mid-

dlebox to perform efficient output buffering, using two

techniques. First, given that a middlebox is composed

of hundreds of flows operating independently of one

another, PR can maintain a different output buffer for

each flow, eliminating the need to wait for other flows

to be replicated. While one set of flows are being check-

pointed, the middlebox can continue processing packets

belonging to other flows. Second, individual flows can

be checkpointed at a very high frequency, since their

state is small relative to the rest of the state in the sys-

tem. High frequency flow-level checkpointing allows the

flow’s output buffers to be released quickly, resulting in

lower latency overhead and minimal impact on the shape

of egress flow traffic.

Certain classes of applications may have reasons to re-

quire flow state checkpointing without output buffering.

One example is Bro [18], an IDS, that analyzes every

packet in the flow and maintains extensive state infor-

mation. However, its state is not critical to forwarding of

the flow. As a result, the PMM exposes an interface for

an application to explicitly disable output buffering.

Input Buffering. A typical checkpoint begins by sus-

pending any execution that may affect the state that com-

prises the checkpoint. In Pico Replication, the fact that

no packets belonging to a particular flow are being pro-

cessed implies that the flow state associate with that flow

will not be accessed. Therefore, halting input of a partic-

ular flow is effectively a suspend operation and is suffi-

cient for a checkpoint of the flow state to commence.

Once a flow is suspended and its state is copied else-

where, the appropriate output buffer is released.

Replication Groups. One or more flows can be grouped

together into a single logical unit that can be replicated

to the same target with the same checkpoint frequency.

Batching flows into replication groups reduces the com-

putational overhead of maintaining multiple replication

streams. The replication target and the checkpoint fre-

quency of each group can be configured independent of

other replication groups in the system. Flows can also be

moved across replication groups, allowing the system to

dynamically adapt to changes in network traffic.

3.3 Replication Module

The Replication Module interacts with the State Man-

agement Module and the Packet Management Module

in order to implement a policy for replication. A replica-

tion policy controls flow checkpointing in the following

manner. First, the RM instructs the PMM to halt a flow.

Then, the RM obtains the flow state from the SMM. Un-

less the SMM reports that no changes have been made to

the flow state, the RM copies the flow state to an SMM

elsewhere in the network. Finally, after receiving confir-

mation that the flow state is backed up, the RM instructs

the PMM to release the output buffer. The RM also in-

forms the SDN (§3.4) of the flow backup targets so that

it can quickly recover from failure.

Replication policies can modulate a number of vari-

ables, including the number of replication groups in the

system, assignment of flows to replication groups, the

checkpoint frequency and the replication target for each

group.

3.4 SDN Controller

The SDN controller is responsible for detecting and re-

covering from failure. Failure detection has been exten-

sively researched in the past and there are several well

known algorithms [1, 14, 32] and tools [33–35] to de-

tect failures in a timely manner. When a replica fail-

ure is detected, the SDN controller signals the SMMs

in other replicas to activate the hot-standby copies of

flow states that belonged to the failed replica. The SDN

then re-routes the flows to the (new) instances responsi-

ble for them. Apart from temporary packet loss, end-to-

end connectivity remains intact.

4 Implementation

Our Pico Replication implementation extends

FreeFlow, an implementation of the Split/Merge

design paradigm [21]. FreeFlow provides some of the

necessary building blocks: namely, it is able to identify

and migrate flow states across replicas and reprogram

packet forwarding rules in the network accordingly. The

FreeFlow system consists of two main components: (a)

an application library to interact with the middleboxes

and the underlying hypervisor, (b) an OpenFlow [60]

SDN controller, based on Floodlight [55]. Figure 6

shows how the FreeFlow library contributes to the im-

plementation of Pico Replication. Figure 7 sketches the

execution of a middlebox application that uses a combi-

nation of FreeFlow API’s (get flow, put flow) and

new APIs from our Packet Management Module imple-

mentation (pkt read, pkt write). The remainder

of this section describes the implementation in more

detail.

4.1 State Management Module

The State Management Module is implemented as an ex-

tension to the FreeFlow userspace library. By default,

the FreeFlow library exposes a set of APIs that al-

low middlebox applications to offload state management

to FreeFlow, while focusing on the application logic.

Specifically, the APIs enable the application to create

Figure 6: Input and output buffers in Pico Replication

per-flow and coherent states (Figure 3).3 The FreeFlow

get flow/put flow interface enables the application

to access the relevant state bound to a flow, as shown

in Figure 6. This interface also enables the application

to define the boundaries of a state transaction. We aug-

mented the put flow interface with an optional flag

that allows the application to indicate whether the flow

state was modified during the transaction (i.e., packet

processing). Unmodified flows will not be replicated.

4.2 Packet Management Module

In order to be able to suspend and resume flows and con-

trol the release of application’s outputs, the PMM inter-

poses on the ingress path of a packet from the network

to the application and vice versa. PR organizes flows in

the system into replication groups, as described in Sec-

tion 3.2. Every replication group has an associated input

and output buffer. Packets typically enter an input buffer

in the PMM before reaching the application and enter an

output buffer in the PMM before exiting to the network.

The PMM is implemented using the Netfilter [58] ker-

nel module to copy packets arriving at the network in-

terface to a user space memory region, corresponding

to an input buffer. Similarly, when packets are even-

tually sent from the output buffer out onto the net-

work, the kernel module copies packets from the user

specified buffer into kernel space and forwards it onto

the appropriate network interface. Copying to/from user

3Depending on application needs, the coherent state can either

be strongly or eventually consistent. In our experience analyzing

and building middleboxes, most shared middlebox state, statistics

counters for example, require only eventual consistency. Similar to

the Bayou [28] storage system approach, FreeFlow uses application-

specific combiner functions to merge updates on eventually consistent

state from multiple replicas.

while (1)

{

//read packet from network

pkt *p = pkt_read();

//get flow key from packet

flow_key k = extract_key(p);

//increment refcnt of flow k

flow_state *f = get_flow(k);

... process packet ...

//write packet to network

pkt_write(k, p);

//decrement refcnt of flow k

put_flow(k);

}

Figure 7: A skeletal code demonstrating the control flow in-

side the middlebox application using the augmented FreeFlow

API.

space incurs a high throughput overhead on the order of

50%. We are working on supporting additional frame-

works for fast user space packet processing using di-

rect I/O, like netmap [22], Intel’s Data Plane Develop-

ment Kit [54] and vPF RING [59]. Alternatively, input

and output buffers could be implemented at the Open

vSwitch layer in the hypervisor, at the cost of increased

hypercall overhead to manage the buffers.

Shown in Figure 6, from the middlebox’s perspec-

tive, packets are received from an input buffer or sent

to an output buffer using a library interface consisting

of two primary functions: pkt read and pkt write,

respectively. The application issues pkt read to ob-

tain a reference to packets arriving from the network.

The PMM scans the input buffers for available pack-

ets and returns a reference to a packet from one of the

buffers. If all input buffers are currently suspended, the

API call blocks or returns an error code if called in

non-blocking mode. The application can forward mod-

ified or unmodified packets or inject new ones onto

an output buffer using the pkt write functions. If

the output buffer is full, the packet is dropped and the

application is informed accordingly. We also supply a

pkt write direct function to explicitly inform the

system that a particular packet can be sent out imme-

diately, rather than being sent to an output buffer. A

worker thread scans the output buffers of various repli-

cation groups for available packets that can be injected

back into the network.

4.3 Replication Module

The Replication Module implementation associates a

separate thread with each replication group for check-

pointing and replicating flow state to the group’s tar-

get. At the start of a checkpoint epoch, the replication

group’s worker thread creates an output buffer. At the

end of the epoch, the thread suspends the flows in the

replication group by instructing the PMM to suspend the

respective input buffer. Once the application has released

any lingering references to flows in the replication group

(this condition is exposed by the FreeFlow library based

on reference tracking with get flow/put flow), the

flow states are copied from the SMM to a temporary

buffer. The PMM is instructed to resume the input buffer,

thereby the flows in the group are also resumed. The RM

uses the control network for carrying replication stream

traffic between various nodes in the cluster. Once the

checkpoint (in the temporary state buffer) is replicated

to the target, the PMM is instructed to release the output

buffer corresponding to the checkpoint.4

If the backup replica for a given replication group

fails, the RM at the primary retries a few times before

terminating the checkpointing thread and disabling in-

put/output buffering for the associated replication group.

It informs the SDN controller of this failure and waits

until instructed by the controller to restart the replica-

tion process to a new backup target. During this period

the flows associated with the replication group will not

be protected against failures.

4.4 SDN Controller

We augment the FreeFlow SDN controller to detect fail-

ure and activate standby flows in other replicas. When

a middlebox replica VM fails, the SDN controller re-

ceives an OpenFlow [60] PORT DOWNmessage from the

host hypervisor’s Open vSwitch [19]. Host failures (i.e.,

switch failures) are detected using the OpenFlow prot-

col’s ECHO messages that serve as heartbeats between

the controller and OpenFlow switches. The failure re-

covery process involves leveraging the FreeFlow SDN

controller to re-route the flows—using OpenFlow—to

the (new) instances responsible for them. Since the re-

covery procedure and the FreeFlow scale-in procedure

are the same from the standby replica’s standpoint, no

special recovery logic is needed beyond that imple-

mented in the FreeFlow library. The application is un-

aware of both scale-in and failure recovery.

4Flows that are not protected are put into a default group whose

input and output buffers are not subject to suspend/resume and add/re-

lease respectively.

5 Example Replication Policies

Using the tuning knobs provided by Pico Replication,

one can implement a variety of policies ranging from

a simple daisy chain replication to much more sophisti-

cated and adaptive approaches, that can take into account

parameters such as network load distribution, QoS, HA

resource overhead, network topology, fault domains, etc.

In our implementation, policies are specified to the SDN

controller, which co-ordinates replication related tasks

across the cluster, such as configuring replication groups

and failure recovery. Here we describe two example

policies.

Differentiated Pico Streams. Platform as a Ser-

vice (PaaS) providers like Heroku [48] and Cloud

Foundry [46] offer services such as key-value data

stores, media streaming, SMS and push notification, big

data analytics, and so on. When protecting middleboxes

operating in these environments, the HA policy has to

take into account the QoS requirements of the network

flows and the system resources available for HA pur-

poses.

A naı̈ve HA policy could set a very high replication

frequency and apply it to all flows in the system irrespec-

tive of their QoS requirements. While the performance

impact on end-to-end throughput and latency would be

minimal, the HA resource overhead (CPU and replica-

tion bandwidth) can quickly overwhelm the system.

Using Pico Replication’s ability to replicate subsets

of flows at different frequencies, an adaptive policy can

be implemented to take advantage of the variegated QoS

demands of the flows. By monitoring the flows in the

system, replication can be configured to checkpoint the

flows as groups with different frequencies based on their

QoS requirements. As a simple example, consider a sce-

nario wherein the middlebox application cluster is pro-

cessing a large number of HTTP flows and a relatively

small number of flows involving memcached [51] clients

and servers. Since a memcached transaction could com-

plete in just one RTT, it is essential to replicate the flow

state at a very high frequency, to keep latency impact

negligible. HTTP transactions on the other hand could

transfer hundreds of kilobytes of data [57]. If the latency

impact on page load time is not perceivable, the HTTP

flows can be replicated at a lower frequency, thereby

conserving system resources.

Elastic Pico Chords. This policy is similar to tech-

niques used in systems like Chord [26], Dynamo [10]

and FAWN [4]. In an N node cluster, the nodes can be

arranged in a ring using consistent hashing. To ensure

even distribution of load, multiple virtual nodes can be

assigned to each physical node, such that each virtual

node owns a single non-contiguous slice of the ring. In-

coming flows are assigned to the virtual node that fol-

lows the flow in the ring, in the clockwise direction. The

backup for a given flow is placed at the virtual node im-

mediately following its current virtual (primary) node.

Replication groups on a node can be automatically

formed by grouping flows according to their backup des-

tinations. Such groups can be split into smaller groups if

subsets of its flows are to be replicated at different repli-

cation frequencies. When a node fails, its load is evenly

dispersed across the rest of the cluster, such that the

overall load balance in the cluster is maintained. How-

ever, unlike the DHT style query forwarding approach

adopted by Chord, in an SDN environment, the network

controller can be leveraged to automatically (re)route a

flow to the appropriate replica (primary or backup).

Since the Chord style algorithm adapts to changes in

cluster memberships, elastic middlebox applications can

maintain the load distribution of both the primary and

backup as the cluster scales out or scales in according to

load.

6 Evaluation

We evaluated Pico Replication across different middle-

box setups. We focused on the following goals:

• Demonstrate Pico Replication’s ability to transpar-

ently failover a flow dependent middlebox, while

incurring very low performance overhead during

normal operation. (Requirements R1& R2)

• Demonstrate a simple Differentiated Pico Stream

HA policy that provides low overhead HA to a class

of flows, while maintaining performance isolation

at scale. (Requirement R3)

• Using a homogeneous workload, study the impact

on system utilization and performance as the repli-

cation frequency and the number of replication

groups vary.

We evaluate PR’s performance with applications that

require continuous [18, 36–40, 61], rather than one-time

synchronization (Table 2), as the former fully exer-

cises the replication subsystem. When comparing PR

with other HA techniques, we do not evaluate HA ap-

proaches used in commercial middlebox systems. Some

do not preserve flow state on failover [30] and many re-

sort to in-house proprietary implementations [29] whose

details are not disclosed publicly. Open source imple-

mentations such as Netfilter’s Connection Tracking [58]

perform one-time or highly coarse-grained synchro-

nizations (e.g., during TCP state machine transitions).

At the time of this writing, we were unable to find

non-proprietary flow state preserving HA solutions for

middleboxes requiring continuous synchronization. As

a baseline comparison, we evaluate the performance

of Remus [9], a VM replication based HA solution,

as it provides transparent failure recovery (Require-

ment R1).5

Middlebox Application and Workload. We imple-

mented a generic middlebox service, MBServ, that per-

forms packet inspection and request routing. The func-

tions performed by MBServ are representative of the op-

erations carried out by popular middlebox applications

like the Suricata [61] intrusion prevention system and

ADCs like Riverbed’s Stingray Traffic Manager [39] that

are used for layer-7 firewalling, request rate shaping and

load balancing. Note that, by default, these systems do

not support stateful failure recovery [30]. While traffic

load is redistributed, ongoing connections handled by

the failed node are dropped by other nodes in the cluster,

due to lack of related flow state.

The MBServ application runs inside a VM that sits in

front of a pool of backend servers on a protected net-

work. MBServ interposes on Client TCP requests from

an external network. MBServ interacts with the Pico

Replication library. It reads packets from the network in-

terface, using the pkt read call. The application main-

tains a TCP state machine for every flow and inspects the

payload for occurrences of a predefined set of malicious

strings. It then forwards packets to the destination net-

work using the pkt write call.

Incoming packets that do not conform to the protocol

state machine of their respective flows, or have no cor-

responding flow in the system, are dropped. Hence, lack

of middlebox state replication will result in loss of end-

to-end connectivity on failover because, on failure, the

flow will be reassigned to a new middlebox that has no

prior knowledge of the flow.

Unless otherwise noted, all experiments use a fixed re-

quest and response size of 1400 bytes. Latency and CPU

utilization values reported in this section correspond to

the 95th percentile values, indicating peak latency and

peak utilization, respectively.

Experimental Setup. Our experimental setup consists

of a cluster of 8 heterogeneous physical hosts running

the Xen [6] 4.2 hypervisor, Linux 3.4 kernel and Open

vSwitch [19] based software OpenFlow switches. A

hardware OpenFlow switch, BNT G8264, connects the

physical hosts together. Pico Replication HA policies

and FreeFlow’s SDN modules are implemented on top of

the Floodlight [55] OpenFlow controller. Unless stated

explicitly, the middlebox VMs used throught evaluation

were provisioned with two CPUs, on physical hosts with

5The version of Remus used in our evaluation uses checkpoint

compression, an optimization introduced in RemusDB [17] to perfor-

mance overhead.

 1

 5

 50

 500

 5000

 0 10 20 30 40 50 60 70 80 90 100

A
v
g
 P

a
c
k
e
t
L
a
te

n
c
y
 (

m
s
)

Time (s)

Failover
Packets dropped by replica 2
due to lack of flow state

No HA
Remus

PR

Figure 8: Transparent failure recovery in Pico Replication.

a quad-core Intel Xeon processor.

6.1 Stateful Failover

In this experiment, we demonstrate PR’s ability to trans-

parently failover a set of flows to another middlebox,

without disrupting end-to-end connectivity. We provi-

sion a middlebox cluster with three VMs (MBServ1,

MBServ2, and MBServ3) on three different hosts (H1,

H2, and H3). Figure 8 shows the average end-to-end la-

tency experienced by the client over a 500ms sampling

window. MBServ1 is subjected to 50Mbps network traf-

fic spread over 10 flows. After 35 seconds into the exper-

iment, MBServ1 is destroyed. Failure is detected when

the SDN controller receives an OpenFlow PORT DOWN

message from the host hypervisor’s Open vSwitch.

Three different HA configurations are used in this

experiment. In each case, the SDN controller reroutes

flows from the failed replica (MBServ1) to one or both

of the other replicas in the cluster. The HA configura-

tions are as follows:

No HA. In the first case, when MBServ1 fails, its load

is redistributed by the SDN controller equally between

MBServ2 and MBServ3. No state is replicated between

the replicas in the cluster.

Remus. In the second case, we use Remus [9] as an ex-

ample of a VM-level HA technique that provides trans-

parent failure recovery. The state of MBServ1 is con-

stantly replicated by Remus at a frequency of 40Hz to

a different host in the cluster.6 We denote MBServ1’s

passive backup copy created by Remus as MBServ1-

B. We applied checkpoint compression [17] to reduce

the latency overhead of checkpointing. On failure detec-

6It is possible to reach replication frequencies of 100Hz with Re-

mus. However, no useful work gets accomplished by the VM at such

frequencies since the VM suspend/resume calls themselves take up ap-

proximately 7-8ms to complete.

tion, the SDN controller reroutes the flows accordingly

to VM1-B.

PR. In the third case, Pico Replication divides the 10

flows handled by MBServ1 into two replication groups,

targeted to MBServ2 and MBServ3, respectively. Since

only the flow state is replicated, PR is able to achieve

a very high replication frequency of 1000Hz. On fail-

ure detection, the SDN controller immediately activates

the relevant flow states in MBServ2 and MBServ3 and

reroutes the flows accordingly.

Figure 8 shows the performance of each HA strategy.

In the “No HA” scenario, even though the controller au-

tomatically reassigns the flows from MBServ1 to MB-

Serv2 and MBServ3, they do not have the state pertain-

ing to the flows. As a result, the packets belonging to

flows from MBServ1 are dropped. With Remus, when

MBServ1 fails, its backup copy MBServ1-B resumes ex-

ecution in host H2, from the most recent and consistent

checkpoint of MBServ1. Since a consistent copy of all

the flow states is available at MBServ1-B, traffic pro-

cessing continues uninterrupted.7 With PR, each replica

absorbs a share of the load from MBServ1 and is able

to continue service the flows, since it possesses the up-

to-date copy of the flow states required to process the

packets.

Without any replication, the end-to-end latency is ap-

proximately 3ms. With Remus, the overhead is pro-

hibitively high due to the much lower replication fre-

quency (40Hz), and the overhead associated with sus-

pending and resuming the entire VM. With Pico Repli-

cation, the latency is very close to native case, approx-

imately 5ms. This is due to the fact that PR replicates

relevant flow states at a very high frequency (1000Hz) to

MBServ2 and MBServ3, thereby ensuring quick release

of the output buffers associated with each flow. After

failure of MBServ1, all scenarios eventually reach per-

formance matching “No HA” because they are no longer

replicating the flow state or the VM.

6.2 Pico vs. VM Replication

To demonstrate Pico Replication’s performance benefits

compared to Remus, we evaluate the performance over-

head on a HTTP style flow. The traffic was generated us-

ing the Flowgrind [63] tool, for a period of 120 seconds.

The request sizes follow a lognormal distribution, with

of 10KB, variance of 1KB and a maximum request size

of 100KB. The same random seed was used for all tri-

als of the experiment. We measured the application per-

7With Remus, on failure recovery, host H2 now has both MBServ2

and MBServ1-B. In other words, the entire load from MBServ1 is shed

onto host H2. This is an unfortunate consequence of VM replication

solutions—the inability to provide fine grained load balanced failover.

Replication

Freq. (Hz)

Throughput

(txn/s)

Latency

(ms)

No HA N/A 6683 [95] 54.48

Pico

Replication
1000 6468 [687] 62.95

Remus 100 30 [2] 207.72

Table 4: Performance overhead of Pico Replication vs. Re-

mus. Throughput metric is HTTP transactions per second [w/s-

tandard deviation]. Latency metric is the application perceived

RTT per HTTP transaction. 95th percentile latency values are

shown.

 0

 20

 40

 60

 80

 100

 120

20 40 60 80 100

L
a
te

n
c
y
 (

m
s
)

Number of Flows

Low Priority Flows
High Priority Flows

Figure 9: A simple policy that creates two replication groups

with different frequencies and targets based on flow priority.

The shaded portion of the bar at the bottom indicates the base-

line (unprotected) system performance. At 100 flows, MBServ

handles a sustained load of 175Mbps.

ceived response times per request and the total number

of transactions per second.

As shown in Table 4, Pico Replication imposes a

15.5% latency overhead and a 3.2% throughput drop

compared to a 2.8X latency overhead and a 99.5% drop

in throughput imposed by Remus.8 Again, the low over-

head of PR can be attributed to its relatively high check-

point frequency over Remus (1000Hz vs. 100Hz).

6.3 Differentiated Pico Streams - An Ex-

ample

In this experiment, we showcase PR’s ability to support

various flexible and adaptive HA policies with a simple

example. Consider a hypothetical scenario where MB-

Serv processes a set of low and high priority flows. We

8The higher variability in throughput with PR is due to frequent

context switches between user and kernel mode, during packet pro-

cessing. The context switches are an artifact of the PMM’s heavy use

of the Netfilter [58] framework.

 0

 10

 20

 30

 40

 50

 60

NoHA 2000 1000 200 100

L
a
te

n
c
y
 (

m
s
)

Replication Frequency (Hz)

3500 req/s
7000 req/s

10500 req/s

(a) Performance

 0

 20

 40

 60

 80

 100

NoHA 2000 1000 200 100

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Replication Frequency (Hz)

3500 req/s
7000 req/s

10500 req/s

(b) System utilization

Figure 10: Impact of replication frequency at various loads

assume that the ratio of low to high priority flows is 3:1.

We setup the low priority flows with a rate of 1Mbps

and the high priority flows with a rate of 4Mbps each.

Then, we created a simple HA policy that identifies and

classifies flows according to their priority (e.g., by their

port numbers) and creates two replication groups for

each priority respectively, each with a different replica-

tion target. By replicating low priority flows at a lower

frequency (100Hz) than high priority flows (1000Hz),

the middlebox application can conserve CPU resources

(the effect of checkpoint frequency on CPU utilization is

examined in more detail in Section 6.4).

The performance impact of the differentiated repli-

cation policy described above is shown in Figure 9 As

the number of flows in the system (load) increases from

20 to 80, PR is able to provide performance isolation

to the high priority group despite the increasing number

of lower priority flows in the system. At 100 flows, the

performance begins to degrade quickly, indicating that

more resources need to be allocated to the system to

maintain the same quality of service. However, given a

fixed amount of resources, PR enables a HA policy to be

instantiated on a middlebox that will trade performance

for resources on a per-flow basis by adjusting checkpoint

frequencies.

 0

 10

 20

 30

 40

 50

 0 5 10 15 20 25 30 35 40 45
 0

 10

 20

 30

 40

 50

L
a
te

n
c
y
 (

m
s
)

C
P

U
 U

ti
liz

a
ti
o
n
 (

%
)

Number of Replication Groups

Latency
Utilization

Figure 11: Impact of number of replication groups on latency

and system utilization on a 8 CPU middlebox VM. (Latency

values are computed using the geometric mean.)

6.4 Performance vs. Utilization Trade-Off

In the following set of experiments, we analyze the pa-

rameters that are available at a policy designer’s dis-

posal, when attempting to strike a balance between per-

formance and system utilization. The workload for this

experiment models communication between two tiers of

a multi-tiered application deployment, where each tier

is in a separate network. The clients in one tier gener-

ate traffic at a rate of 3500 requests per second using

a fixed sized connection pool. The two tiers are scaled

gradually by adding more resources (VMs) such that the

request rate increases in units of 3500.

Impact of Replication Frequency. In general, higher

checkpoint frequencies (or lower checkpoint intervals)

result in quicker release of network output buffers,

thereby minimizing the impact on end-to-end latency,

at the cost of higher CPU usage. Figure 10a shows the

impact on end-to-end latency at various replication fre-

quencies when the load on MBServ increases progres-

sively.

Figure 10b shows the corresponding CPU utilization.

As the replication frequency decreases, the CPU usage

decreases. At very low replication frequencies of 200Hz

and 100Hz, the TCP endpoints themselves backoff, thus

reducing the overall load on the system.

While PR can be configured to replicate state at 2kHz

(or 500us), the performance improvement is negligible

at the cost of increased CPU usage, denoting a point

of diminishing return. Also, at high loads (e.g., 10K re-

quests/s), the 2kHz replication frequency begins to have

a negative impact on the performance of MBServ, as ob-

served in Figure 10a. This is due to the fact that check-

pointing at very low intervals leaves no room for the sys-

tem to do any useful work (packet processing).

Impact of Replication Groups. Figure 11 shows the

performance impact and CPU utilization as a function of

number of concurrent replication groups in the system.

We allocate 8 CPUs to the middlebox VM in this exper-

iment. MBServ is processing 80Mbits/s worth of traffic,

spread across 40 flows. The flow state is replicated at a

rate of 1000Hz. Given a high replication frequency and a

fixed load, the number of concurrent replication groups

has minimal impact on the performance. However, as

the number of replication groups (a thread per replica-

tion group) increase, the context switch overhead is no

longer negligible, resulting in increased CPU utilization.

7 Conclusion

Middleboxes have become an integral part of networks

of various scales, to an extent that today they constitute

some of the most critical pieces in enterprise infrastruc-

tures [25]. As a result, when failures occur, entire in-

frastructures crash in a spectacular fashion [44, 49], tak-

ing down hosted applications for hours at a stretch [53].

Yet, despite recent trends that exploit the inherent char-

acteristics of middleboxes to provide system support

for this important class of applications, high availabil-

ity support remains limited. We have presented Pico

Replication, a system that provides HA for flow-oriented

middlebox applications with low overhead. Pico Repli-

cation is an important addition to the growing set of

tools that help middleboxes become more “cloud ready”:

software-defined, extensible, scalable, and highly avail-

able.

8 Acknowledgments

We would like to thank our shepherd, Marvin Theimer,

and the anonymous referees for their helpful comments.

References

[1] M. K. Aguilera, W. Chen, and S. Toueg. Us-

ing the Heartbeat Failure Detector for Quiescent

Reliable Communication and Consensus in Parti-

tionable Networks. Theoretical Computer Science,

220, 1999.

[2] Z. Al-Qudah, M. Rabinovich, and M. Allman. Web

Timeouts and Their Implications. In Proc. of Inter-

national Conference on Passive and Active Mea-

surement, 2010.

[3] M. Allman. On the Performance of Middle-

boxes. In Proc. of Internet Measurement Confer-

ence, 2003.

[4] D. G. Andersen, J. Franklin, M. Kaminsky,

A. Phanishayee, L. Tan, and V. Vasudevan. FAWN:

A Fast Array of Wimpy Nodes. In Proc. of
ACM Symposium on Operating Systems Principles

(SOSP), 2009.

[5] J. W. Anderson, R. Braud, R. Kapoor, G. Porter,

and A. Vahdat. xOMB: Extensible Open Middle-

boxes with Commodity Servers. In Proc. of Sym-

posium on Architectures for Networking and Com-

munications Systems (ANCS), 2012.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-

ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.

Xen and the Art of Virtualization. In Proc. of

ACM Symposium on Operating Systems Principles

(SOSP), 2003.

[7] T. C. Bressoud and F. B. Schneider. Hypervisor-

based Fault-tolerance. In Proc. of ACM Symposium

on Operating Systems Principles (SOSP), 1995.

[8] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,

C. Limpach, I. Pratt, and A. Warfield. Live Mi-

gration of Virtual Machines. In Proc. of USENIX

Symposium on Networked Systems Design & Im-

plementation (NSDI), 2005.

[9] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,

N. Hutchinson, and A. Warfield. Remus: High

Availability via Asynchronous Virtual Machine

Replication. In Proc. of USENIX Symposium

on Networked Systems Design & Implementation

(NSDI), 2008.

[10] G. DeCandia, D. Hastorun, M. Jampani, G. Kaku-

lapati, A. Lakshman, A. Pilchin, S. Sivasubrama-

nian, P. Vosshall, and W. Vogels. Dynamo: Ama-

zon’s Highly Available Key-Value Store. In Proc.

of ACM Symposium on Operating Systems Princi-

ples (SOSP), 2007.

[11] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai,

and P. M. Chen. ReVirt: Enabling Intrusion Analy-

sis Through Virtual-Machine Logging and Replay.

In Proc. of USENIX Symposium on Operating Sys-

tems Design & Implementation (OSDI), 2002.

[12] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman,

and P. M. Chen. Execution Replay of Multiproces-

sor Virtual Machines. In Proc. of ACM Conference

on Virtual Execution Environments VEE, 2008.

[13] A. Gember, R. Grandl, J. Khalid, S.-H. Shen,

and A. Akella. Design and Implementation of a

Framework for Software-Defined Middlebox Net-

working. Technical Report TR1794, University of

Wisconsin-Madison, 2013.

[14] D. K. Gifford. Weighted Voting for Replicated

Data. In Proc. of ACM Symposium on Operating

Systems Principles (SOSP), 1979.

[15] D. Lee, B. Wester, K. Veeraraghavan,

S. Narayanasamy, P. M. Chen, and J. Flinn.

ReSpec: Efficient Online Multiprocessor Replay

via Speculation and External Determinism. In

Proc. of ASPLOS, 2010.

[16] B. C. Ling, E. Kiciman, and A. Fox. Session state:

Beyond soft state. In Proc. of USENIX Symposium

on Networked Systems Design & Implementation

(NSDI), 2004.

[17] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboul-

naga, K. Salem, and A. Warfield. RemusDB:

Transparent High Availability for Database Sys-

tems. PVLDB, 4(11), 2011.

[18] V. Paxson. Bro: A System for Detecting Net-

work Intruders in Real-Time. Computer Networks,

31(23-24), 1999.

[19] B. Pfaff, J. Pettit, T. Koponen, K. Amidon,

M. Casado, and S. Shenker. Extending Network-

ing into the Virtualization Layer. In Proc. of ACM

Workshop on Hot Topics in Networks, 2009.

[20] S. Rajagopalan, B. Cully, R. O’Connor, and

A. Warfield. SecondSite: Disaster Tolerance as a

Service. In Proc. of ACM Conference on Virtual

Execution Environments VEE, 2012.

[21] S. Rajagopalan, D. Williams, H. Jamjoom, and

A. Warfield. Split/Merge: System Support for Elas-

tic Execution in Virtual Middleboxes. In Proc.

of USENIX Symposium on Networked Systems De-

sign & Implementation (NSDI), 2013.

[22] L. Rizzo. Netmap: A Novel Framework For Fast

Packet I/O. In Proc. of USENIX Annual Technical

Conference (ATC), 2012.

[23] D. J. Scales, M. Nelson, and G. Venkitachalam.

The Design and Evaluation of a Practical System

for Fault-Tolerant Virtual Machines. Technical Re-

port VMWare-RT-2010-001, VMWare, Inc., 2010.

[24] V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and

G. Shi. Design and Implementation of a Consoli-

dated Middlebox Architecture. In Proc. of USENIX

Symposium on Networked Systems Design & Im-

plementation (NSDI), 2012.

[25] J. Sherry and S. Ratnasamy. A Survey of Enter-

prise Middlebox Deployments. Technical Report

UCB/EECS-2012-24, EECS Department, Univer-

sity of California, Berkeley, 2012.

[26] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek,

and H. Balakrishnan. Chord: A Scalable Peer-

to-Peer Lookup Service for Internet Applications.

ACM SIGCOMM Computer Communications Re-

view, 31, 2001.

[27] R. Strom and S. Yemini. Optimistic Recovery in

Distributed Systems. ACM Transactions on Com-

puter Systems, 3(3), 1985.

[28] D. B. Terry, M. M. Theimer, K. Petersen, A. J. De-

mers, M. J. Spreitzer, and C. H. Hauser. Managing

Update Conflicts in Bayou, a Weakly Connected

Replicated Storage System. In Proc. of ACM Sym-

posium on Operating Systems Principles (SOSP),

1995.

[29] F5 Networks Inc., BIG-IP Configuring High Avail-

ability. http://support.f5.com/kb/en-

us/products/big-ip_ltm/manuals/

product/tmos_management_guide_10_

0_0/tmos_high_avail.html.

[30] Riverbed Technology, Stingray Traffic Man-

ager - User Manual. https://support.

riverbed.com/software/stingray/

trafficmanager.htm.

[31] Vyatta Inc., High Availability Reference Guide.

http://www.vyatta.com/downloads/

documentation/VC6.5/Vyatta-

HA_6.5R1_v01.pdf.

[32] R. van Renesse, Y. Minsky, and M. Hayden. A

Gossip-style Failure Detection Service. In Proc. of

International Conference on Distributed Systems

Platforms and Open Distributed Processing, 1998.

[33] The Corosync Cluster Engine. http://

corosync.org/.

[34] Linux-HA Project. http://www.linux-ha.

org/doc/.

[35] Pacemaker: A Scalable High Availability Cluster

Resource Manager. http://clusterlabs.

org/.

[36] F5 Networks Inc., BIG-IP Product Suite. http:

//www.f5.com/products/big-ip/.

[37] Embrane Inc., heleos. http://www.embrane.

com/products/heleos.

[38] Citrix Systems Inc., NetScaler ADC. http://

www.citrix.com/netscaler.

[39] Riverbed Technology, Stingray Product Family.

http://www.riverbed.com/products-

solutions/products/application-

delivery-stingray/.

[40] A10 Networks Inc., SoftAX Virtual ADC:

Software-based Application Delivery Con-

troller. http://www.a10networks.com/

products/axseries-softax.php.

[41] Vyatta Inc., Vyatta Network OS for Ama-

zon. http://www.vyatta.com/product/

vyatta-network-os/amazon.

[42] Vyatta Inc., Brocade Vyatta vRouter available

as a Service. http://www.vyatta.com/

content/vyatta-rackspace-cloud.

[43] Riverbed Technology: Infographic - ADC as a

Service. http://media-cms.riverbed.

com/documents/Riverbed-ADCaaS-

Infographic-May7-2013.pdf, 2013.

[44] Amazon AWS Outage Takes Down Netflix

On Christmas Eve. http://www.forbes.

com/sites/kellyclay/2012/12/24/

amazon-aws-takes-down-netflix-on-

christmas-eve/, December 2012.

[45] Amazon AWS Outage Summary. http://aws.

amazon.com/message/67457/, June 2013.

[46] Cloud Foundry. http://www.

cloudfoundry.com/.

[47] Amazon Web Services, Elastic Load Bal-

ancing. http://aws.amazon.com/

elasticloadbalancing/.

[48] Heroku. https://www.heroku.com/.

[49] Heroku learns the hard way from Amazon EC2

outage. http://SearchCloudComputing.

com, January 2010.

[50] Heroku - Incidence Report. https://status.

heroku.com/incidents/386, June 2013.

[51] Memcached - A Distributed Memory Object

Caching System. http://memcached.org.

[52] Rackspace: Load Balancing as a Service. http:

//www.rackspace.com/cloud/load-

balancing/, 2013.

[53] RightScale Infographic Shows Average of 7.5

Hours to Recover from Data Center and Cloud

Outages. http://www.rightscale.

com/news_events/press_releases/
2013/rightscale-infographic-

shows-average-of-7.5-hours-to-

recover-from-data-center-and-

cloud-outages.php, 2013.

[54] Intel DPDK: Data Plane Development Kit. http:

//dpdk.org.

[55] Big Switch Networks Inc., Floodlight

OpenFlow Controller. http://www.

projectfloodlight.org/floodlight/.

[56] Hot Standby Router Protocol (HSRP). http://

tools.ietf.org/html/rfc2281.

[57] HTTP Archive - Interesting Stats. http://

httparchive.org/interesting.php.

[58] Netfilter Packet Filtering Framework. http://

www.netfilter.org.

[59] Virtual PF RING. http://www.ntop.org/

products/pf_ring/vpf_ring/.

[60] The OpenFlow Switch Specification. http://

www.openflow.org.

[61] Open Information Security Founda-

tion: Suricata IDS/IPS. http://www.

openinfosecfoundation.org/index.

php.

[62] Virtual Router Redundancy Protocol (VRRP).

http://tools.ietf.org/html/

rfc3768.

[63] A. Zimmermann, A. Hannemann, and T. Kosse.

Flowgrind: A New Performance Measurement

Tool. In Global Telecommunications Conference

(GLOBECOM), 2010.

Class State Access Pattern Examples HA

Flow Independent N/A Stateless Firewalls No Sync

Flow Dependent
write once, then read NAT, Vyatta [41, 42] Sync Once

read/write for every packet IPS [61], IDS [18], ADC [36–40] Sync Continuously

Table 2: Taxonomy of Middleboxes for the purposes of HA

