

An adaptable model for teaching

mobile app development

Andrey Esakia

Department of Computer Science

Virginia Tech

Blacksburg, VA

esakia@cs.vt.edu

D. Scott McCrickard

Department of Computer Science

Virginia Tech

Blacksburg, VA

mccricks@cs.vt.edu

Abstract--As mobile software development becomes more

mainstream, universities recognize a need to integrate mobile

platform programming into the curriculum. This integration

requires an understanding of mobile software development

that defines it not just as a collection of topics but that

acknowledges cross-topic areas that serve as the basis for

specific interests. This paper presents a platform-agnostic

model for teaching mobile software development that identifies

established foundational topics, offering an adaptable teaching

model aimed at providing enhanced understating of the topics

and their integration. The model identifies three core areas of

importance to computer science education: asynchronous

programming, model view controller, and platform

underpinnings. This framework enables mobile-specific topics

like location, notifications, sensors, and more that are

positioned with respect to the core areas to assist with lecture

and assignment planning. Testing this model showed that

students exhibited better skills and knowledge of both the core

concepts and the specific topics as observed in their integration

of features in term projects. This suggests that, through

emphasis on core areas and repeated exposure to them in the

context of new topics, students exhibit higher quality of

integration of various mobile topics and deeper understand of

the core-cross topic areas for mobile software development.

Next steps are adoption by the education community in

project-based mobile development classes of various format,

scope, level, and purpose.

Keywords-Mobile devices; Education; Mobile Programming

I. INTRODUCTION

Smartphone market has witnessed a dramatic change in
the past decade. In 2014 the global smartphone sales
reached 1 billion units [1]. According to PewResearch [2]
in 2014 64% of adults in the US own a smartphone, and
over 70% of college students. Even moreso than traditional
computers, smartphones are highly integrated in people’s
lives, viewed as an essential tech device. Smartphones
feature multicore processors coupled with powerful GPUs
and high resolution screens. Practically every smartphone

includes at least one camera, communication technologies,
multitouch screens, and myriad sensors.

Computer science students are aware of the popularity
of smartphones and are interested in gaining skills and
knowledge needed to develop smartphone apps. For
example, at our institution, student demand for the mobile
software development class that we teach more than
doubled in less than 18 months. In addition, code
distribution and promotion is easy for mobile apps, with
possibilities for quick and inexpensive revenue stream
pointing the way to emulate success stories of young mobile
app developers. Even the more traditional companies and
jobs have mobile app development positions; a search for
mobile-related jobs reveals over thirty thousand vacancies.

Mobile software development has been part of
undergraduate computer science courses for many years,
appearing prominently in education literature over the last
five. Indeed, there are far more topics that can be covered
in a single course, necessitating informed selection of the
most appropriate topics that best matches the course or
curriculum under consideration. This paper puts forth an
adaptable teaching model that situates common topics with
respect to core learning areas. The model is applicable to
various classes: semester long or short classes, classes
dedicated to mobile programming or classes that include it
in a small way, classes for beginners or advanced students.
The model focuses on teaching various topics but also gives
a foundation for understanding how features can be
integrated into apps.

This paper next provides a brief review of related
efforts at teaching mobile computing. Then, a model is
outlined and described. The paper explains how the model
applies to a junior/senior-level mobile software design
course and compares results from the class to previous
iterations of the same class, prior to the model. The paper
concludes with an analysis of demonstrated knowledge
based on the comparison with two previous classes.

978-1-5090-1790-4/16/$31.00 ©2016 IEEE

II. RELATED WORK

Classes that teach programming on mobile devices are
becoming an integral part of curriculums of computer
science departments. Computer science education research
community recognizes the significance of smartphones and
studies various aspects of mobile programming and
development in education.

Numerous papers have reviewed topical approaches to
teaching mobile topics, including sensors [3], operating
systems [4], security [5], and smartwatches [6]. For
example, Chen et al. [7] recognized inherent difficulties
associated with learning sensor programming and proposed
a teaching model that simplifies the learning process by
replacing the typical trial-and-error approach with a divide-
and-conquer one that avoids sensor indeterminacy issues.
Other papers provide experience reports detailing issues
that arose in teaching mobile computing. For example,
Gordon [8] identified essential teaching concepts for mobile
development topics such as user interface design, device
communications, data handling, and event driven
programing. Sung et al. [9] presented their experience
teaching two variations of mobile app development class:
implementation oriented and design oriented. Burd et. al
[10] address challenges in mobile computing education by
surveying instructors of hundreds of mobile computing
classes, identifying how common topics are situated in a
class. Derek [11] examined how mobile computing can be
used to teach Java and increase employability.

Some papers provide toolkits or modules that capture
key teaching lessons in a sharable and reusable manner.
Mahmoud et al. presented [12] an academic kit aimed at
helping educators integrate Java ME and Blackberry
programming into their curriculum, including slides,
tutorials, quizzes, labs and assignments. Yuan et al. [13]
created a collection of modules that focus on eight core
areas related to mobile programming and mobile security.
This prior work provides a strong foundation to consider
models that identify and integrate the core themes of mobile
computing. Only recently have the dominant mobile
platforms started to mature to the point that educators can
consider the ways that the many themes can integrate with
core educational goals. This offers a great opportunity for
the development of a teaching model that focuses on
identifying the common core areas that span through the
myriad of mobile related themes and provides an
understand on how these themes can be defined in relation
to the common core areas.

III. MOTIVATION

Although mobile software development is an exciting
new area in computer science education, the multi-
component nature of apps and reliance on platform’s
software development kit (SDK) features as well as the
need to follow certain architectural patterns when building
apps [14] makes it challenging for students with no mobile
software development experience to focus on the mobile
specific topics listed in the related work section. Therefore,

teaching mobile topics will inevitably include foundational
(in the context of a given platform) knowledge that acts as
prerequisite for the topics of interest. Without the
foundational knowledge students will likely exhibit gaps of
knowledge needed for building multi-component apps. For
example, if a teacher’s goal is to teach about sensors on
smartphones, most likely, the teacher would also have
explain how to output sensor readings onto the user
interface, how to start an applications and how to build a
simple user interface among many other things, depending
on the depth of teaching.

As mobile software development is becoming
increasingly popular (and necessary!) in computer science
education, there is a need to have a versatile and flexible
framework serves as a guide for computer science educators
to teach topics related to mobile software development.
Curriculum integration can encompass a spectrum of
possibilities, from short, beginner-focused module on
specific topics related to mobile development to a semester-
long class with broad topic coverage for experienced
upperclassmen students. Throughout the semesters of our
experience teaching Android mobile software development
to junior/senior level CS major undergraduate students, we
sought to identify the unique aspects of mobile software
development and synthesize them into the categories of
core areas that span across various themes studied in such
classes.In so doing, we seek develop a teaching model that
can serve as a guide for teachers adopting mobile app
education for the first time, and as a refinement tool for
those teachers that are trying to evolve their mobile app
development class.

Building on related work (e.g., [8, 10, 14]) and our own
teaching experience, we seek to identify a platform agnostic
set of challenges that students with little to no experience in
mobile software development encounter. These challenges
stem from the following:

Events and event handlers. Mobile devices with
touchscreens are inherently user centered and the graphical
user interfaces are event driven. Students with no
experience developing interactive apps encounter
difficulties with events and event handlers.

Interfaces with callbacks. Energy consumption is a
concern for mobile; thus applications are “paused”,
“stopped” and “resumed” throughout their lifecycle, with
associated callbacks that developers must understand.
Similar to app lifecycle, mobile devices’ sensors, location
services, component-to-component communication
mechanisms, networking and multi-threading require
callback methods to communicate within the application—
often a new experience for students.

SDK features. SDK-specific features are unique to the
platform of choice and therefore contribute to the learning
curve, such as tools for building user interfaces, supporting
inter-app communication, and sharing resources, calling for
student mastery.

Non-sequential programming. Smartphone operating
systems do not generally allow developers to perform long
running operations (e.g., networking, thread
communication, sensors) on the main thread to retain
responsive user interface. Thus, smartphone applications
rely heavily on asynchronous programing. Even the
simplified threading supported by many smartphone
platforms requires some knowledge of asynchronous
programming.

Using software architecture patterns. Smartphone
developer guides tend to package recommendations in
components, or architecture patterns, to support easy reuse.
Additionally, app lifecycles require that some of portions
persist and some are recreated (e.g., during screen rotation,
the display changes but background operations persist)
requiring a modular architecture in which layers of the
application are decoupled. This architectural division is
unfamiliar to many students, but is captured in terminology
such as model-view controller (MVC) [14].

IV. THE MODEL

The goal of our model is to identify categories that
capture cross-topic challenges and present an interactive
framework within which the process of teaching can be
defined with relation to the challenges. The previous
section identified platform-agnostic challenges
characteristic for mobile development. The challenges are
not associated with a concrete mobile software development
topic—they occur within all topics to varying degrees.

The challenges of event driven programming, and
familiarity with features and tools offered by the SDK, are a
part of the inevitable learning process for anyone trying to
build a native app for a given platform. We identify a third
and final core area that encapsulates the challenges the
items needed for obtaining the foundational layer of
platform underpinnings.

One area of challenge is related to asynchronous
programming, a sub-discipline of computer science for
which mobile apps require a level of understanding. Mobile
development frameworks offer tools that encapsulate
challenges inherent to multithreaded programming, making
it feasible to teach it as part of mobile development class.
We view asynchronous programming as a core area in our
model due to its importance to many topics.

Another source of challenge lies in a need to follow
architectural patters when putting together apps with
different components. A mobile development class covers
this to some extent (e.g., connecting swiping and menu
patterns) but it grows in complexity. We view this source of
challenges as one of the core areas in our model, referred to
as Model View Controller (MVC).

A. Core area descriptions

1) Platform underpinnings.
With this category we capture an array of tools,

techniques and platform specific know-how that is needed

to be prepared and to be able to implement various topics of
interest. We envision this category as a collection of items
that one would have to re-learn in switching between
different developmental platforms. Items in this category
include:

a) Overview of features offered by the SDK. This

category focuses on the overview of what is given to the

developer from the SDK and accompanying ways in which

to install and deliver application to the end user. This

includes subcategories such as installing and setting up the

development environment, creating “hello world” app,

familiarization with the tools for building application and

user interface layout, preparing and publishing application

on the store.

b) Basics of developing interactive graphical user

interfaces. Understanding events and callbacks. Examples

include: Building interfaces with UI elements included in

the SDK (buttons, editable text, text, scrollable list,

gallery), creating interface layouts, creating dynamic user

interface containers, making interfaces interactive with

callback functions that handle user induced UI events and

basic ways of persisting GUI related data during

interruptions.

c) Lifecycle methods for different components.

Overview and practice on callback methods for a given

components lifecycle methods (i.e. which method is

triggered when the component is killed, created, paused)

d) Tools for inter-application communication and

content sharing. Mobile platforms offer its internal tools for

app developers to use. For example when an app launches

another map (ex. user clicks on address and then navigation

app launches) certain platform specific communication

takes place, similarly when an app retrieves shared content

such as images, it uses inter-component communication

mechanisms.

e) OS-level events. This includes mechanisms for

obtaining information about when device boots, low battery

warnings, when it connects to Wi-Fi.

2) Asynchronous programing:
To achieve quality user experience, long running and

computationally intensive tasks must be offloaded from the
thread that is responsible for the user interface. This means
that any application that has non-trivial functionality (apps
with networking features, complex graphics, file I/O
intensive) and has the ambition to offer competitive levels
of user experience, it must employ some sort of
asynchronous programming. So with this category we
encapsulate a list of subtopics that explores platform’s
capabilities of executing and controlling background
threads, long running background services and tools for
controlling them:

a) Information exchange between threads. This

includes overview of concepts behind threads (i.e.

answering questions about what threads do and why use

them), ways to perform quick background tasks (e.g.,

network requests, database queries, file I/O operations,

complex graphical computations), running parallel

background threads (e.g., downloading large files).

b) Executing and controlling long running

background operations. Examples include playing audio

content, step-counting, network requests, and location

updates.

3) Model View Controller: Non-trivial mobile apps

have multiple components to them (e.g., networking,

background services, sensors, multimedia, graphical user

interface elements, storage) that need to work reliably,

cohesively and efficiently. Given that mobile operating

systems halt applications depending on circumstances (e.g.,

interruptions from user input or external events like phone

call) it becomes difficult to organize and manage

components to retain consistent and predictable app

behavior—thus requiring organizational guidelines.
A well-known user interface architectural pattern—

MVC—recommends separating View from Controller and
Model [14]. By separating user interface from underlying
components, handling the application lifecycle becomes
more reliable from an end user perspective and clearer from
developer’s perspective. This enables consideration of
questions regarding topics like user feedback of large file
downloads, slow GPS feedback during wayfinding, and
data visualization based on complex computations.

B. Ways to apply the model

Figure 1 represents the relationship between the three
core areas as a “ring” arcing around a set of topics of
interest. Our model is platform agnostic and adaptable to
many teaching settings. The model supports explicit
awareness of relative core mobile software development
categories that act as a prerequisite for fuller learning
experience for a topic of choice. To reinforce learning in
one area, a focus on multiple topics in the area would
provide learning opportunities for the area (e.g., networking
and sensors leverage asynchronous programming
knowledge in different ways), thus encouraging increased
students skills.

It should be noted that for trivial applications only one
area might be exercised; e.g., for a simple calculator app
only the platform underpinnings would be needed.
Therefore, for classes that seek a simplified platform
experience (e.g., a mobile module in a parallel
programming class), the topic bubbles could be shifted
toward the area of relevance. Put differently, the depth at
which class is taught determines not only the size but also
the position of the topic bubble. The following sections
demonstrate how this model can be used to design, assess,
and compare classroom experiences.

V. APPLYING THE MODEL

We applied this model to a junior/senior mobile
development class, with post-CS2 students knowledgeable

in Java as well as the basics of data structures and
algorithms. The class seeks to complement their existing CS
skills with mobile software development experiences. The
model shaped all class aspects: homework aassignments, in-
class activities, labs, and lectures. We defined a set of sub-
areas within each area of the model and applied them for
each topic taught throughout the six weeks of the summer
session as listed in Table 1. We hypothesized that the
application of this model in the class would manifest into
higher quality software produced by students.

A. Class format and student body

The model was applied to a six-week summer session.
elective class that used Android OS as the platform of
choice. The class had an enrollment of 32 students (5
juniors and 27 seniors, 22 Computer Science majors and 10
Computer Engineers).

Figure 1. Adaptable teaching model, encapsulating key topics for

mobile development. The model positions 3 core areas of study on

the perimeter, with mobile development topics in the center.

Proximity of topics to each area represents relative time spent within

each area. Topic size reflects total time spent on the topic. The check

mark represents coverage in our Summer 2015 class (when not all

topics were covered).

The class met five times a week for 75 minutes each

session. Once or twice a week were dedicated to in-class

coding activities. All lectures concluded with example

projects highlighting and complementing concepts from

class. The class had 5 homework assignments and a

semester project for pairs (6 students chose to work

individually).

B. Theme, topics covered and assignments

We covered a broad range of topics throughout the
term, answering questions related to the topics in terms of
the orbit’s three components.

1) Week 1 - Platform Foundation:

a) Lectures.

Introduction to platform development tools, overview of
Android platform foundation (Activities, Services, Content
Providers, Broadcast Receivers, Intents), Android user
interface architecture, basic user interface design and
implementation, application lifecycle methods and
implications.

b) Assignments and in-class activity:

 In-class activity and the first assignment explored
basics of building user interfaces and incorporating user
interactions through buttons and editable text fields. The
first homework assignment asked students to build a mock
client application for a statewide health intervention project
with a login screen and main applications screen.

2) Week 2 - Platform Foundation & Model View

Controller:

a) Lectures.

Continued on the “orbit of core mobile concepts” by
covering Android’s inter-component communication
(Intents), followed by more interfaces, including versatile
dynamic user interface elements (Fragments) and dynamic
lists (ListView and Adapter, allowing building dynamic
user interface wrapper for array of data). We covered
concepts of MVC, and discussed best practices of using
MVC in the context of our project theme, and reviewed
tools offered by Android for establishing MVC.

b) Assignments and in-class activity:

 Explored building dynamic and flexible user interface
with Fragments. Students were asked to refine the
application from the first assignment by building a skeleton
interface for the client app with five Fragments capable of
communicating data with the encapsulating Activity.

3) Week 3 - Platform Foundation & Model View

Controller & Asynchronous programming:

a) Lectures.

 Introduced asynchronous programming and its relation
to MVC. We covered two main asynchronous approaches
in Android (AsyncTask, Thread) and ways to communicate
between the main application thread with background
thread (Handler). We also covered Android’s tools and
mechanisms for establishing long running background
services, ways of communicating with them in the context
of the MVC pattern, and mechanisms for system wide
communication (BrodcastReceiver).

Table 1. Application of the model in a mobile class. It lists the sub-

areas within each of the 3 areas of the model and (repeated) topics

covered in the subareas.

Table 2. Term projects and the degree of integration in terms of lifecycle handling (rated

on a scale from 0 to 3). Each black box shows a component integrated into the project.

b) Assignments and in-class activity:

 Allowed students to explore ways that long-running
operations can be executed in the background. The
homework assignment asked students to take the skeleton
interface from the previous assignment and incorporate
mock session-based log in functionality using background
threads to imitate network calls and MVC design for the
app behavior for situations when login is successful,
unsuccessful, and expired.

4) Week 4 - Platform Foundation & Model View

Controller & Asynchronous programming & Networking &

Persistence & Camera:

a) Lectures.

 Explored networking and data persistence in the
context of our “orbit of core mobile concepts”, including
Android techniques to establish HTTP connections
(HttpUrlConnection) and Bluetooth. These topics reflected
the importance of following MVC with networking
operations and the role that background threads play in
establishing this pattern. For data persistence we covered
Android’s content providers, mechanisms for persisting
small textual data throughout application lifecycle (Bundle,
SharedPreferences), Android’s SQLite database, and file
storage.

b) Assignments and in-class activity:

Provided students with example NodeJS server set up to
handle GET/POST requests and a simplistic Mongo
database for simple CRUD operations. Students practiced
full stack development with client mobile devices,
establishing two-way server communication. To exercise
this, students practiced taking pictures, inserting image data
into JSON and then uploading it to server. The homework
assignment for this week asked students to continue with

the app from the previous assignment, replacing mock
network calls with actual ones and establishing two-way
communication with the actual server that is part of
statewide health intervention project.

5) Week 5: Platform Foundation & Model View

Controller & Asynchronous programming & Smartwatches

and sensors:

a) Lectures.

 Developing for smartwatches, integrating them with
Android device apps. We chose two smartwatch platforms:
Android Wear and Pebble. Students practiced basics of
GUI, interactions, communication with smartphones and
sensors. We also taught sensors on Android devices,
including common sensors, location services, and ways in
which to integrate background step counter and geo-fencing
capabilities.

b) Assignments and in-class activity:

 Practiced basics of interactive interfaces on Android
Wear and Pebble, and communication between smartwatch
and smartphone. Students also practiced reading sensor

values (including GPS) on Android. The homework
assignment asked students to either continue refining the
app from the previous homework or to build a thematically
related application on Pebble and Android Wear (i.e.,
supporting a calorie counter for a smartwatch that
communicated with the phone, or incorporating a
background service to check for server updates). 23
students opted to do the smartwatch version of the
homework.

6) Week 6:
The last week focused on homework assignments and

term projects.

VI. RESULTS

To assess model effectiveness in evaluation and
comparison, we used the model to compare student's term
projects from the past three semesters. It should be noted
that in Spring 2014 and Summer 2015 students
implemented their projects in groups, whereas in Summer
2014 students worked individually.

We assessed projects based on the quality of
implementation and quality of app and degree to which it
conformed to students’ term project plans, we did not grade
on the sole number of different components. Nonetheless,
during each semester we committed progressively more
efforts to encourage students to incorporate more topics
into their projects. As a result during Spring 2014 the
average number of features (as seen presented in Table 2)
was 4.78, 4.91 for Summer 2014 and 8.93 for Summer
2015. In many cases (50% in Spring 2014, over 63% in
Summer 2014 and over 66% in Summer 2015) students
incorporated features that we had not covered in class, thus
going beyond the scope of what was learned in class. Some
example features included Google Maps integration,
integration with various APIs (such as Facebook, Twitter,
Fitbit).

Our evaluation focused on assessing quality of
integration of various components (see Table 2).
Specifically, we rated quality in handling application
lifecycle events across the component sets. Since the
application lifecycle could disrupt the entire application if
its components are not appropriately organized (e.g.,
separating View from Controller) and if students do not
apply their knowledge regarding meaningful integration of
components into a multicomponent setting. Our ratings of
quality of integration are on 0 to 3 scale and representative
of the degree to which the project complies with official
guidelines for Android:

0: no explicit steps taken to address application lifecycle
events

1: application recreates data but loses references to GUI
related background operations during lifecycle events.

2: app has a persistent component for maintaining
background operation references. (e.g., Retained Fragments
in Android OS not affected by lifecycle events and are

officially recommended [15] to be used for handling
lifecycle events)

3: exceeds 2 by also utilizing persistent component for
retaining large data sets (e.g., for large arrays) across
lifecycle events.

The number of components that the projects contained
indicate the scope of the project and the scale of efforts
needed to handle lifecycle events. Note that the results
show that with every semester students continued to
improve quality of integration of various components and
the number of components as we moved in the direction of
applying the model. During “Summer 2015”, student
projects yielded the highest number of 3’s and 2’s (Table 2)
suggesting the usage of model being correlating with
improving student’s improved understanding of the material
(assessed based on the quality of handling the lifecycle
events) .

VII. DISCUSSION

Although we were aware of the importance of the
quality of integration of app components in the first
semester of the analysis, the projects from Spring 2014 had
poor component integration (as seen in Table 2). We
attribute this to a focus on teaching large numbers of topics
without emphasizing integration. As the teaching material
was modularized and the modules were decoupled,
activities and homework assignments could be tailored be
more topic- and module-specific. In early semesters, the
cross-topic core areas were taught in the first two weeks
and never explicitly revisited again. Students did perform
well within those module assignments, but their term
projects often failed to connect the materials. The Summer
2014 class reused the class material and assignments from
the Spring 2014 class, however due the nature of the class
(14 students in during Summer 2014 with daily lectures vs
63 in Spring 2014 with lectures two times per week) we
were able to spend more time with students individually and
therefore spend more time helping them with their term
projects. As a result, students demonstrated better
component integration in their projects, but with room for
improvement. These observations from the Spring and
Summer 2014 classes encouraged us to revisit our teaching
strategy.

Prior to teaching the Summer 2015 class we had
prepared our model. We used it refine class lectures,
assignments and in-class activities. Although the topics that
we included for the class were the same as during previous
two classes, the topics were not isolated: since the core
cross-topic areas required more time to learn, we revisited
them throughout the semester. The assignments not only
introduced new topics but also kept a central theme and
required feature integration. As a result, students practiced
not only the topics but also the core cross-concept areas—
exercising integration of features into one app. We attribute
the sharply increased number of features and improved
integration in projects to the homework assignments that
helped them understand cross-topic integration.

Further analysis of term project apps beyond just the
quality integration of various features will paint a richer
picture on how the application of our model is capable of
altering students’ performance. Nonetheless, the results that
we obtained do show that the model has a potential to affect
the quality of software that students produce, since many of
them demonstrated understanding of nuances needed for
reliable integration of various components into
multicomponent apps.

From an instructor’s perspective the model reinforces
focus on the cross-topic areas. When adding a new topic,
the model suggests revisiting the “ring” to understand
platform-specific, MVC, and asynchronous programming
aspects of the topic. As hardware evolves, the model still
encourages reflection on these core areas, helping the
instructor situate the new topic in an integrative way.

VIII. CONCLUSIONS AND FUTURE WORK

This paper proposes an adaptable platform-agnostic
model for teaching mobile app development. The model
emerged from extensive literature review and multiple
semesters of experience in teaching mobile software
development at the junior/senior level. The goal of the
model is to help educators teach mobile programming
topics appropriate to the current and desired skill levels of
their students by placing emphasis on the cross-topic areas
needed to understand how to integrate the knowledge and
skills on a topic in the context of a multi-component app.

We demonstrated how to adapt this model in the context
of a six-week-long mobile software development
junior/senior level class.

To assess the effectiveness of the model we evaluated
student projects based on number of topics integrated and
the quality of integration of the components, contrasting
results with previous iterations of the class. Results show
students taught from this model produced projects with
more and better components integration resulting in higher
quality software. As such, this paper offers multiple
contributions. It shows cross-topic areas that are repeated in
the context of different mobile specific topics. Additionally,
it proposes a way to consolidate the cross-topic areas into
three distinct categories and define various mobile specific
topics in terms of the degree to which each of the three
cross-topic categories is part of the teaching process of the
given topic. Finally, it shows in detail how this model can
be applied.

Considering the adaptive nature of the model, in the future
we want to explore its effectiveness in a wide context of
different situations, from one-week modules on select topics
to advanced, twelve-week classes aimed at experienced
mobile developers to high school outreach, as this model
has not been tested and validated outside of our institution.
We welcome other collaborations as well. At the moment of
writing this paper, one other university expressed interest in
adapting this model for their class.

IX. REFERENCES

[1] (2015). Gartner Report. Available:

http://www.gartner.com/newsroom/id/2996817

[2] (2015). Mobile Technology Fact Sheet. Available:

http://www.pewinternet.org/fact-sheets/mobile-

technology-fact-sheet/

[3] M. H. Dabney, B. C. Dean, and T. Rogers, "No sensor

left behind: enriching computing education with mobile

devices," presented at the Proceeding of the 44th ACM

technical symposium on Computer science education,

Denver, Colorado, USA, 2013.

[4] J. Andrus and J. Nieh, "Teaching operating systems

using android," presented at the Proceedings of the 43rd

ACM technical symposium on Computer Science

Education, Raleigh, North Carolina, USA, 2012.

[5] M. Guo, P. Bhattacharya, M. Yang, K. Qian, and L.

Yang, "Learning mobile security with android security

labware," presented at the Proceeding of the 44th ACM

technical symposium on Computer science education,

Denver, Colorado, USA, 2013.

[6] A. Esakia, S. Niu, and D. S. McCrickard, "Augmenting

Undergraduate Computer Science Education With

Programmable Smartwatches," presented at the

Proceedings of the 46th ACM Technical Symposium on

Computer Science Education, Kansas City, Missouri,

USA, 2015.

[7] H. Chen and K. Damevski, "A teaching model for

development of sensor-driven mobile applications,"

presented at the Proceedings of the 2014 conference on

Innovation & technology in computer science

education, Uppsala, Sweden, 2014.

[8] A. J. Gordon, "Concepts for mobile programming,"

presented at the Proceedings of the 18th ACM

conference on Innovation and technology in computer

science education, Canterbury, England, UK, 2013.

[9] K. Sung and A. Samuel, "Mobile application

development classes for the mobile era," presented at

the Proceedings of the 2014 conference on Innovation

& technology in computer science education,

Uppsala, Sweden, 2014.

[10] B. Burd, Jo, #227, o. P. Barros, C. Johnson, S.

Kurkovsky, et al., "Educating for mobile computing:

addressing the new challenges," presented at the

Proceedings of the final reports on Innovation and

technology in computer science education 2012

working groups, Haifa, Israel, 2012.

[11] D. Riley, "Using mobile phone programming to teach

Java and advanced programming to computer

scientists," presented at the Proceedings of the 43rd

ACM technical symposium on Computer Science

Education, Raleigh, North Carolina, USA, 2012.

[12] Q. H. Mahmoud, T. Ngo, R. Niazi, P. Popowicz, R.

Sydoryshyn, M. Wilks, et al., "An academic kit for

integrating mobile devices into the CS curriculum,"

SIGCSE Bull., vol. 41, pp. 40-44, 2009.

[13] X. Y. e. al., "Teaching mobile computing and mobile

security," ed:FIE, 2016.

[14] V. P. Pauca and R. T. Guy, "Mobile apps for the greater

good: a socially relevant approach to software

engineering," presented at the Proceedings of the 43rd

ACM technical symposium on Computer Science

Education, Raleigh, North Carolina, USA, 2012.

[15] (2015). Handling Runtime Changes. Available:

http://developer.android.com/guide/topics/resources/run

time-changes.html

