Report from the "DOE Workshop on Ultra High-Speed Transport Protocols and Dynamic Provisioning for Large-Scale Science Applications" (Held: April 9-10, 2003)

Wu Feng, Los Alamos National Laboratory & The Ohio State University

> Program Co-Chairs: Nageswara S. Rao and William R. Wing

DOE HQ: Thomas Ndousse, George Seweryniak, Walter Polansky

LA-UR-03-3940

"We engineered the Internet, and it works fine for e-mail and the web; but to do *world-class* scientific research, we need to develop a science of networking that delivers usable performance to DOE scientific applications."

> - Allyn Romanow Cisco Systems

Wu-chun Feng feng@lanl.gov

Participants

Representation

Balanced participation from universities, industry and national laboratories.

- Total: 32
 - National Laboratories: 10
 - ANL: 2, ESnet: 1, LANL: 2, ORNL: 3, PNNL: 1, SLAC: 1
 - Universities: 11
 - Caltech: 1, Georgia Tech: 2, PSC: 1, UC-Davis: 1, UMass: 1, UVa: 1, UIC: 2, Indiana: 1, UTenn: 1
 - Industry: 8
 - Celion, Cienna, Cisco, Juniper, Level(3), LightSand, MCNC
 R&D Institute, Qwest
 - DOE HQ: 3

Workshop Goal

 Address the research, design, development, testing and deployment aspects of transport protocols and network provisioning as well as the application-level capability needed to build operational ultra-speed networks to support emerging DOE distributed largescale science applications over the next 10 years.

Wu-chun Feng feng@lanl.gov

Workshop Focus

Given the results from the "High Performance Network Planning Workshop" in August 2002, formulate an R&D roadmap in three specific (and critical) areas over a 1- to 10-year horizon:

- Ultra High-Speed Transport Protocols
 - Session Co-Leads
 - Wu Feng, Los Alamos National Laboratory
 - Don Towsley, Univ. of Massachusetts
- Dynamic Network Provisioning
 - Session Co-Leads
 - Biswanath Mukherjee, UC-Davis
 - William Wing, Oak Ridge National Laboratory
- Network Testbeds
 - Joint effort between the above two groups.

Why these areas? The next generation of DOE scientific breakthroughs will depend primarily on these research areas as well as a core set of services needed from ESnet.

roadmap in thr 10-year horizo

Plan

- Ultra High-Speed Transport Protocols
 - Session Co-Leads
 - Wu Feng, Los Alamos National Laboratory
 - Don Towsley, Univ. of Massachusetts
- Dynamic Network Provisioning
 - Session Co-Leads
 - Biswanath Mukherjee, UC-Davis
 - William Wing, Oak Ridge National Laboratory
- Network Testbeds
 - Joint effort between the above two groups.

u cus over a 1- to

Applications Perspective (Single Stream)

Application	Now	5 Years Out	10 Years Out
Climate	Authenticated data streams thru firewalls	Robust (reliable) access via multiple sites/paths Petabyte transfers.	Robust access with BW & latency for remote analysis and visualization
SNS	(Facility comes on-line in 2006.)	50-80 Mb/s sustained 320 Mb/s peak	1 Gb/s sustained
MMC	100 Mb/s sustained 200 Mb/s peak	200 Mb/s sustained 400 Mb/s peak	2 Gb/s sustained 4 Gb/s peak
HEP	1 Gb/s & end-to-end QoS	100 Gb/s over lambda and network monitoring	1 Tb/s
FES	Authenticated data streams thru firewalls at 30 Mb/s sustained.	100 Mb/s sustained 500 Mb/s peak (for 20 sec out of 15 min, i.e., QoS)	QoS for network latency and reliability to support real-time remote experiments
Chem Sci	Robust (reliable) access w/ security for <i>long</i> times.	10+ Gb/s sustained (collab. viz & data mining)	100+ Gb/s sustained (distributed simulations)
Bioinfo	?	?	?

Some applications actually want bandwidths that are order(s) of magnitude higher. Above → "realistic" expectations.
Collaborative work environments need QoS.

Only 250 kb/s sustained bandwidth over Access Grid at workshop!

Application Requirements

- Usage Scenarios
 - Bulk data transfer / replication, remote visualization, computational steering, data exploration and mining, instrument control
- Issues
 - Service Classification / Quality of Service
 - Guaranteed vs. best effort
 - Unicast vs. multicast vs. broadcast
 - High bandwidth
 - Stable bandwidth (low burstiness)
 - Low latency
 - Low resource (CPU, memory, etc.) utilization
 - Fairness
 - Timeliness (real-time vs. non-real-time)
 - Robustness/Reliability/Error Rate and Patterns (bit-level/packet-level)
 - Performance Gaps
 - Out-of-box vs. network wizard vs. what apps want
 - Byte vs. Block Orientation in Transferring Data
 - Security: Authentication & authorization (Session Layer)

Privacy & integrity (Presentation Layer)

Ultra High-Speed Transport

Wu-chun Feng feng@lanl.gov

Networking Perspective: Today

Network Environments

- LAN, e.g., Ethernet + IP + TCP + ftp
 - Throughput: 4-5 Gb/s. Latency: 20 μs. (LANL)
- SAN, e.g., Quadrics + OS-bypass + src routing + MPI
 - Throughput: 6-7 Gb/s. Latency: 5 μs. (LANL, OSU)
- WAN, e.g., Ethernet/DWDM + IP + TCP + ftp
 - Throughput: 2-3 Gb/s. Latency: 90 ms transoceanic. (Internet2 Land Speed Record: Caltech, CERN, LANL, SLAC, Feb. 2003)
- Hybrid network environments, e.g., SAN + WAN
 - MicroGrid or distributed cluster. Interaction of different transport protocols.

Current Problems

- 1. Not numbers that applications actually see. Achieving the above numbers required many network wizards and many months to accomplish.
- 2. Deploying R&D onto a production network is not a good idea. There exists a strong need for network testbeds.
- 3. QoS not being addressed, e.g., Access Grid is a tremendous capability, but it is fraught with QoS issues.
- 4. Deployment of hardware & software infrastructure. Is OC-768 (40 Gb/s) by 2008 enough? No, need 2-20 Tb/s (Bill Wing, ORNL).

Wu-chun Feng feng@lanl.gov

Vision for Short Term (now - 5 yrs): Problems with Current Transport Protocols

- Algorithmic
 - Byte- vs. block-oriented
 → SCTP/RDMA/R-UDP/Tsunami
 - Sequence numbers → PAWS & "Fat" TCP (RFC 1263)
 - Checksums / CRC → SCTP/RDMA
 - Slow start. Too "slow" for interactive? → Packet probes / tomography / history
 - Congestion control (as it relates to stability & convergence rate) → FAST TCP, scalable TCP, HS-TCP, XCP, stochastic approximation (SA), control theoretic
 - Congestion loss vs. non-congested loss → Not addressable in TCP. All losses viewed as congestion losses.
 - Self-clocking ACKs
 - Fairness (not needed all the time)
 - Ability to turn off congestion ctrl. \rightarrow Not implemented but could be.

 - Assumes shared, packet-switched network
 → Fundamental assumption of TCP.
 - Striping / parallel streams → SCTP, RDMA, R-UDP?
- Implementation
 - Flow control with respect to advertised window \rightarrow DRS / Web100 / Net100.
 - MTU size → TCP/IP → device driver (virtualize MSS/MTU).
 - "Excessive" CPU & memory utilization → TCP off-load & RDMA over TCP/IP.
- In user space or kernel?

Wu-chun Feng feng@lanl.gov

Vision for Short Term (now – 5 yrs): Problems with Current Transport Protocols

- Algorithmic
 - Byte- vs. block-oriented → SCTP/RDMA/R-UD
 - Sequence numbers → PAWS & "Fat" TCP (RFC)
 - Checksums / $CRC \rightarrow SCTP/RP$
 - Slow start
 - Congest
 scalab
- Problem:
 - So many requirements ...
 - So many issues ...
- Solution?
 - Short-Term: Address them as noted. Long-Term: (Next slide)
- Assumes s
- Striping / parame
- Implementation
 - Flow control with respect to advertised window → DRS / Web100 / Net100.
 - MTU size → TCP/IP → device driver (virtualize MSS/MTU).
 - "Excessive" CPU & memory utilization → TCP off-load & RDMA over TCP/IP.
- In user space or kernel?

Wu-chun Feng feng@lanl.gov

DOE Science Networking Workshop: Roadmap to 2008; Reston, VA; June 3-5, 2003

10.0

Vision for Long Term (5 – 10 yrs): Problems with Current Transport Protocols

- <u>Composable ("Lego") Transport Protocols</u>
 - Configuration time vs. run-time loadable modules.
 - User hints, network-passed information.
 - Definition of functions that need to be composed:
 - Parallelism: parallel streams, network striping, multipath, data aggregation
 - Unit of "Bookkeeping": Byte- vs. Block- vs. Stream- vs. File-Oriented.
 - Error Control: Strong CRC and FEC.
 - Qos: Best Effort vs. Reservation. Best Effort vs. Guarantees (Soft & Hard).
 - Information Export to Application or Network Manager.
 - · Environment: LAN vs. SAN vs. WAN vs. mixed.
 - (Control: RTT-dependent or not ...)
- Analytical Design Based on Control and Statistics.
 - Effects of composing certain transport features with others.
- <u>"Smart" Transport</u>
 - Knowing where data is headed ahead of time may influence how transport protocols are composed.
 - Interface with I/O issues.
- <u>Compatibility & Future Issues</u>
 - Legacy Problem / Interoperability / Bridging: Packet & circuit switched.

Wu-chun Feng feng@lanl.gov

Recommendations from Transport Group

- 1. Theory of Transport
 - Stochastic control, statistics, optimization, scalability, robustness
- 2. Algorithm Design
 - "Autonomic", adaptive, modular, composable ...
- 3. Experimentation (Simulation, Testbeds)
- 4. Instrumentation & Diagnostic Tools
 - e.g., Web100/Net100 (end host) + for network
 - Statistical inferencing techniques. Data collection methods.
- 5. DOE Deployment, Wider Adoption, and Legacy Integration

Dynamic Network Provisioning

Wu-chun Feng feng@lanl.gov

Dynamic Provisioning: Barriers Over the Next Five Years

- Limited deployment of ultra-long haul DWDM links.
- Enhanced support for striped/parallel transport needed.
 - At the core, edge/GMPLS routers, OS, and app levels.
- Lack of high-speed circuit-switched infrastructure. (e.g., a la recent achievements of the Internet2 Land Speed Record)
 - At the core and at the edge/GMPLS routers to support (dynamic) on-demand reconfigurability.
 - Emulated circuit-switched to the end host.
- Lack of well-developed methods and APIs for
 - Connection set-up, scheduling & reservation, and allocation.
- DOE apps do not follow commercial scaling model.
- Lack of a security model.
- Lack of a robust multicast solution.

Wu-chun Feng feng@lanl.gov

Recommendations from Dynamic Provisioning Group

- 1. Scalable network technologies to deliver bandwidth and lambdas on demand.
- 2. New radical technologies to dynamically schedule and manage a multiple-lambda network.
- 3. Scalable technologies to design and manage *multitier*, logical , ultra high-speed network.
- 4. An application-centric, cross-country, ultra highspeed network infrastructure for R&D.
- 5. Necessity to engage and involve ESnet first and foremost as well as researchers and developers in middleware, transport, operating systems, and of course, applications.

Wu-chun Feng feng@lanl.gov

Network Testbeds

Wu-chun Feng feng@lanl.gov

Visions & Recommendations for Enabling Network Research

Now

- Evaluate granularity of work (i.e., MTU and MTU-like methods).
- Directions and recommendations for a production network to support experimental *application* research and experimental testbeds to support experimental *network* research, e.g., initial deployment of experimental testbed with QoS and GMPLS, for tomorrow's apps.
- Five-Year Horizon
 - Further deployment of experimental testbed with QoS and GMPLS support.
 - Striping infrastructure for meeting high-throughput needs. (Complementary to deployment of experimental testbeds.)
 - Support for splicing & cascading transport methods from end-to-end.
 - Splicing: Multiple (homogeneous) TCP flows.
 - Cascading: Multiple (heterogeneous) transport flows, e.g., ULNI/InfiniBand → TCP → ULNI/Quadrics
- Ten-Year Horizon
 - Evolution of experimental testbeds, keeping in mind that aggregate network demands are doubling every year.
 - Deployment and support for composable transport methods.

One for All and All for One ... A View from 10,000 Feet

Network Research

- Focus on end-to-end.
- Need support from ESnet to enable research in network provisioning and scheduling, transport (traditional TCP/IP to RDMA over WAN to composable protocols), and OS.
- Even with support, need network testbeds to validate and verify.

ESnet

- Focus on the core.
- Core services to provide to network researchers (ultimately, applications)
 - QoS / MPLS / λ -switching
 - Multi-tiered, ultra high-speed
 - Programmable routers bridging O-E interface.
 - Support for the nonstandard, exploratory, researchy: jumboframes, RDMA over WAN.

There is obviously much more to this picture ... this is just a starting point ...

Wu-chun Feng feng@lanl.gov

One for All and All for One ... 10.000 Feet

Example

Latest Internet2 Land Speed Record required end-to-end support for jumboframes to achieve 2.38 Gb/s between Sunnyvale and Geneva. (Only ~300 Mb/s with standard 1500-byte MTUs.)

Sponsors: DOE, NSF, European Commission

network and verify. the core. es to provide to searchers applications) PLS / λ -switching ered, ultra high-speed ammable routers g O-E interface. for the nonstance. For the nonstance. Stance. RDMA over WAN.

There is obviously much more to this picture ... this is just a starting point ...

Wu-chun Feng feng@lanl.gov

Consequences of Not Doing This Research in DOE

- Why should DOE invest in this research, and hence ESnet? Internet is optimized for the mass market, not for scientific applications.
- U.S. is losing competitive advantage for worldwide scientific resources, e.g., Japanese Earth Simulator, European data grid (LHC: Large Hadron-Collider Computing Grid), which requires superior networking infrastructure.
- Brain Drain
 - People leaving. Inability to retain top scientists.
- "Gray Matter" Tax
 - Scientist spend time doing networking rather than science, e.g., 15-20 scientists and months of planning and tuning to break the Internet2 Land Speed Record.
- Harmful effects to existing DOE-funded projects, e.g., SciDAC projects.

