

Los Alamos National Laboratory

www.lanl.gov/radiant

What is the Future for High-Performance Networking?

Wu-chun (Wu) Feng feng@lanl.gov

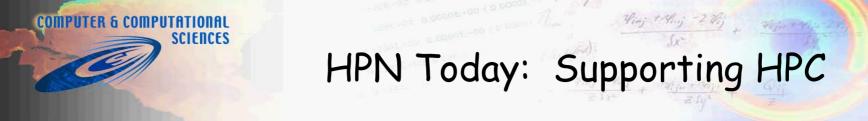
RADIANT: Research And Development in Advanced Network Technology http://www.lanl.gov/radiant Computer & Computational Sciences Division Los Alamos National Laboratory University of California

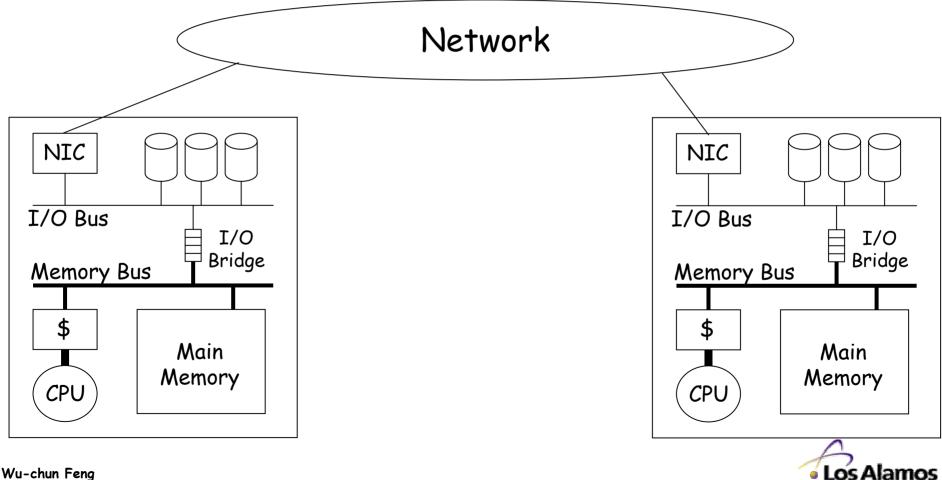
IEEE Distinguished Visitors Program Ottawa, Canada, December 4, 2003

What is the Future for High-Performance Networking?

- A loaded question ...
- ... one that opens up a "can of worms" ...
- Why? So many dimensions to consider.
 > Hardware: Optical vs. Electronic
 - End-to-End Connectivity: Circuit- vs. Packet-Switched
 - > Routing
 - Wormhole vs. Virtual Cut-Through vs. Store-and-Forward
 - Source vs. IP
 - > Resource Usage: Dedicated vs. Shared
 - > Quality of Service: Best Effort vs. Guaranteed
 - > Environment: LAN vs. SAN vs. MAN vs. WAN

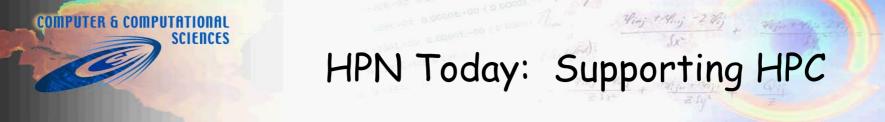
- High-Performance Networking (HPN) Today
 - Definition: Relative to High-Performance Computing (HPC)
 - > What is HPC? \rightarrow What is HPN?
 - Problems with HPN
 - Host-Interface Bottlenecks
 - Adaptation Bottlenecks
- High-Performance Networking (HPN) Tomorrow
- Conclusion

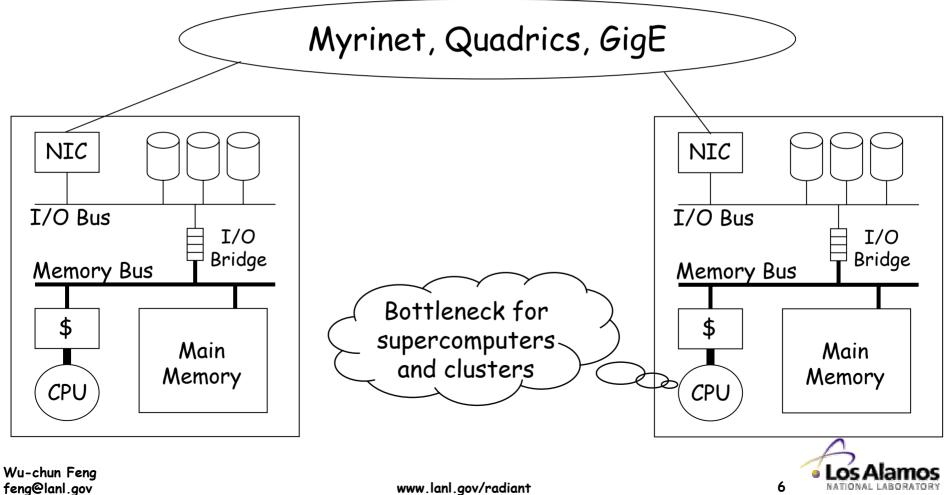

HPN Today: What is HPC?

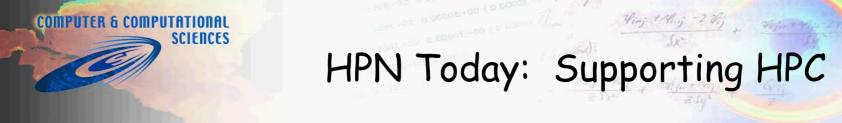

- Tightly-Coupled Supercomputers
 LANL'S ASCI Q, Japanese Earth Simulator
- High-End Clusters / PC Clusters
 NCSA's Titan (part of DTF/TeraGrid), LANL's Green Destiny
- Distributed Clusters & MicroGrids
 > OSC's distributed cluster, Intel's enterprise microgrid
- Computational Grids
 - > Industry: Avaki, Entropia, United Devices.
 - Academia & DOE Labs: Earth Systems Grid, Particle Physics Data Grid, Distributed Terascale Facility (DTF a.k.a TeraGrid).

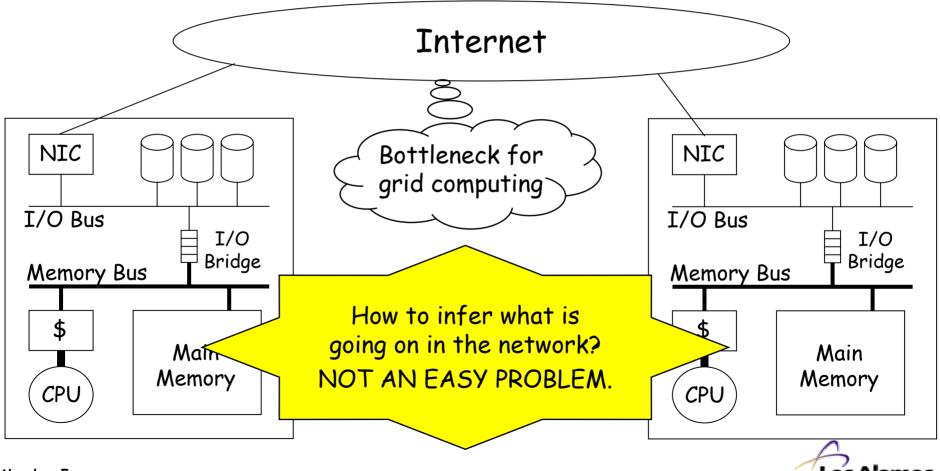
All the above platforms will continue to exist over the next decade, e.g., NCSA's Titan will be a cluster in its own right as well as a grid node in DTF/TeraGrid (www.teragrid.org).

Wu-chun Feng feng@lanl.gov




Wu-chun Feng feng@lanl.gov


www.lanl.gov/radiant


5

NATIONAL LABORATORY

Wu-chun Feng feng@lanl.gov

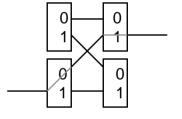
www.lanl.gov/radiant

7

NATIONAL LABO

HPN Today: Supporting HPC

- Tightly-Coupled Supercomputers & High-End Clusters
 Network Environment: Generally, SANs using non-IP.
 - > Why non-IP (source) routing? Low latency more important.
 - Faster network fabric (wormhole or virtual cut-through).
 - Problems
 - Non-scalable beyond a SAN.
 - Host-interface bottlenecks.



- > Network Environment: WAN using TCP/IP.
- > Why IP routing? Scalability more important.
- > Why is performance so lousy over the WAN?

>Adaptation bottlenecks.

01 payload

Host-Interface Bottlenecks

10GigE packet inter-arrival: 1.2 μs (assuming 1500-byte MTUs) Null system call in Linux: 5 μs

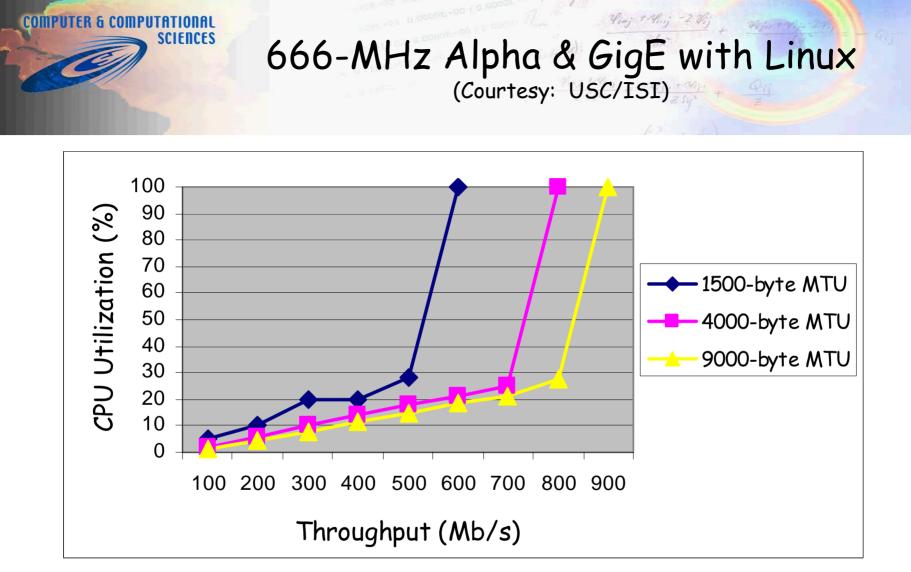
- Software
 - Host can only send & receive packets as fast as OS can process them.
 - Excessive copying. (A known fact.)
 - Excessive CPU utilization. (See next slide.)
- Hardware (PC)
 - PCI-X I/O bus. 64 bit, 133 MHz = 8.5 Gb/s.
 - Not enough to support 10-Gigabit Ethernet.
 - Solutions in the Future?
 - PCI Express: Network interface card (NIC) closer to CPU
 - InfiniBand 4x & Beyond: NIC on packet-switched network
 - 3GIO/Arapahoe (Intel)
 - Hypertransport (AMD)

Host-Interface Bottlenecks

10GigE packet inter-arrival: 1.2 μs (assuming 1500-byte MTUs) Null system call in Linux: 5 μs

Software

F


> PCI->

- Host can only send & receive packets as fast as OS can process them.
 - Excessive convina (A know fact.)

We have reached a crossover point with *current* software and hardware - network speeds are outstripping the ability of the CPU to keep up.

- Not enough to support 10-orgabit Ethernet.
- Solutions in the Future?
 - PCI Express: Network interface card (NIC) closer to CPU
 - InfiniBand 4x & Beyond: NIC on packet-switched network
 - 3GIO/Arapahoe (Intel)
 - Hypertransport (AMD)

Even jumbograms suffer from high CPU utilization ...

CPU utilization is even worse with 10GigE. For more information, see Feng et al., "Optimizing 10-Gigabit Ethernet ...," SC2003, Nov. 2003.

11

Wu-chun Feng feng@lanl.gov

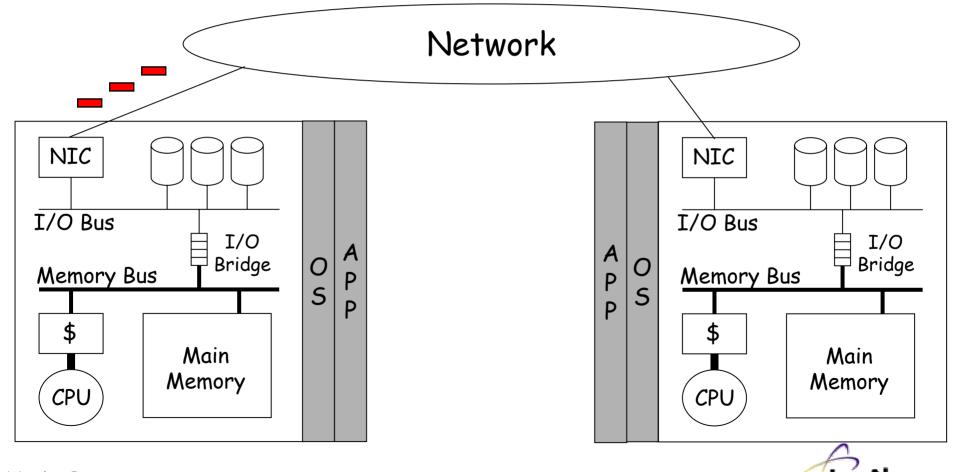
Host-Interface Bottleneck (Software)

- First-Order Approximation
 - deliverable bandwidth = maximum-sized packet / interrupt latency
 - > e.g., 1500-byte MTU / 5 ms = 300 MB/s = 2400 Mb/s = 2.4 Gb/s
- Problems
 - > Maximum-sized packet (or MTU) is only 1500 bytes for Ethernet.
 - > Interrupt latency to process a packet is quite high.
 - > CPU utilization for network tasks is too high.
- "Network Wizard" Solutions
 - > Eliminate excessive copying.
 - > Reduce frequency of interrupts.
 - > Increase effective MTU size.
 - > Reduce interrupt latency.
 - Reduce CPU utilization.

These techniques were used to help smash the Internet2 Land Speed Record in Feb. 2003.

"Network Wizard" Solutions (many non-TCP & non-standard)

- Interrupt Coalescing
 - > Increases bandwidth (BW) at the expense of even higher latency.
- Jumbograms
 - > Increases BW with minimal increase in latency.
 - Lacks interoperability.
 - > Very difficult to build switches to process large packets at high speeds.
- Reduction of CPU Utilization (with OS-based TCP/IP)
 - Provide "zero-copy" TCP, TCP offload engine, or high-performance IP but OS still middleman.
 - > Push protocol processing into hardware, e.g., checksums. Dangerous?
- OS-Bypass Protocol with RDMA
 - > Increases BW & decreases latency by an order of magnitude or more.
 - > Remote Direct Data Placement: RDMA over IP.



"Network Wizard" Solutions (many non-TCP & non-standard)

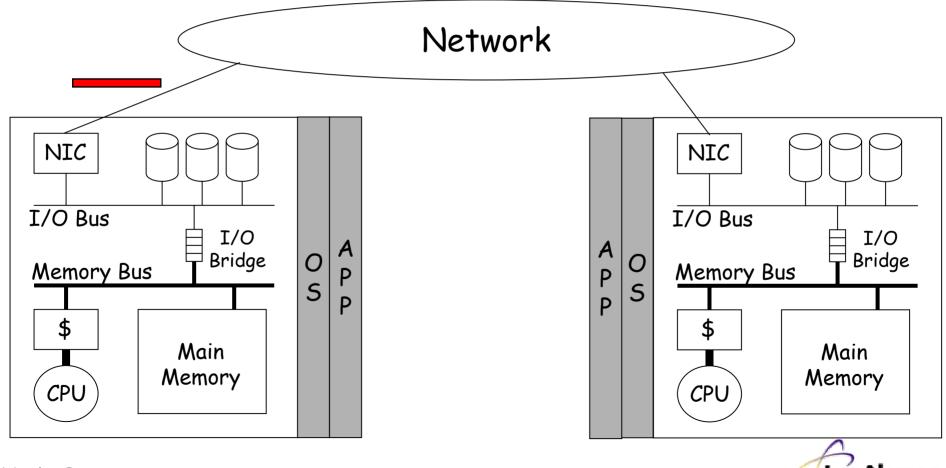
- Interrupt Coalescing
 - > Increases bandwidth (BW) at the expense of even higher latency.
- Jumbograms
 - > Increases BW with minimal increase in latency.
 - Lacks interoperability.
 - > Very difficult to build switches to process large packets at high speeds.
- Reduction of CPU Utilization (with OS-based TCP/IP)
 - Provide "zero-copy" TCP, TCP offload engine, or high-performance IP but OS still middleman.
 - > Push protocol processing into hardware, e.g., checksums. Dangerous?
- OS-Bypass Protocol with RDMA
 - > Increases BW & decreases latency by an order of magnitude or more.
 - > Remote Direct Data Placement: RDMA over IP.

Wu-chun Feng feng@lanl.gov

www.lanl.gov/radiant

15

NATIONAL LABORATORY



"Network Wizard" Solutions (many non-TCP & non-standard)

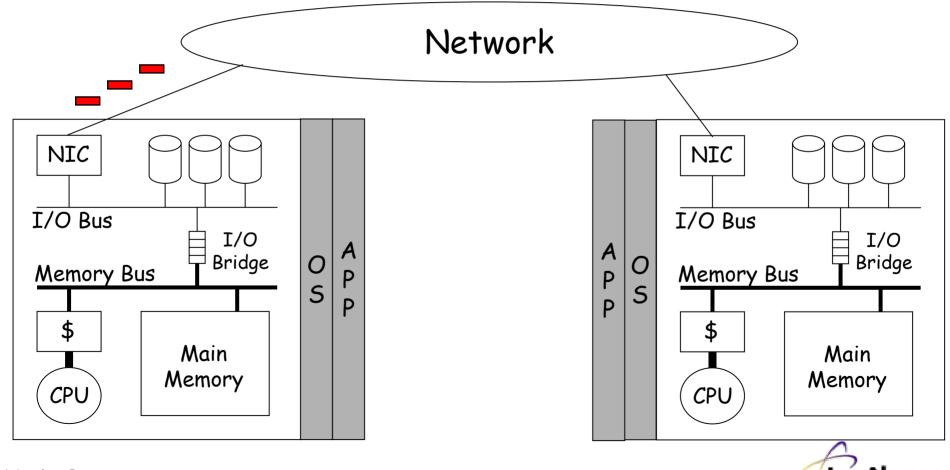
- Interrupt Coalescing
 - > Increases bandwidth (BW) at the expense of even higher latency.
- Jumbograms
 - > Increases BW with minimal increase in latency.
 - > Lacks interoperability.
 - > Very difficult to build switches to process large packets at high speeds.
- Reduction of CPU Utilization (with OS-based TCP/IP)
 - Provide "zero-copy" TCP, TCP offload engine, or high-performance IP but OS still middleman.
 - > Push protocol processing into hardware, e.g., checksums. Dangerous?
- OS-Bypass Protocol with RDMA
 - > Increases BW & decreases latency by an order of magnitude or more.
 - > Remote Direct Data Placement: RDMA over IP.

Wu-chun Feng feng@lanl.gov

www.lanl.gov/radiant

17

NATIONAL LABORATORY



"Network Wizard" Solutions (many non-TCP & non-standard)

- Interrupt Coalescing
 - > Increases bandwidth (BW) at the expense of even higher latency.
- Jumbograms
 - > Increases BW with minimal increase in latency.
 - > Lacks interoperability.
 - > Very difficult to build switches to process large packets at high speeds.
- Reduction of CPU Utilization (with OS-based TCP/IP)
 - Provide "zero-copy" TCP, TCP offload engine, or high-performance IP but OS still middleman.
 - > Push protocol processing into hardware, e.g., checksums. Dangerous?
- OS-Bypass Protocol with RDMA
 - > Increases BW & decreases latency by an order of magnitude or more.
 - > Remote Direct Data Placement: RDMA over IP.

Wu-chun Feng feng@lanl.gov

www.lanl.gov/radiant

19

NATIONAL LABORATORY

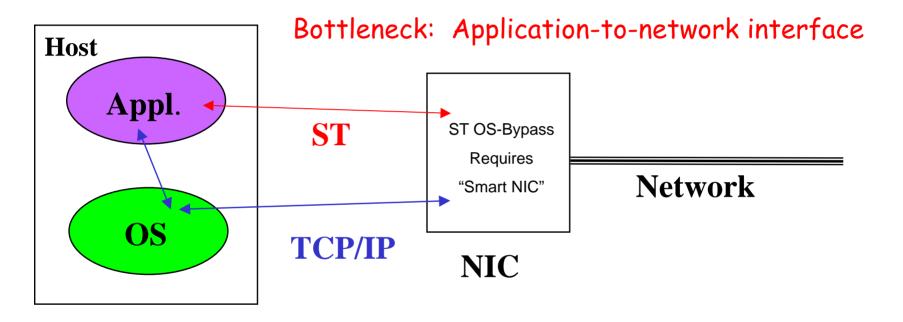
High-Performance IP over Ethernet

- Lightweight Protocol Off-Loading
 - > (Mis)configure device driver to accept virtual MTUs (vMTU) of up to 64 KB → TCP/IP transmits up to 64-KB vMTU to device driver.

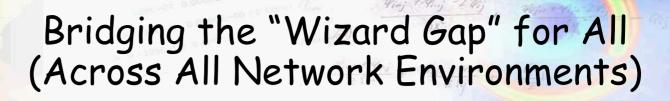
- > Make the firmware on the NIC do the fragmentation.
- > Implement with programmable NIC.
 - Alteon GigE AceNICs.
 - Programmable 10GigE NICs that will be coming out in 2004.

Result: Minimize CPU overhead for fragmentation.

"Network Wizard" Solutions (many non-TCP & non-standard)


- Interrupt Coalescing
 - > Increases bandwidth (BW) at the expense of even higher latency.
- Jumbograms
 - > Increases BW with minimal increase in latency.
 - Lacks interoperability.
 - > Very difficult to build switches to process large packets at high speeds.
- Reduction of CPU Utilization (with OS-based TCP/IP)
 - Provide "zero-copy" TCP, TCP offload engine, or high-performance IP but OS still middleman.
 - > Push protocol processing into hardware, e.g., checksums. Dangerous?
- OS-Bypass Protocol with RDMA
 - > Increases BW & decreases latency by an order of magnitude or more.
 - > Remote Direct Data Placement: RDMA over IP.

OS-Bypass Protocol with RDMA (e.g., ST: Scheduled Transfer and Quadrics Elan)


Vier + Mui

- OK for SAN, but what about WAN?
 - WAN uses IP, not source routing. General concepts still translate, however. See IETF RDDP effort.
 - > How would it compare to an OS-based high-performance TCP?

Wu-chun Feng feng@lanl.gov

Performance Numbers from User Space to User Space

Environment	Typical	"State of the Art" w/ Network Wizards	Our Research
LAN with TCP/IP	300-400 Mb/s	990 Mb/s → 2500 Mb/s	4640 Mb/s → 7329 Mb/s
	100 μs	80 μs → 20 μs	20 μs → 9 μs
SAN with OS- Bypass/RDMA	2000 2003	1920 Mb/s 8.5 μs 1968 Mb/s 6.7 μs	2456 Mb/s (MPI-to-MPI) 4.9 μs 7200 Mb/s (MPI-to-MPI) < 3.0 μs
SAN with TCP/IP	300-400 Mb/s	1853 Mb/s	3664 Mb/s est. (MPI-to-MPI)
	100 μs	32 μs	18 μs est.
WAN with TCP/IP	0.007 Petabit-	0.270 Petabit-meters	23.888 Petabit-meters per
(distance normalized)	meters per second	per second	second*

* Internet2 Land Speed Record. Achieved: 2/27/03. Certified: 3/27/03. Awarded: 4/11/03.

Wu-chun Feng feng@lanl.gov

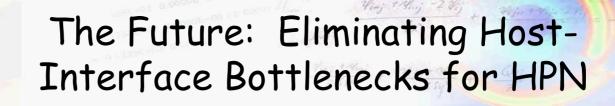
COMPLITER & COMPLITATIONAL

SCIENCES

Host-Interface Bottlenecks

10GigE packet inter-arrival: 1.2 μs (assuming 1500-byte MTUs) Null system call in Linux: 5 μs

- Software
 - Host can only send & receive packets as fast as OS can process them.
 - Excessive copying. (A known fact.)
 - Excessive CPU utilization. (See next slide.)
- Hardware (PC)
 - PCI-X I/O bus. 64 bit, 133 MHz = 8.5 Gb/s.
 - Not enough to support 10-Gigabit Ethernet.
 - Solutions in the Future?
 - PCI Express: Network interface card (NIC) closer to CPU
 - InfiniBand 4x & Beyond: NIC on packet-switched network
 - 3GIO/Arapahoe (Intel)
 - Hypertransport (AMD)



Host-Interface Bottleneck (Hardware)

- PCI = Pretty Crappy Interface ☺
 - Theoretical Peak Bandwidth
 - PCI 2.2, 32/33: 1.06 Gb/s
 - PCI 2.2, 64/33: 2.13 Gb/s
 - PCI 2.2, 64/66: 4.26 Gb/s
 - PCI-X 1.0, 64/100: 6.40 Gb/s
 - PCI-X 1.0, 64/133: 8.51 Gb/s
- · Solutions? More or less out of our control ...
 - > PCI-X \rightarrow 8.51 Gb/s (today)
 - > PCI Express → ??? (2004/2005)
 - > InfiniBand \rightarrow 8.51 Gb/s (today), 10 Gb/s, i.e., 4x (soon), ???
 - > 3GIO/Arapahoe (full duplex) \rightarrow 51.2 Gb/s (2004/2005)
 - > Hypertransport \rightarrow 25.6 Gb/s (today)

Wu-chun Feng feng@lanl.gov

- Convergence and subsequent "standardization" of software techniques in SAN, but ...
 - > True high-end HPC: OS-bypass/RDMA over source routing.
 - Commodity HPC: OS-bypass/RDMA over IP (e.g., IETF RDDP) with subsequent extension into the WAN.
- Continued uniqueness in architecture for reducing hardware-based, host-interface bottlenecks.
 - ➤ Communications Streaming Architecture → PCI Express (Intel).
 - > Hypertransport (AMD, Sun, and many others).
 - > Infiniband (companies delivering true high-end HPC)
 - Note Intel's & Microsoft's withdrawal from Infiniband.

HPN Today: Supporting HPC

- Tightly-Coupled Supercomputers & High-End Clusters
 Network Environment: Generally, SANs using non-IP.
 - > Why non-IP (source) routing? Low latency more important.
 - Faster network fabric (wormhole or virtual cut-through).
 - Problems
 - Non-scalable beyond a SAN.
 - Host-interface bottlenecks.
- Computational Grids & Virtual Supercomputers
 - > Network Environment: WAN using TCP/IP.
 - > Why IP routing? Scalability more important.
 - > Why is performance so lousy over the WAN?

>Adaptation bottlenecks.

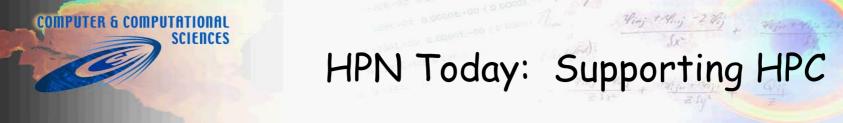
HPN Today: Supporting HPC

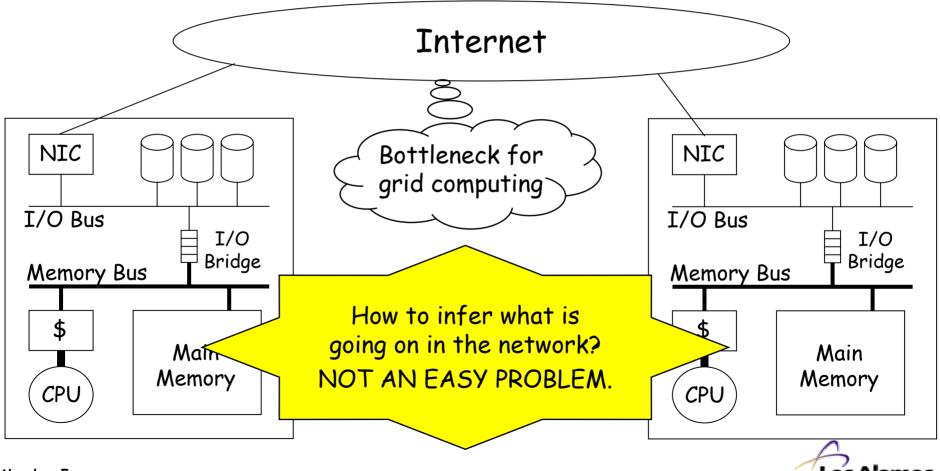
Tightly-Coupled Supercomputers & High-End Clusters
 Network Environment: Generally, SANs using non-IP.
 Why non-TP (

Addressing adaptation problems not only support HPC today but will also eventually benefit the Internet tomorrow.

Computational Grids & Virtual Supercomputers

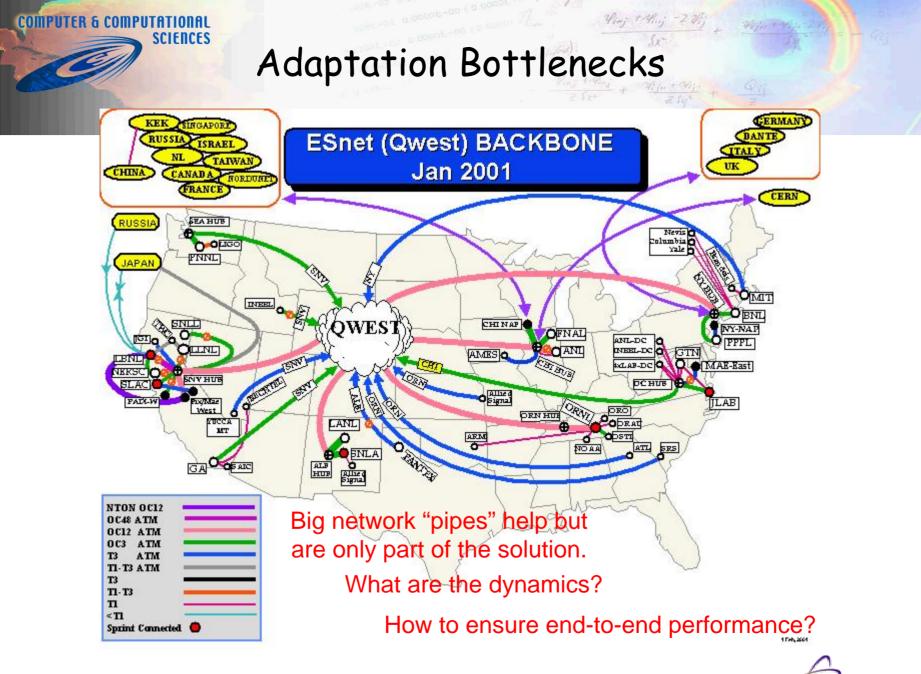
> Network Environment: WAN using TCP/IP.


- Host-interface bottlenecks


- > Why IP routing? Scalability more important.
- > Why is performance so lousy over the WAN?

>Adaptation bottlenecks.

Wu-chun Feng feng@lanl.gov



Wu-chun Feng feng@lanl.gov

www.lanl.gov/radiant

29

NATIONAL

30

Adaptation Bottlenecks

S

- Flow Control
 - End-to-end issue.
 - Receiver advertises to sender how much data it can handle.
 - Advertised window (awnd)
 - Static 32 KB in typical OS.
- Congestion Control
 - ➤ Global issue.

- > Send infers what the available bandwidth in the network is.
- Congestion window (cwnd)
 - Dynamic adjustment based on inferred network conditions.
- sending window = min (awnd, cwnd)

R

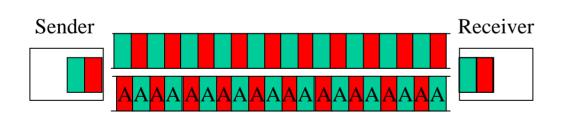
Wu-chun Feng feng@lanl.gov

Flow-Control Adaptation

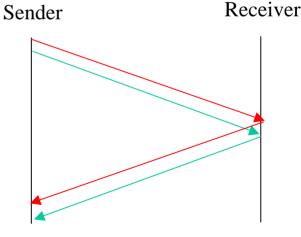
- Issues
 - > No adaptation currently being done in any "standard" TCP.
 - > 32-KB static-sized buffer is supposed to work for both LAN & WAN.
- Problem: Large bandwidth-delay products require flow-control windows as large as 1024-KB to fill the network pipe.
- Consequence: As little as 3% of network pipe is filled.
- Preliminary Solutions
 - > Manual tuning of buffers at send and receive end-hosts.
 - Too small → low bandwidth. Too large → waste memory (LAN).
 - > Automatic tuning of buffers.
 - Auto-tuning (similar to Linux auto-tuning) by Semke et al. @ PSC.

32

- Sender-based flow control.
- Dynamic right-sizing by Feng et al. @ LANL.
 - Receiver-based flow control.


Weigle & Feng, "A Comparison of TCP Automatic-Tuning Techniques for Distributed Computing," IEEE Symposium on High-Performance Distributed Computing (HPDC'02), July 2002.

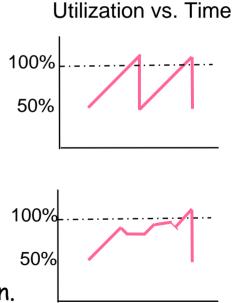
Wu-chun Feng feng@lanl.gov



The Future: Transparent Flow-Control Adaptation

- Without a "network wizard" ...
 - > Wide-area transfer between SNL & LANL of a 150-GB dataset.
 - OC-3 (155 Mb/s): 8 Mb/s \rightarrow 42 hours "Wizard Magic": 55 Mb/s
 - OC-12 (622 Mb/s): 8 Mb/s \rightarrow 42 hours "Wizard Magic": 240 Mb/s
 - The bandwidth of a driving tapes of the data from SNL to LANL is a LOT better! 150 GB / 1.75 hours = 190 Mb/s.

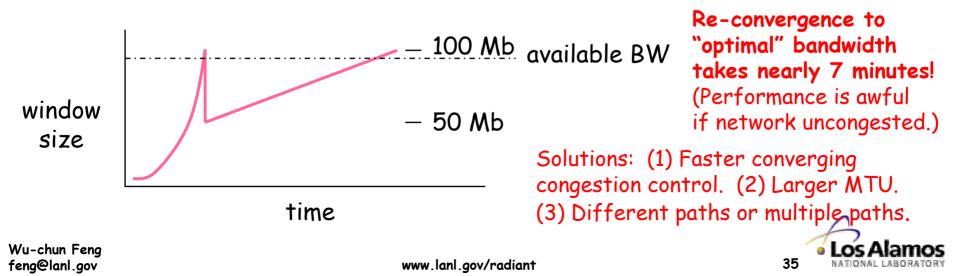
Transparently provide end-to-end performance to the application, thus "eliminating" the need for network wizards.



Wu-chun Feng feng@lanl.gov

Congestion-Control Adaptation

- Adaptation mechanisms will not scale due to
 - > Additive increase / multiplicative decrease (AIMD) algorithm.
 - Linear increase of MSS too small for the next-generation Internet.
- TCP Reno congestion control
 - Bad: Allow/induce congestion.
 Detect & recover from congestion.
 - > Analogy: "Deadlock detection & recovery" in OS.
 - Result: "At best" 75% utilization in steady state (assuming no buffering).
- TCP Vegas congestion control
 - Better: Approach congestion but try to avoid it. Usually results in better network utilization.
 - > Analogy: "Deadlock avoidance" in OS.



"Optimal" Bandwidth

• The future performance of computational grids (as well as clusters & supercomputers trying to get away from ULNI scalability problems) *looks* bad if we continue to rely on the current version of the widely-deployed TCP Reno.

Example: High BW-delay product: 1 Gb/s WAN * 100 ms RTT = 100 Mb

- Additive increase
 - \succ when window size is 1 \longrightarrow 100% increase in window size.
 - \succ when window size is 1000 \rightarrow 0.1% increase in window size.

The Future: Non-AIMD Congestion Control But "TCP-Friendly"

• AIMD is "stable & fair" but

COMPUTER & COMPUTATIONAL

SCIENCES

- Not well-suited for emerging applications (e.g., remote computational steering of a visualization dataset)
 - Its reliability and ordering semantics increase end-to-end delays and delay variations.
 - Streaming applications generally do not react well to the large and abrupt reductions in transmission rate caused by AIMD.
- Potential General Solutions
 - Deploy "TCP-friendly" (non-AIMD) congestion-control algorithms, e.g., binomial congestion-control algorithms.
 - Use network measurement, monitoring, and tomography to enable better adaptation in support of grids.
- Specific Solutions on the Horizon
 - FAST TCP (led by Low @ Caltech with CERN, LANL, and SLAC).
 - Scalable TCP (Kelly @ CERN)
 - HS-TCP (Floyd @ ICIR)
 - SCTP (IETF effort)

36 NATIONAL LABORATORY

Wu-chun Feng feng@lanl.gov

Conclusion: What is the Near-Term Future of HPN?

Host-Interface Bottlenecks

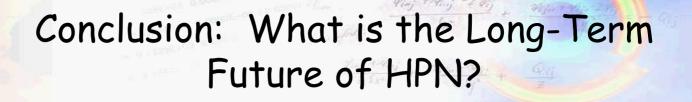
SCIENCES

➤ Software

BW & latency problems potentially solvable. What happens when we go optical to the chip?

Based on past trends, the I/O bus will

Solutions exist but are not widely deployed.


- A host can only send and receive packets as fast as the OS can process the packets.
- > Hardware (PC)
 - PCI I/O bus. 64 bit, 133 MHz = 8.5 Gb/s. continue to be a bottleneck.
- Adaptation Bottlenecks
 - Flow Control
 - No adaptation currently being done in any standard TCP.
 - Static-sized window/buffer is supposed to work for both the LAN and WAN.
 TCP Reno w/ larger MSS2 TC

Congestion Control

 Adaptation mechanisms will not scale, particularly TCP Reno (although TCP Reno w/ SACK helps immensely).

TCP Reno w/ larger MSS? TCP Vegas? Binomial congestion control?

It's here in Canada!

SCIENCES

- > Canarie network, http://www.canarie.ca, PI: Bill St. Arnaud.
- > Canada: Research Horizons, Vol. 2, No. 2, Fall 2003.
- For the next ten years, Canarie will eliminate the need to deal with adaptation bottlenecks.
 - > Bottleneck moves to scheduling lightpaths efficiently.

- In ten years?
 - > If CHEETAH over Canarie-like network is efficient, ok.
 - > Otherwise, packet-switched optical ...

38 NATIONAL LABORATORY

Wu-chun Feng feng@lanl.gov

Recent & Relevant Publications ...

Vinj + Muij

Porter & the

- Performance Evaluation and Implications of 10-Gigabit Ethernet, *IEEE Micro*, January/February 2004 (to appear).
- Optimizing 10-Gigabit Ethernet for Networks of Workstations, Clusters, and Grids, *SC2003*, Nov. 2003.
- CHEETAH: <u>Circuit-switched High-speed End-to-End Transport</u> <u>ArcHitecture</u>, <u>Best Paper Award</u>, <u>SPIE/IEEE Opticomm</u>, Oct. 2003.
- Automatic Flow-Control Adaptation for Enhancing Network Performance in Computational Grids, *Journal of Grid Computing*, Vol.1, No. 1, June 2003.
- Enabling Compatibility Between TCP Reno and TCP Vegas, *IEEE Symp.* on Applications and the Internet, Jan. 2003.
- The Quadrics Network (QsNet): High-Performance Clustering Technology, *IEEE Micro*, January/February 2002.
- Dynamic Right-Sizing: TCP Flow-Control Adaptation, IEEE/ACM SC 2001, November 2001.
- The Failure of TCP in High-Performance Computational Grids. IEEE/ACM SC 2000, November 2000.

Wu-chun Feng feng@lanl.gov

A Sample of Recent Media Coverage

- "Bandwidth Challenge Teams Push Networking Performance Envelope at SC2003 Conference - Sustained 23 Gigabits Per Second Sets New Record," *Silicon Valley Biz Ink*, December 1, 2003.
- "Foundry Provides the Network Backbone for Record-Setting Supercomputing Demonstrations," *The Washington Post*, November 25, 2003.
- "Los Alamos Sets Internet Speed Mark in Guinness Book," *GRIDtoday*, Vol. 2, No. 31, August 4, 2003.
- "Los Alamos Hits The Pipe In Record Time," *IEEE Spectrum Online*, July 31, 2003.

Los Alamos National Laboratory

Research & Development in Advanced Network Technology

http://www.lanl.gov/radiant