CS 5264/4224; ECE 5414/4414

(Advanced) Linux Kernel Programming
Lecture |0

Interrupts
February 27, 2025

Huaicheng Li
https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Interrupts: VWhat! Why? and How!

* A mechanism to implement abstraction and multiplexing
* Interrupt: asking for a service from the kernel

— via software (e.g, “int Ox80") or by hardware (e.g., keyboard)
* Interrupt handling in Linux

— how to track interrupts

— how to handle them
» top half + bottom half

Interrupts

* Compared to the CPU, devices are slow

— The kernel must be free to go and handle other work, dealing with the hardware only
after the hardware has completed some work

* How to know the completion of hardware operations!?
— Polling: busy-wairting (e.g., in a while loop), periodically checking the hardware status
— Interrupts: the hardware signals its completion to the processor
* Interrupt examples
— Completion of disk read (e.g., the disk has read 4KB data and sent it to the host)
— Key press on a keyboard
— Network packet arrival (e.g., NIC receives one network packet)

Interrupt Controller

* Interrupts are electrical signals multiplexed by the interrupt controller
— Sent to a specific pin of the CPU

* Once an interrupt is received, a dedicated function will be executed
— interrupt handler (isr)

* The kernel/user space can be interrupted at (nearly) any time to process
interrupts

Device

= Interrupt
BENISE Controller
Device

Advanced PIC (APIC, I/O APIC)

Processor #1 Processor #2 Processor #3 Processor #3
CPU CPU CPU CPU
Local APIC Local APIC Local APIC Local APIC
Interrupt Interrupt Interrupt Interrupt
Messagesi iIPIs Messageps IPls Messages IPls Messages IPls
- -
Interrupt Processor System Bus
Messages
Bridge
¢ PCI
e # o
~—— External
O APIC - |nterrupts
System Chip Set

Figure 10-2. Local APICs and I/0 APIC When Intel Xeon Processors Are Used in Multiple-Processor Systems

Source: Intel software development manual (SDM)

* |/O APIC

— system chipset (south bridge)
— redistribute interrupts to local APICs

e |Local APIC

— Inside a processor chip
— has a timer, which raises timer interrupt

—issues IPls (inter-processor interrupt)

CPU

Clock

: Front-side
Graphics Generator

bus

card slot
Chipset
Memory Slots
High-speed ® ™ DDR4/DDR3L
graphics bus T I Intel® Core Up to 2133/1600 MHz
. X8 ar x4 lanes .
(AEGP or P)C’ Northbridge Mez)mory PCI Express* 3.0 Graphics 17-6700K
Xpress, us

DDR4/DDR3L

Intel® HD Graphics 530
controller hub)

Internal
Bus

8 Gb/s each x1
Up to 20x PCI Exp
Bx SATA ports, eSATA, Port Disable

pPCI

Up to 10x USB 3.0 Ports Intel® Z170 Up to 6 Gb/s
35 Onboard

14x USB 2.0 Ports 2
XHCI; USB Port Disable Chipset

i raphics Intel® Rapid Storage Technology
SOUth b fl d ge Sl for PCI Express Storage
PCI (|/O controller COﬂtrO”EI’
Bus hub) Intel® Integrated

10/100/1000 MAC
IDE

SATA

usB

Ethernet
Audio Codec
CMOS Memory

Intel® Smart Sound Technology

Cables and PCle x1 SMBus SPI
ports leading

off-board . "
" 2 5 Intel* ME 11 Firmware
Intel® Ethernet Connection and BIOS Support
Intel* Extreme Tuning
Utility Support
intel® Device Protection
Technology with Boot Guard

PCI Slots

Super /O

Serial Port

Parallel Port

Flash ROM Floppy Disk

(BI0S) *House

Interrupt Request (IRQ)
* Interrupt line or interrupt request (IRQ)

— device identifier, 1.e,, who generates the interrupt!
* e.g, in 8259A interrupt lines
— IRQ O: system timer
— IRQ I: keyboard controller
— IRQ 3, 4: serial port
— [RQ 5: terminal
* Some interrupt lines can be shared among several devices

— e.g,, for modern PCle devices

Exceptions
* Exceptions are interrupts issued by the CPU

— software interrupt, as opposed to hardware interrupts

— Examples:
» program faults: division-by-zero, page fault, general protection fault, etc.

» Voluntary exceptions: “int” instruction, e.g., for syscall invocations (in the old days)

* Exceptions are managed by the kernel in the same way as hardware interrupts

Hardware Interrupt Interface
* Non-Maskable Interrupt (NMI)

— Never get ignored, e.g., power failure, memory error

— On x86, vector 2, prevent other interrupts from executing
* Maskable interrupts

— lgnored when “IF" bit in “"EFLAGS™ i1s O

— Instructions to enable/disable interrupts:

» “cli”: clear interrupt
* INTA

— Interrupt acknowledgement
— End of Interrupt (EOI)

10

“Software” Interrupt: INT

* Intentional interrupts
— “Int” Instructions on x86

— invokes the interrupt handler for the vectors, N in [0-255]
» N-th interrupt handler

— Entening: "int N”
— Exiting: “iret”

11

12

Interrupt Descriptor Table (IDT)

« IDT
— Table of 256 8-byte entries (similar to GDT)

— located in memory

IDTR Register
* IDTR register stores current IDT 47 a8 S
IDT Base Address IDT Limit
o “lidt” instruction to load IDT
— loads IDTR with address and size of the ID i
. . Interrupt
— Takes in a linear address o () Doscrplox Table (0T
Gate for
Interrupt #n (n-1)+8
S S
Gate for
Interrupt #3 16
Gate for
Interrupt #2 8
Gate for
» Interrupt #1 0
31 0

Figure 6-1. Relationship of the IDTR and IDT

31

Interrupt/Trap Gate

Reserved 12
31 0
Offset 63..32 8
31 16 15 14 13 12 11 8 7 54 2 0
Offset 31..16 P E o/ TYPE 0 O O(o|O]| IST (4
L

31 16 15 0

Segment Selector Offset 15..0 0

DPL Descriptor Privilege Level

Offset Offset to procedure entry point

P Segment Present flag

Selector Segment Selector for destination code segment

IST Interrupt Stack Table

Figure 6-7. 64-Bit IDT Gate Descriptors

13

Interrupt Descriptor Entry

» Offset is a 32-bit value split into two parts pointing to the destination IP or EIP
Segment selector points to the destination CS in the kernel

Present flag indicates that this is a valid entry

Descriptor Privilege Level (DPL) indicates the minimum privilege level of the caller
to prevent users from calling hardware interrupts directly

* Size of gate can be 32 bits or |6 bits
Interrupt/Trap Gate
31 0
Reserved 12
31 0
Offset 63..32 8
31 16 15 14 13 12 11 8 7 54 2 0
Offset 31..16 P IED) o| TYPE 0 0 O|ofo| IST |4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
IST Interrupt Stack Table

Figure 6-7. 64-Bit IDT Gate Descriptors

Predefined Interrupt Vectors

e O: Divide Error
|: Debug Exception

2: Non-Maskable Interrupt

3: Breakpoing Exception (e.g., int 3)
4: Invalid Opcode

| 3: General Protection Fault

| 4: Page Fault

| 8: Machine (abort)

32-255: User Defined Interrupts

15

. 16
INT Instruction

* Fetch the interrupt descriptor for a vector (e.g., 0x80) from the IDT
— IDT base addr + 0x80 * 8bytes

Check that CPL <= DPL in the descriptor

Save ESP and SS in a CPU-internal register

Load SS and ESP from TSS (Task State Segment)
Plush user SS, ESP, EFLAGS, CS, EIP

Clear certain EFLAGS bits

Set CS and EIP from IDT descriptor's segment selector and offset

Interrupt Service Routine (ISR)

* Interrupt handler or interrupt service routine (ISR)

— functions executed by the CPU in response to a specific interrupt

* In Linux, a normal C function matching a specific prototype to pass in the handler
iInformation

* Runs In interrupt context (or atomic context)

— Opposite to process context (system call)
— A task cannot sleep in an ISR b/c ... (?)

17

ISR Design Goals

* Interrupt processing should be fast

— minimizing disrupting user process execuction (user/kernel space)

— get back to other interrupts which might arrive during an ongoing interrupt processing
* Interrupt processing might involve much work to do

— it takes time ...

— e.g, processing a network packet from the NIC

18

Top-half vs. Bottom-half

* In Linux (and many other OSes), an interrupt process is split into two parts
* Top-half: run iImmediate upon receiving the interrupt
— only handle time-critical operations, e.g., ack and reset interrupt

* Bottom-half: less critical & time-consuming work

— Run later with other interrupts enabled

* An example: network packet processing
— Top-half
» acknowledge the hardware, “hey, | received your signal”
» Copy packet to main memory
» Set the NIC to a status to receive more packets
» Critical: packet buffer on NIC is limited, might lead to packet drop if not processed timely
— Bottom-half
» softirg, tasklet, workqueue

» Similar to thread pool in user-space

19

Registering an Interrupt Handler

/* linux/include/linux/interrupt.h */

/**
This call allocates interrupt resources and enables the
interrupt line and IRQ handling.

@irq: Interrupt line to allocate
@handler: Function to be called when the IRQ occurs.
Primary handler for threaded interrupts
@irqgflags: Interrupt type flags
IRQF_SHARED - allow sharing the irq among several devices
IRQF_TIMER - Flag to mark this interrupt as timer interrupt
IRQF_TRIGGER_* - Specify active edge(s) or level
@devname: An ascii name for the claiming device
@dev_id: A cookie passed back to the handler function
Normally the address of the device data structure
is used as the cookie.

0% % % X % R O X O X O F %

*
N

int request_irq(unsigned int irq, irq_handler_t handler,
unsigned long irqflags, const char *devname, void *dev_id);

20

. 21
Freeing an Interrupt Handler

/* linux/include/linux/interrupt.h */

/**
* Free an interrupt allocated with request_irq
*
* @irq: Interrupt line to free
* @dev_id: Device identity to free
*
* Remove an interrupt handler. The handler is removed and if the
* Interrupt line is no longer in use by any driver it is disabled.
* 0On a shared IRQ the caller must ensure the interrupt is disabled
* on the card it drives before calling this function. The function
* does not return until any executing interrupts for this IRQ
* have completed.
*
*

Returns the devname argument passed to request_irq.
*/
const void *free_irq(unsigned int irq, void *dev_id);

Writing an Interrupt Handler

/* linux/include/linux/interrupt.h */

/**
* Interrupt handler prototype

*

* @irq: the interrupt line number that the handler is serving
* @dev_id: a generic pointer that was given to request_irq()

* when the interrupt handler is registered

*

* Return value:

* IRQ_NONE: the interrupt is not handled (i.e., the expected

* device was not the source of the interrupt)

* IRQ_HANDLED: the interrupt is handled (i.e., the hanlder was

* correctly invoked)

* #define IRQ_RETVAL(x) ((x) ? IRQ_HANDLED : IRQ_NONE)

*

* NOTE: interrupt handlers need not be reentrant (tread-safe)

* - When a given interrupt handler is executing, the corresponding
* interrupt line is disabled on all cores while.

* - Normally all other interrupts are enables, os other interrupts
* are serviced.

*/

typedef irqreturn_t (*irq_handler_t) (int irq, void *dev_id);

22

Shared Handlers

* The IRQF_SHARED flag must be set in the flags argument to request_irq()
* The dev_id argument must be unique to each registered handler

— A pointer to any per-device structure is sufficient (e.g., struct device {})

— When the kernel receives an interrupt, it invokes sequentially each registered handler on
the line

» Therefore, it's important that the handler is capable of distinguishing whether it generates a
given interrupt

23

Interrupt Context

* Process context: normal task execution, syscall, and exception
* Interrupt context: ISR

— Sleeping/blocking is not possible b/c ISR is not a schedulable entity
— No kmalloc(size, GFP_KERNEL), use “GFP_ATOMIC" instead
— No blocking locking (e.g., mutex), use “spinlock()” instead

— No printk(), use trace_printk instead

* Small stack size, one page, e.g., 4KB

24

. . . 25
Interrupt Handling in Linux

Hardware _
device is there Yes generic handle
common interrupt () QGCLEULIERIRUIEEY— . —
Interrupt - A line ? _irq_desc()
generated
Interrupt Run all interrupt
controller Nol handlers on this line
* irgentry exit () a— ‘

Kernel/
P> userspace ‘
CPU interrupted Resume interrupted code

Specific entry point for each interrupt line
— Saves the interrupt number and current registers
— Calls common_interrupt()
common_interrupt(struct pt_regs *reg, u32 vector)
— Ack interrupt, disable the line
— Calls architecture specific functions
Call chain ends up by calling generic_handle_irq_desc()
— cal the handler if the line I1s not shared
— otherwise iterate over all the handlers registered on that line
— disable interrupts on the line again If they were previously enabled
common_interrupt() returns to entry point that call irgentry_exit()
— checks If reschedul is needed (need_resched)

— restore register values

26

IDT Initialization

/* 1linux/arch/x86/include/asm/desc_defs.h */
struct gate_struct {

ulé offset_low;

uleé segment;

struct idt_bits bits;

ule offset_middle;
#ifdef CONFIG_X86_64

u32 offset_high;

u32 reserved;
#endif

} __attribute__((packed));
typedef struct gate_struct gate_desc;

/* linux/arch/x86/kernel/traps.c */
DECLARE_BITMAP (system_vectors, NR_VECTORS);

27

/* linux/arch/x86/include/asm/idtentry.h
/*
* Build the entry stubs with some assembler magic.
* We pack 1 stub into every 8-byte block.
*/
.align 8
SYM_CODE_START (irg_entries_start)
vector=FIRST_EXTERNAL_VECTOR
.rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
UNWIND_HINT_IRET_REGS

.byte 0x6a, vector
jmp asm_common_interrupt
nop
/* Ensure that the above is 8 bytes max */
. = 0b + 8
vector = vector+l
.endr
SYM_CODE_END(irq_entries_start)

/* linux/init/main.c */

asmlinkage __visible void __init start_kernel(void)

{

}

/* ... */
early_irq_init();
init_IRQ();

/* L. */

/* linux/arch/x86/kernel/irqinit.c */
void __init init_IRQ(void)

{

int i;
for (i = 0; i < nr_legacy_irqs(); i++)

per_cpu(vector_irq, ©)[ISA_IRQ_VECTOR(i)] = irqg_to_desc(i);
BUG_ON(irg_init_percpu_irqstack(smp_processor_id()));

x86_init.irqs.intr_init();

/* linux/arch/x86/kernel/idt.c */
void __init idt_setup_apic_and_irq_gates(void)

{

int i = FIRST_EXTERNAL_VECTOR;
void *entry;

idt_setup_from_table(idt_table, apic_idts, ARRAY_SIZE(apic_idts), true);
for_each_clear_bit_from(i, system_vectors, FIRST_SYSTEM_VECTOR) {

entry = irq_entries_start + 8 * (i - FIRST_EXTERNAL_VECTOR);
set_intr_gate(i, entry);

/* linux/arch/x86/kernel/irqinit.c */

void __init native_init_IRQ(void)

{

28

/* Execute any quirks before the call gates are initialised: */

x86_init.irqgs.pre_vector_init();

idt_setup_apic_and_irq_gates();

lapic_assign_system_vectors();

if (lacpi_ioapic && !of_ioapic && nr_legacy_irqs())

setup_irq(2, &irq2);

/* 1linux/arch/x86/kernel/idt.c */

static void set_intr_gate(unsigned int n, const void *addr)

{

struct idt_data data;

BUG_ON(n > OxFF);

memset(&data, 0, sizeof(data));

data.
data.

data

data.
data.

idt_setup_from_table(idt_table, &data, 1, false);

vector = n;

addrxr = addr;

.segment = __KERNEL_CS;
bits.type = GATE_INTERRUPT;
bits.p = 1;

Interrupt Control

» Kernel code sometimes need to disable interrupts to ensure atomic execution
— By disabling interrupts, it guarantees that an interrupt handle will not preempt your code
— Disabling interrupts also disables kernel preemption

 Disabling interrupts does not protect against concurrent access from other cores
— Need locking, often used in conjunction with interrupt disabling

* The kernel provides APIs to disable/enable interrupts
— local_irg_disable()
— local_irg_enable()

— can be called multiple times

29

Disabling Interrupts on the Local Core

» Use local_irg_save()

unsigned long flags;

local_irq_save(flags); /* disables interrupts if needed */

/* ... */

local_irq_restore(flags),; /* restore interrupt status to the previous */

/* nesting is okay */
unsigned long flags;
local_irq_save(flags);
{
unsigned long flags;
local_irq_save(flags);
/* ... */
local_irq_restore(flags);
}

local_irq_restore(flags);

30

Disabling Specific Interrupts

/** disable irq - disable an irq and wait for completion
* @irq: Interrupt to disable

Disable the selected interrupt line. Enables and Disables are
nested.

This function waits for any pending IRQ handlers for this interrupt
to complete before returning. If you use this function while
holding a resource the IRQ handler may need you will deadlock.

* ¥ % F ¥ % ¥

* This function may be called - with care - from IRQ context. *//
void disable_irq(unsigned int irq);

/** disable_irq nosync - disable an irq without waiting
* @irq: Interrupt to disable */
void disable_irq_nosync(unsigned int irq);

/** enable_irq - enable handling of an irq
* @irq: Interrupt to enable
*
* Undoes the effect of one call to disable irq(). If this
* matches the last disable, processing of interrupts on this
* IRQ line is re-enabled. */
void enable_irq(unsigned int irq);

Interrupt Status

Mg
%

N
*

% %R X ¥ % B W

L4
#define
#define
#define
#define
#define
#define

In.-1rg()

in_nmi()
in_softirq()

in_task()

in_irq()
in_interrupt()
in_nmi()
in_softirq()
in_serving_softirq()
in_task()

linux/include/linux/preempt.h */

Are we doing bottom half or hardware interrupt processing?

- We're in (hard) IRQ context

in_interrupt() - We're in NMI,IRQ,SoftIRQ context or have BH disabled
- We're in NMI context

- We have BH disabled, or are processing softirqgs
in_serving_softirq() - We're in softirqg context

- We're in task context

(hardirqg_count())

(irg_count())

(preempt_count() & NMI_MASK)
(softirqg_count())

(softirg_count() & SOFTIRQ_OFFSET)
(!(preempt_count() & \

(NMI_MASK | HARDIRQ_MASK | SOFTIRQ_OFFSET)))

32

References

* LWN: Debugging the kernel using Ftrace — part |

* OXAX; Interrupts and Interrupt Handling

33

https://lwn.net/Articles/365835/
https://0xax.gitbooks.io/linux-insides/content/Interrupts/

