
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 10

Interrupts

February 27, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/


2
Interrupts: What? Why? and How?
• A mechanism to implement abstraction and multiplexing
• Interrupt: asking for a service from the kernel

– via software (e.g., “int 0x80”) or by hardware (e.g., keyboard)
• Interrupt handling in Linux

– how to track interrupts
– how to handle them

» top half + bottom half



3
Interrupts
• Compared to the CPU, devices are slow

– The kernel must be free to go and handle other work, dealing with the hardware only 
after the hardware has completed some work

• How to know the completion of hardware operations? 
– Polling: busy-waiting (e.g., in a while loop), periodically checking the hardware status
– Interrupts: the hardware signals its completion to the processor

• Interrupt examples
– Completion of disk read (e.g., the disk has read 4KB data and sent it to the host)
– Key press on a keyboard
– Network packet arrival (e.g., NIC receives one network packet)



4
Interrupt Controller
• Interrupts are electrical signals multiplexed by the interrupt controller

– Sent to a specific pin of the CPU
• Once an interrupt is received, a dedicated function will be executed

– interrupt handler (isr)
• The kernel/user space can be interrupted at (nearly) any time to process 

interrupts



5
Advanced PIC (APIC, I/O APIC)

Source: Intel software development manual (SDM)



6

• I/O APIC
– system chipset (south bridge)
– redistribute interrupts to local APICs

• Local APIC
– inside a processor chip
– has a timer, which raises timer interrupt
– issues IPIs (inter-processor interrupt)



7



8
Interrupt Request (IRQ)
• Interrupt line or interrupt request (IRQ)

– device identifier, i.e., who generates the interrupt?
• e.g., in 8259A interrupt lines

– IRQ 0: system timer
– IRQ 1: keyboard controller
– IRQ 3, 4: serial port
– IRQ 5: terminal

• Some interrupt lines can be shared among several devices
– e.g., for modern PCIe devices



9
Exceptions
• Exceptions are interrupts issued by the CPU

– software interrupt, as opposed to hardware interrupts
– Examples:

» program faults: division-by-zero, page fault, general protection fault, etc.
» Voluntary exceptions: “int” instruction, e.g., for syscall invocations (in the old days)

• Exceptions are managed by the kernel in the same way as hardware interrupts



10
Hardware Interrupt Interface
• Non-Maskable Interrupt (NMI)

– Never get ignored, e.g., power failure, memory error
– On x86, vector 2, prevent other interrupts from executing

• Maskable interrupts
– Ignored when “IF” bit in “EFLAGS” is 0
– Instructions to enable/disable interrupts: 

» “sti”: set interrupt
» “cli”: clear interrupt

• INTA
– interrupt acknowledgement
– End of Interrupt (EOI)



11
“Software” Interrupt: INT
• Intentional interrupts

– “int” instructions on x86
– invokes the interrupt handler for the vectors, N in [0-255]

» N-th interrupt handler
– Entering: ”int N”
– Exiting: “iret”



12
Interrupt Descriptor Table (IDT)
• IDT

– Table of 256 8-byte entries (similar to GDT)
– located in memory

• IDTR register stores current IDT
• “lidt” instruction to load IDT

– loads IDTR with address and size of the IDT
– Takes in a linear address



13



14
Interrupt Descriptor Entry
• Offset is a 32-bit value split into two parts pointing to the destination IP or EIP
• Segment selector points to the destination CS in the kernel
• Present flag indicates that this is a valid entry
• Descriptor Privilege Level (DPL) indicates the minimum privilege level of the caller 

to prevent users from calling hardware interrupts directly
• Size of gate can be 32 bits or 16 bits



15
Predefined Interrupt Vectors
• 0: Divide Error
• 1: Debug Exception
• 2: Non-Maskable Interrupt
• 3: Breakpoing Exception (e.g., int 3)
• 4: Invalid Opcode
• 13: General Protection Fault
• 14: Page Fault
• 18: Machine (abort)
• 32-255: User Defined Interrupts



16
INT Instruction
• Fetch the interrupt descriptor for a vector (e.g., 0x80) from the IDT

– IDT base addr + 0x80 * 8bytes
• Check that CPL <= DPL in the descriptor
• Save ESP and SS in a CPU-internal register
• Load SS and ESP from TSS (Task State Segment)
• Plush user SS, ESP, EFLAGS, CS, EIP
• Clear certain EFLAGS bits
• Set CS and EIP from IDT descriptor’s segment selector and offset



17
Interrupt Service Routine (ISR)
• Interrupt handler or interrupt service routine (ISR)

– functions executed by the CPU in response to a specific interrupt
• In Linux, a normal C function matching a specific prototype to pass in the handler 

information
• Runs in interrupt context (or atomic context)

– Opposite to process context (system call)
– A task cannot sleep in an ISR b/c ... (?)



18
ISR Design Goals
• Interrupt processing should be fast

– minimizing disrupting user process execuction (user/kernel space)

– get back to other interrupts which might arrive during an ongoing interrupt processing

• Interrupt processing might involve much work to do 
– it takes time ...

– e.g., processing a network packet from the NIC 



19
Top-half vs. Bottom-half
• In Linux (and many other OSes), an interrupt process is split into two parts
• Top-half: run immediate upon receiving the interrupt

– only handle time-critical operations, e.g., ack and reset interrupt
• Bottom-half: less critical & time-consuming work

– Run later with other interrupts enabled
• An example: network packet processing

– Top-half
» acknowledge the hardware, “hey, I received your signal”
» Copy packet to main memory
» Set the NIC to a status to receive more packets
» Critical: packet buffer on NIC is limited, might lead to packet drop if not processed timely

– Bottom-half
» softirq, tasklet, workqueue
» Similar to thread pool in user-space



20
Registering an Interrupt Handler



21
Freeing an Interrupt Handler



22
Writing an Interrupt Handler



23
Shared Handlers
• The IRQF_SHARED flag must be set in the flags argument to request_irq()
• The dev_id argument must be unique to each registered handler

– A pointer to any per-device structure is sufficient (e.g., struct device {})
– When the kernel receives an interrupt, it invokes sequentially each registered handler on 

the line
» Therefore, it’s important that the handler is capable of distinguishing whether it generates a 

given interrupt



24
Interrupt Context
• Process context: normal task execution, syscall, and exception
• Interrupt context: ISR

– Sleeping/blocking is not possible b/c ISR is not a schedulable entity
– No kmalloc(size, GFP_KERNEL), use “GFP_ATOMIC” instead
– No blocking locking (e.g., mutex), use “spinlock()” instead
– No printk(), use trace_printk instead

• Small stack size, one page, e.g., 4KB



25
Interrupt Handling in Linux



26

• Specific entry point for each interrupt line
– Saves the interrupt number and current registers
– Calls common_interrupt()

• common_interrupt(struct pt_regs *reg, u32 vector)
– Ack interrupt, disable the line
– Calls architecture specific functions

• Call chain ends up by calling generic_handle_irq_desc()
– cal the handler if the line is not shared
– otherwise iterate over all the handlers registered on that line
– disable interrupts on the line again if they were previously enabled

• common_interrupt() returns to entry point that call irqentry_exit()
– checks if reschedul is needed (need_resched)
– restore register values



27
IDT Initialization



28



29
Interrupt Control
• Kernel code sometimes need to disable interrupts to ensure atomic execution

– By disabling interrupts, it guarantees that an interrupt handle will not preempt your code
– Disabling interrupts also disables kernel preemption

• Disabling interrupts does not protect against concurrent access from other cores
– Need locking, often used in conjunction with interrupt disabling

• The kernel provides APIs to disable/enable interrupts
– local_irq_disable()
– local_irq_enable()
– can be called multiple times



30
Disabling Interrupts on the Local Core
• Use local_irq_save()



31
Disabling Specific Interrupts



32
Interrupt Status 



33
References
• LWN: Debugging the kernel using Ftrace – part 1
• 0xAX; Interrupts and Interrupt Handling

https://lwn.net/Articles/365835/
https://0xax.gitbooks.io/linux-insides/content/Interrupts/

