
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 11

Interrupt Handler: Bottom Half

March 4, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/


2
Interrupts: What? Why? and How?
• A mechanism to implement abstraction and multiplexing
• Interrupt: asking for a service from the kernel

– via software (e.g., “int 0x80”) or by hardware (e.g., keyboard)
• Interrupt handling in Linux

– how to track interrupts
– how to handle them

» top half + bottom half



3
Interrupt Controller
• Interrupts are electrical signals multiplexed by the interrupt controller

– Sent to a specific pin of the CPU
• Once an interrupt is received, a dedicated function will be executed

– interrupt handler (isr)
• The kernel/user space can be interrupted at (nearly) any time to process 

interrupts



4
Top-half vs. Bottom-half
• In Linux (and many other OSes), an interrupt process is split into two parts
• Top-half: run immediate upon receiving the interrupt

– only handle time-critical operations, e.g., ack and reset interrupt
• Bottom-half: less critical & time-consuming work

– Run later with other interrupts enabled
• An example: network packet processing

– Top-half
» acknowledge the hardware, “hey, I received your signal”
» Copy packet to main memory
» Set the NIC to a status to receive more packets
» Critical: packet buffer on NIC is limited, might lead to packet drop if not processed timely

– Bottom-half
» softirq, tasklet, workqueue
» Similar to thread pool in user-space



5
Registering an Interrupt Handler



6
Freeing an Interrupt Handler



7
Writing an Interrupt Handler



8
Interrupt Context
• Process context: normal task execution, syscall, and exception
• Interrupt context: ISR

– Sleeping/blocking is not possible b/c ISR is not a schedulable entity
– No kmalloc(size, GFP_KERNEL), use “GFP_ATOMIC” instead
– No blocking locking (e.g., mutex), use “spinlock()” instead
– No printk(), use trace_printk instead

• Small stack size, one page, e.g., 4KB



9
Interrupt Handling in Linux



10

• Specific entry point for each interrupt line
– Saves the interrupt number and current registers
– Calls common_interrupt()

• common_interrupt(struct pt_regs *reg, u32 vector)
– Ack interrupt, disable the line
– Calls architecture specific functions

• Call chain ends up by calling generic_handle_irq_desc()
– cal the handler if the line is not shared
– otherwise iterate over all the handlers registered on that line
– disable interrupts on the line again if they were previously enabled

• common_interrupt() returns to entry point that call irqentry_exit()
– checks if reschedul is needed (need_resched)
– restore register values



11
IDT Initialization



12



13
Interrupt Control
• Kernel code sometimes need to disable interrupts to ensure atomic execution

– By disabling interrupts, it guarantees that an interrupt handle will not preempt your code
– Disabling interrupts also disables kernel preemption

• Disabling interrupts does not protect against concurrent access from other cores
– Need locking, often used in conjunction with interrupt disabling

• The kernel provides APIs to disable/enable interrupts
– local_irq_disable()
– local_irq_enable()
– can be called multiple times



14
Disabling Interrupts on the Local Core
• Use local_irq_save()



15
Disabling Specific Interrupts



16
Interrupt Status 



17
Today’s Agenda
• Mechanisms for bottom-half!



18
Interrupt Handler
• Top-halves (interrupt handlers) must run as fast as possible

– They are interrupting other kernel/user code
– They are often timing-critical b/c they deal with hardware
– They run in interrupt context: no blocking
– One or all interrupts are disabled

• Defer the less critical part of interrupt processing to a bottom-half



19
Top-halves vs. Bottom-halves
• When to use top-half?

– Work is time sensitive
– Work is related to controlling the hardware
– Work should not be interrupted by other interrupts
– The top half is quick and simple, and runs with some/all interrupts disabled

• When to use bottom halves?
– Everything else
– the bottom half runs later with all interrupts enabled



20
History of Bottom-Half
• “Top-half” and “Bottom-half” are generic terms, not specific to Linux
• Old “Bottom-Half” (BH) mechanism

– a statically allocated list of 32 bottom halves
– globally synchronized
– easy-to-use yet inflexible and a performance bottleneck

• Task queues: queues of function pointers
– still too inflexible
– not lightweight enough for performance-critical subsystems (e.g., networking)



21

• BH à Softirq, tasklet
• Task queue à work queue



22
Today’s Bottom Halves in Linux
• All bottom-half mechanisms run with all interrupts enabled
• Softirqs and tasklets run in interrupt context

– Softirq is rarely used directly
– Tasklet is a simple and easy-to-use softirq (bult on softirq)

• Work queues run in process context
– They can block and go to sleep



23
Softirq
• include/linux/interrupt.h
• kernel/softirq.c



24
Executing Softirq
• Raising the softirq

– Mark the execution of a particular softirq is needed
– Usually, a top-half marks its softirq for execution before returning

• Pending softirqs are checked and executed in the following:
– In the return from hardware interrupt code path
– In the “ksoftirqd” kernel thread
– In any code that explicitly checks for and executes pending softirqs



25

• Going over the softirq vector and executes the pending softirq handler



26
Using Softirq



27
Using Softirq: Registering a Handler



28
Using Softirq
• Softirq registration

– Done by the driver at initialization phase
• Softirq handler

– Run with interrupts enabled and cannot sleep
– The key advantage of softirq over tasklet is scalability

» If the same softirq is raised again while it’s executing, another processor can run it 
simultaneously

– This means that any shared data needs proper locking
» To avoid locking, most softirq handlers resort to per-CPU data (data unique to each processor 

and thus not requiring locking)
• Raising a softirq

– Softirqs are most often raised from within interrupt handlers (i.e., top halves)
– The interrupt handler performs the basic hardware-related work, raises the softirq, and 

then exits



29

Register softirq

Raise softirq



30
Tasklet
• Built on top of softirqs

– HI_SOFTIRQ: high priority tasklet
– TASKLET_SOFTIRQ: normal priority tasklet

• Running in an interrupt context (i.e., no sleep)
– Like softirq, all interrupts are enabled

• Restricted concurrency than softirq
– The same tasklet cannot run concurrently



31

• include/linux/interrupt.h



32
Scheduling a tasklet
• Scheduled tasklets are stored in two per-CPU linked lists

– tasklet_vec, tasklet_hi_vec



33



34
Tasklet Softirq Handlers



35



36
Using tasklet: Declaring a tasklet



37
Using tasklet: tasklet handler
• Run with interrupts enabled and cannot sleep

– If your tasklet shared data with an interrupt handler, be cautious
• Two of the same tasklets never run concurrently

– B/c tasklet_action() checks TASKLET_STATE_RUN
• But two different tasklets can run at the same time on two different processors



38
Scheduling a tasklet



39
Overwhelming Softirqs
• System can be flooded by softirqs (and tasklets)

– Softirq might be raised at high rates (e.g., heavy network traffic)
– While running, a softirq can raise itself so that it runs again

• How to handle such overwhelming softirqs? 
– Keep processing softirqs as they come in

» May starve userspace applications
– Process one softirq at a time

» Should wait until the next interrupt occurance
» Sub-optimal on an idle system



40
ksoftirqd
• Per-CPU kernel thread to aid processing softirqs
• If the number of softirqs grows excessively, the kernel wakes up ksoftirqd with 

normal priority (nice 0)
– No starvation of userspace applications
– Running a softirq has the normal priority (nice 0)



41
Workqueue
• Workqueue defers work to a kernel thread

– Always runs in process context
– workqueues are schedulable and can therefore sleep

• By default, per-cpu kernel thread is created, “kworker/n”
– The kernel also creates many other additional per-CPU work threads
– Workqueue users can also create their own threads

» e.g., for performance and load balancing



42
Workqueue Data Structure



43
Workqueue: Worker Thread
• Worker threads execute the “worker_thread()” function
• Infinite loop doing the following:

– Check if there is some work to do in the current pool
– If so, execute all the work_struct objects pending in the pool ”worklist” by calling 

process_scheduled_works()
» Call the work_struct function pointer “func”
» remove work_struct object

– Go to sleep until a new work is inserted in the workqueue



44
Workqueue: Creating Work



45
Workqueue: Scheduling Work



46
Workqueue: Finishing Work



47
Workqueue Example



48



49



50
Choosing the Right Bottom-Half

Bottom half Context Inherent serialization
Softirq Interrupt None
Tasklet Interrupt Against the same tasklet
Workqueue Process None

All of these generally run with interrupts enabled

If there is shared data with an interrupt handler (top-half), need to disable 
interrupts or use locks

Tasklet is depreciated, use workqueue!



51
Threaded IRQ: Alternative to Top/Bottom-Half
• threaded interrupt handler seeks to reduce the time spent with interrupts disabled 

to a bare minimum
– pushing the rest of the processing out into kernel threads
– low latencies ...

• How threaded interrupt helps
– reducing complexity by simplifying locking between hard and soft parts of interrupt 

handling
– threaded handlers will also help the debuggability of the kernel



52
Disabling softirq and tasklet
• The calls can be nested

– Only the final call to local_bh_enable() actually enables bottom halves
• These calls do not idsable workqueue processing



53


