CS 5264/4224; ECE 5414/4414

(Advanced) Linux Kernel Programming
Lecture |3

Synchronization
March [8, 2025

Huaicheng Li
https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Thus Far ...

* Linux kernel tooling, debugging, code exploration ...
* syscall

* module

* data structure

* scheduling

* Iinterrupts

* time

Today’s Agenda: Kernel Synchronization

* Multi-core processing
* Introduction to synchronization
* Next lecture

— synchronization mechanisms in Linux kernel
— RCU

Exponential Data Growth

Data growth

50

Z
45

40

35

30

25

20

Data (zettabytes)

15.8 4
15 .~:3:".

7.9 ..::::::'-":"
10 =

4.4
03 ™
0

2006 2008 2010 2012 2014 2016 2018 2020

Single-core Scaling Stopped

50 Years of Microprocessor Trend Data

! ' ! ! {"
720 T S SR SN S L
10 g “ "% |Transistors
oL - YV R | (thousands)
5) ik “ Single-Thread
- : : AATA -
10 ahht Y g *® ¥ performance 3
ot | | s Tl L 1(SpecINT x 10)
AA E i [FI’
: e , mi| Frequency (MHz
0° | - Af.q'..:*'l‘-""-""' AR e Froaueney (M)
a ar i * o 3v% | Typical Power
7Y I S -y S v W 3 (Watts)
A ..= evvv V"v vy * 9 % Mt v
L S S RaSL 2 RN ¢ A * | Number of
10 . s ® v 7 D B *+*| Logical Cores
Pl B v VoY vv | 0“.‘:.‘
10° —~£--Q ~~~~~~~~~~~ X. ~~~~~~~ H 000 W ommm Mmoo -
| | | 1 |
1970 1980 1990 2000 2010 2020
Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2021 by K. Rupp

Source: https://github.com/karlrupp/microprocessor-trend-data

Increasing clock frequency is not possible anymore
— Power consumption: higher frequency = higher power consumption
— Wire delay: range of a wire in one clock cycle

Limitations in Instruction Level Parallelism (ILP)

— 1980s: more transistors = superscalar = pipeline
» 10 CPI (cycles per instruction) = | CPI

— 1990s: multi-way issue, out-of-order (OOOQ) issue, branch prediction
» | CPI = 0.5 CPI

Moore's Law: #transistors doubles approximately every two years
~2007: make a single-core processor faster

— deeper pipeline, branch prediction, 0oo, etc.
2007~ increase the number of cores in a chip

— multi-core processor

Ryzen Threadripper PRO 7000 Series

AMD Ryzen™ Threadripper™ PRO
7995WX

AMD Ryzen™ Threadripper™ PRO
7985WX

AMD Ryzen™ Threadripper™ PRO
7975WX

AMD Ryzen™ Threadripper™ PRO
7965WX

AMD Ryzen™ Threadripper™ PRO
7955WX

AMD Ryzen™ Threadripper™ PRO
7945WX

Source: here

Graphics Model

Discrete Graphics Card
Required

Discrete Graphics Card
Required

Discrete Graphics Card
Required

Discrete Graphics Card
Required

Discrete Graphics Card
Required

Discrete Graphics Card
Required

of CPU
Cores

96

of
Threads

192

Max. Boost

Clock

Up to 5.1 GHz

Up to 5.1 GHz

Up to 5.3 GHz

Up to 5.3 GHz

Up to 5.3 GHz

Up to 5.3 GHz

Base Clock

Thermal Solution

(PIB)

Not Included

Not Included

Not Included

Not Included

Not Included

Not Included

Default

TDP

350W

https://www.amd.com/en/products/processors/workstations/ryzen-threadripper.html

of CPU Cores # of Threads Max. Boost Clock Base Clock L3 Cache Default TDP

192 384 Up to 3.7 GHz 2.25 GHz 384 MB 500W
160 320 Up to 3.7 GHz 2.1 GHz 320 MB 390W
144 288 Up to 3.7 GHz 2.2 GHz 384 MB 390W
256 Up to 4.1 GHz 2.7 GHz 512 MB 500W

256 Up to 3.7 GHz 2.4 GHz 256 MB 400W

192 Up to 4.5 GHz 2.6 GHz 384 MB 400W

192 Up to 4.5 GHz 2.6 GHz 384 MB 400W

192 Up to 3.7 GHz 23 GHz 256 MB 320W

128 Up to 5 GHz 3.3 GHz 256 MB 400W

144 Up to 4.3 GHz 3.15 GHz 384 MB 400W

Up to 4.4 GHz 3.2 GHz 256 MB 360W

Up to 4.4 GHz 3.2 GHz 256 MB 360W

Up to 4.3 GHz 2.4 GHz 256 MB 300W

Up to 4.8 GHz 3.65 GHz 256 MB 400W

Up to 4.4 GHz 3.15 GHz 256 MB 300W

Up to 4.4 GHz 3.15 GHz 256 MB 300W

Source: here

https://www.amd.com/en/products/processors/server/epyc/9005-series.html

Model Cores/ Base/Boost TDP L3 Cache

Threads (GHz) (MB)
Xeon 6980P
(GNR) 128 / 256 2.0/3.9 500W 504
Xeon 6979P
(GNR) 120/ 240 2.1/3.9 500W 504

Source: here

https://www.tomshardware.com/pc-components/cpus/intel-launches-granite-rapids-xeon-6900p-series-with-120-cores-matches-amd-epycs-core-counts-for-the-first-time-since-2017

10

The Ampere Roadmap: Powerful Roadmap with Rapid Innovation

Continued Commitment to Leadership Performance Per Rack for Al Compute in Air Cooled Environments

AmpereOne® Family
"Siryn" A1
_ Upto 192 Cores Snm
hé:tw““" \. 8ChDDRS5
AmpereOne®
Shipping Now
Ampere® Altra® Family
"Mystique®" N1+
P Up to 80 Cores 7nm
e 8 Ch DDR4
"Quicksiiver™ N1
A Up to 128 Cores 7nm
b 8 Ch DDR4

Source: here

"Polaris”" A2 "Magnetrix™ A2+ "Aurora® A3
. Upto 192 Cores 5nm % Upto 256 Cores 3nm A Up to 512 Cores
A= e 12 Ch DDR5 A% 12 Ch DDR5 A e |ntegrated Al Silicon
A s A
Pt i Pt Training and Inference
Air Cooled
AmpereOne® “M” AmpereOne® “MX” AmpereOne® Aurora
Shipping Q4 '24 In Fabrication

Next Design Product

Continued Ship Support at Least Through 2030

https://www.nextplatform.com/2024/07/31/ampere-arm-server-cpus-to-get-512-cores-ai-accelerator/

» Amdahl's Law: theoretical speedup of the execution of a task

— Speedup = | / (I —p + p/n)

— p: parallel portion of a task
—n: # of CPU cores

500
450
400
350

300

S
3250
o
(O]

Q.

U)ZOO
150
100

50

50%
70%
90%
95%
99%
99.9% E—

100 200 300 400 500 600 700 800
of cores

900

1000

11

Where are the Sequential Parts!?

* Applications: sequential algorithm
* Libraries: memory allocators (buddy structure)
« OS:
— memory management: VMA (virtual memory area)
— file system: file descriptor table, journaling

— network stack: receive queue

The applications may not scale even If its design and implementation are scalable ...

12

Kernel Synchronization

* The kernel is programmed using shared memory model
* Critical section (critical region)

— Code paths that access and manipulate shared data

— Must execute atomically without interruption

— Should not be executed in parallel on SMP = i.e, the sequential part
* Race condition

— Two threads concurrently executing the same critical section = Bug!

13

Concurrent Data Access in the Kernel

* Real concurrent access on multiple CPU cores
— Same as user-space threaded programming

* Preemption on a single core
— Same as user-space thread programming

* Interrupt
— Only In kernel-space programming

— |s a data structure accessed in an interrupt context, top-half or bottom-half?

14

15

An Example

01: int total = get_total_from_account(); /* total funds in account */
02: int withdrawal = get_withdrawal_amount(),; /* amount asked to withdrawal */
03:

04: /* check whether the user has enough funds in her account */
05: if (total < withdrawal) {

06: error("You do not have that much money!");
07 : return -1;

08: }

09:

10: /* OK, the user has enough money:

11: * deduct the withdrawal amount from her total */
12: total -= withdrawal;

13: update_total_funds(total);

14

15: /* give the user their money */
16: spit_out_money(withdrawal);

What happens if two transactions are happening nearly at the same time?

e.g, lotal = 105

- withdrawl_| = 100

- withdrawl_2 =50

One of the transactions should fail b/c (100+50) > 05!

. . 16
One Possible Incorrect Scenario

* Two threads check that 100 < 105 and 50 < [05 (Line 5)
Thread | updates (Line |3)
— Total = 105 - 100 =5
Thread 2 updates (Line |3)
— Total = 105 - 50 = 55
Total withdrawl = |50 but there is 55 left on the account
Must lock the account during certain operations, make each transaction atomic

Updating a Variable

Nt I;
void foo(void)
{

i+

* What happens if two threads concurrently execute foo()?
* What happens if two threads concurrently update 1?
* |s incrementing | an atomic operation?

17

* Asingle C statement: i++

* Multiple machine instructions
(1). get the current value of I and copy It into a register
(2). add one to the value stored in the register

(3). write back to memory the new value of |

* Now, check what happens if two threads concurrently update |

18

Thread 1 Thread 2
get 1i(7) -
increment i (7 -> 8) —
write back i (8) —
— get i (8)

increment i (8 ->9)

write back i (9)

Thread 1

Thread 2

get i (7)
increment i (7 > 8)

write back i (8)

get 1i(7)

increment i (7 > 8)

write back i (8)

19

One Solution: Atomic Instruction

* Atomic operations won't interleave
* Hardware (CPU) guarantees that ...

Thread 1 Thread 2

increment & store i (7 -> 8) —

— increment & store i (8-> 9)

Or conversely

Thread 1 Thread 2

— increment & store (7 -> 8)

increment & store (8 > 9) —

20

Atomic Instructions in x86

« XADD DEST SRC

* Operation:
— TEMP = SRC + DEST
— SRC = DEST
— DEST = TEMP

« LOCK XADD DEST SRC

* This instruction can be used with a LOCK prefix to allow the instruction to be
executed atomically

21

Volatile Variables ...

* Operations on volatile variables are not atomic
* They won't be optimized by compilers ...

/* C code */

int i;

void foo(void) {
/* ... */
i++;
/* L *

}

/* Compiler-generated machine instructions */
/* Non-volatile variables can be optimized out without
* actually accessing its memory location */

(01: get the current value of i and copy it into a register) <- optimized out
02: add one to the value stored in the register

(03: write back to memory the new value of i) <- optimized out

22

23

/* C code */

int j, 1,

void foo(void) {
1++;
j++;

}

/* Compiler-generated machine instructions */

/* Non-volatile variables can be reordered

* by compiler optimization */

(01/j: get the current value of j and copy it into a register)

(01/1i: get the current value of i and copy it into a register)

02/j: add one to the value stored in the register for j

02/1: add one to the value stored in the register for 1

(03/j: write back to memory the new value of j)

(03/1i: write back to memory the new value of 1i)

/* C code */

volatile int j, 1i;

void foo(void) {
i++:
j++;

}

/* Compiler-generated machine instructions */

/* Volatile variables can be optimized out or reordered

* by compiler optimization */

01/1i: get the current value of 1 and copy it into a register

02/1i: add one to the value stored in the register for i

03/1i: write back to memory the new value of 1

01/j: get the current value of j and copy it into a register

02/j: add one to the value stored in the register for j
03/j: write back to memory the new value of j

24

When to Use “volatile”?

* Memory location can be modified by other entity
— Other threads from a memory location

— Other processes for a shared memory location
— /O devices for an I/O address

25

Locking
» Atomic operations are not sufficient for protecting shared data in long and
complex critical sections
— e.g., page_tree of an inode (page cache)

* What is needed is a way to ensure only one thread manipulates the data structure
at a time

— A mechanism for preventing access to a resource while other threads of execution are
"blocked” = lock

26

Linux Radix Tree Example !

/* 1linux/include/linux/fs.h */

struct inode { /** metadata of a file */
umode_t 1_mode; /* permission: IwxXiw-r-- */
struct super_block *1_sb; /* a file system instance */
struct address_space *i_mapping; /* page cache */

},

struct address_space { /** page cache of an inode */
struct inode *host; /* owner: inode, block device */

struct radix_tree_root page_tree; /* radix tree of all pages
* - 1.e., page cache of an inode

* - key: file offset
* - value: cached page */
spinlock_t tree_lock; /* lock protecting it */
}

* Locks are entirely a programming construct that the programmer must take
advantage of = No protection generally ends up in data corruption

* Linux provides various locking mechanisms

== Thread 1 ======================== == Thread 2 ========================
Try to lock the tree_lock

Succeeded: acquired the tree_lock Try to lock the tree_lock

Access page_tree Failed: waiting...

e Waiting...

Unlock the tree_lock Waiting...

Succeeded: acquired the tree_lock
Access page_tree...

Unlock the tree_lock

28

29
Causes of Concurrency

* Symmetrical multiprocessing (true concurrency)

— 2 or more processors/cores can execute kernel code at exactly the same time

Kernel preemption (pseudo-concurrency)
— B/c the kernel is preemptive, one task in the kernel can preempt another

— Two things do not actually happen at the same time but interleave with each other such
that they might as well ...

Sleeping and synchronization with user-space

— A task in the kernel can sleep and thus invoke the scheduler to run a new process

Interrupts

— An interrupt can occur asynchronously at almost any time, interrupt the currently
executing code

Softirgs, tasklets

— The kernel can raise or schedule a softirg or tasklet at almost any time, ...

Concurrency Safety
* SMP-safe

— code that is safe from concurrency on symmetrical multiprocessing machines
* Preemption-safe
— Code that is safe from concurrency with kernel preemption

* Interrupt-safe

— Code that is safe from concurrent access from an interrupt handler

30

What to Protect!?

* Protect data, not code

— page_tree is protected by tree_lock

/* 1linux/include/l1inux/fs.h */

struct inode { /** metadata of a file */
umode_t i_mode; /* permission: Iwxiw-r-- */
struct super_block *i_sb; /* a file system instance */
struct address_space *i_mapping; /* page cache */

}s

struct address_space { /** page cache of an inode */

struct inode *host; /* owner: inode, block device */
struct radix_tree_root page_tree;, /* radix tree of all pages

* - 1.e., page cache of an inode
* - key: file offset
* - value: cached page */
spinlock_t tree_lock; /* lock protecting it */
}i

Locking

Is the data global?

Can a thread of execution other than the current one access it?

Is the data shared between process context and interrupt context?
s it shared between two different interrupt handlers?

If a process is preempted while accessing the data, can the newly scheduled
process access the same data?

If the current process sleep on anything, in what state does that leave any shared
data?

What happens if this function is called again on another processor?

Deadlocks
* Situations in which one or several threads are waiting on locks for one or several
resources that will never be freed

— None of the threads can continue

e Self-deadlock

acquire lock
acquire lock, again
walt for lock to become available

33

* Typical deadline

Thread 1

Thread 2

acquire lock A
try to acquire lock B

wait for lock B

acquire lock B
try to acquire lock A

wait for lock A

34

Deadlock Prevention: Lock Ordering

* Nested locks must always be obtained in the same order

/* 1linux/mm/filemap.c */

/*
* Lock ordering:
*
* ->1_mmap_xrwsem (truncate_pagecache)
* ->private_lock (__free_pte->__set_page dirty_buffers)
* ->swap_lock (exclusive_swap_page, others)
* ->mapping->tree_lock
*
* ->1_mutex
* ->1_mmap_xrwsem (truncate->unmap_mapping_range)
*

*
N

35

/* 1linux/fs/namei.c */
struct dentry *lock_rename(struct dentry *pl, struct dentry *p2)
{
struct dentry *p,;
if (pl == p2) {
inode_lock_nested(pl->d_inode, I_MUTEX_PARENT) ;
return NULL;
}
mutex_lock(&pl->d_sb->s_vfs_rename_mutex) ;
p = d_ancestor(p2, pl),;
if (p) {
inode_lock_nested(p2->d_inode, I_MUTEX_PARENT) ;
inode_lock_nested(pl->d_inode, I_MUTEX_CHILD);

return p;

}

p = d_ancestor(pl, p2),;

if (p) {
inode_lock_nested(pl->d_inode, I_MUTEX_PARENT);
inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
return p;

}

inode_lock_nested(pl->d_inode, I_MUTEX_PARENT);
inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
return NULL;

36

Contention and Scalability

* Lock contention: a lock currently in use but that another thread is trying to acquire

* Scalability: how well a system can be expanded with a large number of processors
* Coarse- vs. fine-grained locking

— Coarse-grained lock: bottleneck on high-core count machines

— Fine-grained lock: overhead on low-core count machines

* Start simple and grow in complexity only as needed. Simplicity is key.

37

Further Readings

* Moore's Law, wikipedia
* Amdahl’'s Law, wikipedia
e Intel SDM

38

39

