
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 13

Synchronization

March 18, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/

2
Thus Far ...
• Linux kernel tooling, debugging, code exploration ...
• syscall
• module
• data structure
• scheduling
• interrupts
• time

3
Today’s Agenda: Kernel Synchronization
• Multi-core processing
• Introduction to synchronization
• Next lecture

– synchronization mechanisms in Linux kernel
– RCU

4
Exponential Data Growth

5

Source: https://github.com/karlrupp/microprocessor-trend-data

Single-core Scaling Stopped

6

• Increasing clock frequency is not possible anymore
– Power consumption: higher frequency à higher power consumption
– Wire delay: range of a wire in one clock cycle

• Limitations in Instruction Level Parallelism (ILP)
– 1980s: more transistors à superscalar à pipeline

» 10 CPI (cycles per instruction) à 1 CPI
– 1990s: multi-way issue, out-of-order (OOO) issue, branch prediction

» 1 CPI à 0.5 CPI
• Moore’s Law: #transistors doubles approximately every two years
• ~2007: make a single-core processor faster

– deeper pipeline, branch prediction, ooo, etc.
• 2007~: increase the number of cores in a chip

– multi-core processor

7

Source: here

https://www.amd.com/en/products/processors/workstations/ryzen-threadripper.html

8

Source: here

https://www.amd.com/en/products/processors/server/epyc/9005-series.html

9

Source: here

https://www.tomshardware.com/pc-components/cpus/intel-launches-granite-rapids-xeon-6900p-series-with-120-cores-matches-amd-epycs-core-counts-for-the-first-time-since-2017

10

Source: here

https://www.nextplatform.com/2024/07/31/ampere-arm-server-cpus-to-get-512-cores-ai-accelerator/

11

• Amdahl’s Law: theoretical speedup of the execution of a task
– Speedup = 1 / (1 – p + p/n)
– p: parallel portion of a task
– n: # of CPU cores

12
Where are the Sequential Parts?
• Applications: sequential algorithm
• Libraries: memory allocators (buddy structure)
• OS:

– memory management: VMA (virtual memory area)
– file system: file descriptor table, journaling
– network stack: receive queue

The applications may not scale even if its design and implementation are scalable

13
Kernel Synchronization
• The kernel is programmed using shared memory model
• Critical section (critical region)

– Code paths that access and manipulate shared data
– Must execute atomically without interruption
– Should not be executed in parallel on SMP à i.e., the sequential part

• Race condition
– Two threads concurrently executing the same critical section à Bug!

14
Concurrent Data Access in the Kernel
• Real concurrent access on multiple CPU cores

– Same as user-space threaded programming
• Preemption on a single core

– Same as user-space thread programming
• Interrupt

– Only in kernel-space programming
– Is a data structure accessed in an interrupt context, top-half or bottom-half?

15
An Example

What happens if two transactions are happening nearly at the same time?

e.g., Total = 105
- withdrawl_1 = 100
- withdrawl_2 = 50
One of the transactions should fail b/c (100+50) > 105!

16
One Possible Incorrect Scenario
• Two threads check that 100 < 105 and 50 < 105 (Line 5)
• Thread 1 updates (Line 13)

– Total = 105 – 100 = 5
• Thread 2 updates (Line 13)

– Total = 105 – 50 = 55
• Total withdrawl = 150 but there is 55 left on the account
• Must lock the account during certain operations, make each transaction atomic

17
Updating a Variable

• What happens if two threads concurrently execute foo()?
• What happens if two threads concurrently update i?
• Is incrementing i an atomic operation?

int i;
void foo(void)
{
 i++;
}

18

• A single C statement: i++
• Multiple machine instructions

(1). get the current value of i and copy it into a register
(2). add one to the value stored in the register
(3). write back to memory the new value of i

• Now, check what happens if two threads concurrently update i

19

20
One Solution: Atomic Instruction
• Atomic operations won’t interleave
• Hardware (CPU) guarantees that ...

21
Atomic Instructions in x86
• XADD DEST SRC
• Operation:

– TEMP = SRC + DEST
– SRC = DEST
– DEST = TEMP

• LOCK XADD DEST SRC
• This instruction can be used with a LOCK prefix to allow the instruction to be

executed atomically

22
Volatile Variables ...
• Operations on volatile variables are not atomic
• They won’t be optimized by compilers ...

23

24

25
When to Use “volatile”?
• Memory location can be modified by other entity

– Other threads from a memory location
– Other processes for a shared memory location
– I/O devices for an I/O address

26
Locking
• Atomic operations are not sufficient for protecting shared data in long and

complex critical sections
– e.g., page_tree of an inode (page cache)

• What is needed is a way to ensure only one thread manipulates the data structure
at a time

– A mechanism for preventing access to a resource while other threads of execution are
”blocked” à lock

27
Linux Radix Tree Example

28

• Locks are entirely a programming construct that the programmer must take
advantage of à No protection generally ends up in data corruption

• Linux provides various locking mechanisms

29
Causes of Concurrency
• Symmetrical multiprocessing (true concurrency)

– 2 or more processors/cores can execute kernel code at exactly the same time
• Kernel preemption (pseudo-concurrency)

– B/c the kernel is preemptive, one task in the kernel can preempt another
– Two things do not actually happen at the same time but interleave with each other such

that they might as well ...
• Sleeping and synchronization with user-space

– A task in the kernel can sleep and thus invoke the scheduler to run a new process
• Interrupts

– An interrupt can occur asynchronously at almost any time, interrupt the currently
executing code

• Softirqs, tasklets
– The kernel can raise or schedule a softirq or tasklet at almost any time, ...

30
Concurrency Safety
• SMP-safe

– code that is safe from concurrency on symmetrical multiprocessing machines
• Preemption-safe

– Code that is safe from concurrency with kernel preemption
• Interrupt-safe

– Code that is safe from concurrent access from an interrupt handler

31
What to Protect?
• Protect data, not code

– page_tree is protected by tree_lock

32
Locking
• Is the data global?
• Can a thread of execution other than the current one access it?
• Is the data shared between process context and interrupt context?
• Is it shared between two different interrupt handlers?
• If a process is preempted while accessing the data, can the newly scheduled

process access the same data?
• If the current process sleep on anything, in what state does that leave any shared

data?
• What happens if this function is called again on another processor?

33
Deadlocks
• Situations in which one or several threads are waiting on locks for one or several

resources that will never be freed
– None of the threads can continue

• Self-deadlock

34

• Typical deadline

35
Deadlock Prevention: Lock Ordering
• Nested locks must always be obtained in the same order

36

37
Contention and Scalability
• Lock contention: a lock currently in use but that another thread is trying to acquire
• Scalability: how well a system can be expanded with a large number of processors
• Coarse- vs. fine-grained locking

– Coarse-grained lock: bottleneck on high-core count machines
– Fine-grained lock: overhead on low-core count machines

• Start simple and grow in complexity only as needed. Simplicity is key.

38
Further Readings
• Moore’s Law, wikipedia
• Amdahl’s Law, wikipedia
• Intel SDM

39

