
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 14

Synchronization II

March 20, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/


2
Today’s Agenda: Kernel Synchronization
• Atomic operations
• Spinlocks, reader-writer spinlock (RWLock)
• Semaphore, mutex
• Sequential lock (seqlock)
• completion variable



3
Atomic Operations
• Provide instructions that execute atomically without interruption

– Non-atomic update: i++
– Atomic update: atomic_inc(&i)



4
Atomic Operations
• Examples

– fetch-and-add: atomic increment
– test-and-set: set a value at a memory location and return the previous value
– compare-and-swap: modify the content of a memory location only if the previous content 

is equal to a given value
• Linux provides two APIs

– Integer atomic operations
– Bitwise atomic operations



5
Atomic Integer Operations



6
Atomic “int” Operations (32-bit)
• int atomic_add_negative(int i, atomic_t *v) 

– Atomically add i to v and return true if the result is negative; otherwise false
• int atomic_add_return(int i, atomic_t *v)

– Atomically add i to v and return the result
• int atomic_sub_return(int i, atomic *v)

– Atomically subtract i from v and return the result
• int atomic_inc_return(int i, atomic *v)

– Atomically increment v by one and return the result
• int atomic_dec_and_test(atomic *v)

– Atomically decrement v by one and return true if zero; false otherwise
• int atomic_inc_and_test(atomic_t *v)

– Atomically increment v by one and return true if the result is zero; false otherwise



7
Atomic “int” Operations (64-bit)
• ATOMIC64_INIT(long i)

– At declaration, initialize to i
• long atomic64_read(atomic64_t *v); void atomic64_set(atomic64_t *v, int i)

– Atomically read/set the integer value of v
• void atomic64_add(int i, atomic64_t *v); void atomic64_sub(int i, atomic64_t *v)

– Atomically add/subtract i to v
• void atomic64_inc(atomic64_t *v); void atomic64_dec(atomic64_t *v)

– Atomically add/subtract one to v
• int atomic64_sub_and_test(int i, atomic64_t *v)

– Atomically substrct i from v and return true if the result is zero; otherwise false
• int atomic64_and_negative(int i, atomic64_t *v)

– Atomically add i to v and return true if the result is negative; otherwise false



8
Atomic “int” Operations (64-bit)
• int atomic64_sub_and_test(s64 i, atomic64_t *v)

– Atomically substrct i from v and return true if the result is zero; otherwise false
• int atomic64_add_negative(s64 i, atomic64_t *v)

– Atomically add i to v and return true if the result is negative; otherwise false
• s64 atomic64_add_return(s64 i, atomic64_t *v); 
• s64 atomic64_sub_return(s64 i, atomic64_t *v); 
• s64 atomic64_inc_return(atomic64_t *v)
• s64 atomic64_dec_return(atomic_t *v)
• bool atomic64_dec_and_test(atomic64_t *v)
• bool atomic64_inc_and_test(atomic64_t *v)

– Atomically add i to v and return the result

See include/linux/atomic/atomic-instrumented.h



9
Example



10
Atomic “bitwise” Operations



11

• void set_bit(int nr, void *addr)
– Atomically set the nr-th bit starting from addr

• void clear_bit(int nr, void *addr)
– Atomically clear the nr-th bit starting from addr

• void change_bit(int nr, void *addr)
– Atomicall flip the value of the nr-th bit starting from addr

• int test_and_set_bit(int nr, void *addr)
– Atomically set the nr-th bit starting from addr and return the previous value

• int test_and_clear_bit(int nr, void *addr)
– Atomically clear the nr-th bit starting from addr and return the previous value

• int test_and_change_bit(int nr, void *addr)
– Atomically flip the nr-th bit starting from addr and return the previous value

• int test_bit(int nr, void *addr)
– Atomically return the value of the nr-th bit starting from addr



12
Atomic “bitwise” Operations
• Non-atomic bitwise operations are also provided

– prefixed with double underscore
– Examples: test_bit() vs. __test_bit()

• If you don’t require atomicity (e.g., b/c lock already protects the data), these 
variants could be faster and safely used.



13
Spinlocks
• The most common lock used in the kernel
• When a thread tries to acquire an already held lock, it spins while waiting for the 

lock to become available
– Wasting processor time when spinning is too long
– Spinlocks can be used in interrupt context, which a thread cannot sleep à Kernel provides 

special spinlock API for data structures shared in interrupt context
• In process context, do not sleep while holding a spinlock

– Kernel preemption is disabled



14
Spinlock Usage
• spin_lock() is not recursive! à self-deadlock
• Lock/unlock methods disable/enable kernel preemption and acquire/release the 

lock
• Lock is compiled away on uniprocessor systems

– Still needs to disable/re-enable preemption to prevent interleaving of task execution



15
Deadlock #1

...



16
Deadlock #2



17
Spinlocks in Interrupt Handlers
• spinlocks do not sleep so it is safe to use them in interrupt context
• If a lock is used in an interrupt handler, you must also disable local interrupts 

before obtaining the lock (Why?)
– Otherwise, it is possible for an interrupt handler to interrupt kernel code while the lock is 

held and attempt to reacquire the lock
– The interrupt handler spins, waiting for the lock to become available. The lock holder, 

however, does not run until the interrupt handler completes... à double-acquire deadlock
• Conditionally enabling/disabling local interrupts



18

• Unconditionally enable/disable local interrupts
– If you always know ahead of time that interrupts are initially enabled, there is no need to 

restore their state



19
Bug Fix for #1



20
Bug Fix for #2



21
Spinlock API

See: Documents/locking/spinlocks.rst



22
Spinlocks and Bottom Halves
• spin_lock_bh() / spin_unlock_bh()

– Obtains the given lock and disables all bottom halves
• Because a bottom half might preempt process context code, if data is shared 

between a bottom-half process context, you must protect the data in process 
context with both a lock and disabling bottom halves

• Likewise, b/c an interrupt handler might preempt a bottom half, if data is shared 
between an interrupt handler and a bottom half, you must both obtain the 
appropriate lock and disable interrupts



23

• Top-half: Interrupt handler
• Bottom-half: Softirq, Tasklet, Workqueue
• KProbe handler, timer handler 
• Any handler

– Ask whether it runs in interrupt context
– If so, ask which interrupts are disabled

https://lwn.net/Articles/132196/


24
Spinlock Example



25
Reader-Writer Spinlock
• Reader-writer spinlock (RWLock) allows multiple concurrent readers
• When entities accessing a shared data canbe clearly divided into readers and 

writers
• Example: list updated (write) and searched (read)

– When updated, no other entity should update nor search
– When searched, no other entity should update

» Safe to allow multiple readers in parallel
» Can improve scalability by allowing parallel readers 



26

• Downsides of spinlock, in terms of scalability ... thoughts?



27

• Linux reader-writer spinlocks favor readers over writers
– If the read lock is held and a writer is waiting for exclusive access, readers that attempt to 

acquire the lock continue to succeed
– Therefore, a sufficient number of readers can starve pending writers ...



28
Reader-Writer Spinlock



29
Reader-Writer Spinlock API



30
Example



31

• An alternative to spinning...lock ?



32
Semaphore
• Sleeping locks à not usable in interrupt context
• When a task attempts to acquire a semaphore that is unavailable, then semaphore 

places the task onto a waitqueue and puts the task to sleep à The processor is 
then free to execute other code.

• When a task releases the semaphore one of the tasks on the wait queue is 
awakened so that it can then acquire the semaphore

• Semaphores are not optimal for locks that are held for short periods b/c the 
overhead of sleeping, maintaining the waitqueue, and waking up can easily 
outweight the total lock hold time ...

• Semaphores allow multiple holders
• “counter” initialized to a given value

– Decremented each time a thread acquire the semaphore
– The semaphore becomes unabailable when the counter reaches 0

• In the kernel, most of the semaphores used are binary semaphores (or mutex)



33
Semaphore API



34
Semaphore Example



35
Reader-Writer Semaphores
• Reader-writer falvor of semaphore is similar to reader-writer spinlock

– down_read_trylock(), down_write_trylock()
» Try to acquire read/write lock
» return 1 if successful, 0 if contention

– downgrade_write()
» atomically converts an acquired write lock to a read lock



36



37
Mutex
• Mutexes are binary semaphore with stricter use cases:

– Only one thread can hold the mutex at a time
– A thread locking a mutex must unlock it
– No recursive lock and unlock operations
– A thread cannot exit while holding a mutex
– A mutex cannot be acquired in interrupt context
– A mutex can be managed only through the API

• Semaphore vs. Mutex?
– Start with a mutex and move to a semaphore only if you have to



38
Mutex API



39
Mutex Example



40
Spinlock vs. Mutex



41
Completion Variable
• Completion variables are used when one task needs to signal to the other that an 

event has occured



42
Completion Variable Example



43
Sequential Lock (seqlock)
• A simple mechanism for reading and writing shared data
• Wroks by maintaining a sequence counter (or version number)
• Whenever the data in question is written to, a lock is obtained and a sequence 

number is incremented
• Prior to and after reading the data, the sequence number is read. If the values are 

the same, a write did not begin in the middle of the read.
• Further, if the values are even, a write is not underway. (Grabbing the write lock 

makes the value odd, whereas releasing it makes it even b/c the lock starts at zero)



44
Seuqntial Lock Use Cases
• Seqlocks are useful when

– there are many readers and few writers
– Writers should be favored over readers



45
Preemption Disabling
• When a spin lock is held preemption is disabled
• Some situations need to disable preemption without involving spin locks
• Example: manipulating per-processor data:



46
Preemption Disabling

For per-CPU data: 



47
Next Lecture
• Memory ordering + RCU



48



49



50


