CS 5264/4224; ECE 5414/4414

(Advanced) Linux Kernel Programming
Lecture 15

Synchronization |
March 25, 2025

Huaicheng Li
https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Previously: Kernel Synchronization

* Atomic operations
Spinlocks, reader-writer spinlock (RWLock)
Semaphore, mutex

Sequential lock (seqglock)

completion variable

Spinlock vs. Mutex

Requirement Recommended lock
Low overhead locking Spin lock is preferred
Short lock hold time Spin lock is preferred
Long lock hold time Mutex is preferred
Need to lock from interrupt context Spin lock is required

Need to sleep while holding lock Mutex is required

Preemption Disabling

* When a spin lock is held preemption is disabled
* Some situations need to disable preemption without involving spin locks
* Example: manipulating per-processor data:

task A manipulates per-processor variable foo, which is not protected by a lock
task A is preempted

task B is scheduled

task B manipulates variable foo

task B completes

task A is rescheduled

task A continues manipulating variable foo

Preemption Disabling

Function Description

preempt disable() Disables kernel preemption by incrementing the preemp-
tion counter

preempt enable|() Decrements the preemption counter and checks and serv-
ices any pending reschedules if the count is now zero

preempt enable no resched() Enables kernel preemption but does not check for any
pending reschedules

preempt count() Returns the preemption count

For per-CPU data:
int cpu;

/* disable kernel preemption and set “cpu” to the current processor */
cpu = get_cpul();

/* manipulate per-processor data ... */

/* reenable kernel preemption, “cpu” can change and so is no longer valid */
put_cpu();

Ordering and Barriers

* Memory reads (load) and write (store) operations can be reordered for
performance reasons

— by the compiler at compile time: compiler optimization
— by the CPU at run time:

» TS0 (total store ordering)

» PSO (partial store ordering)

Ordering and Barriers

/* Following code can be reordered
* by a compiler (optimization) or a processor (out-of-order execution)

*

* Your code Compiled code
a = 4, b =25,
b - 5: a = 4;

/* Following code will never be reorderd because

* there is a dependency between a and b.
*

* Your code Compiled code

Memory Barriers

* Instruct the compiler or the processor not to reorder instructions around a given
point
* barrier() (i.e.,, compiler barrier)
— Prevents the compiler from reordering stores or loads across the barrier

/* Compiler does not reorder store operations of a and b
* However, a processor may reorder the store operations for performance */
a =4,
barrierx();
b =5,

Memory Barrier Instructions

* rmb(): prevents loads from being reordered across the barrier
* wmb(): prevents stores from being reordered across the barrier
* mb(): prevents loads and stores from being reordered across the barrier

* read_barrier_depends(): prevent data-dependent loads to be reordered across
the barrier

— On some architectures, it Is much faster than rmb() b/c it is not needed and is, thus, a
noop

Memory Barrier Example

e Initial values:a=1,b =2
* mb() ensures that a is written before b
* rmb() ensures that b is read before a

Thread 1 Thread 2
a = 3; —_

mb () ; —

b = 4; c = b;
— rmb();

10

Another Memory Barrier Example

* Initial value:a=I,b=2,andp = &b
* mb() ensures that a is written before p
* read_barrier_depends() is sufficient b/c the load of *pp depends on the load of p

Thread 1 Thread 2
a = 3; —
mb () ; —
p = &a; pp = Pr

— read_barrier_depends() ;

11

Memory Barrier API

* On SMP kernel they are defined as the usual memory barriers

* On Uniprocessor kernel, they are defined only as a compiler barrier

Barrier

smp rmb()

smp read barrier depends()

smp wmb ()

smp_mb ()

barrier()

Description

Provides an rmb () on SMPR and on UP provides a
barrier()

Provides a read barrier depends() on SMR
and provides a barrier() on UP

Provides a wmb () on SMP and provides a
barrier () on UP

Provides an mb () on SMP and provides a
barrier() on UP

Prevents the compiler from optimizing stores or
loads across the barrier

12

Synchronization Primitives

* Protect shared data from concurrent access
* Non-sleeping (non-blocking) synchronization primitives
— atomic operations, spinlock, read-write lock (rwlock), sequential lock (seglock)

* Sleeping (blocking) synchronization primitives
— semaphore, mutex, completion variable

13

Recap: Spinlock

* Implemented by mutual exclusion

Time

Thread1 [spin| READ : ;] UPDATE m
Thread 2 spin READ |u

Thread 3

0, UPDATE m

>

14

Recap: rwlock

* Allow multiple readers

 Mutual exclusion between readers and a writer

* Linux rwlock is a reader-preferred algorithm

Time

Reader 1 |spin| READ [u spin | READ |u
Reader 2 spinj READ | spinl READ |u
Writer 1 : :

spin

15

Recap: seqlock

* Consistent mechanism without starving writers

Time

seq=0

seq=2

seq=2

Reader

First trial

retry

seq=1

seq =2

Writer UPDATE

Read-Copy-Update (RCU)

» RCU supports concurrency between multiple readers and a single writer
— A writer does not block readers!
— Allow multiple readers with almost zero overhead
— Optimize for reader performance

Time

|
Thread 1 READ READ READ| READ READ
Thread 2 READ | READ READ READ READ

Thread 3 READ V073 j - READ | READ |READ

* Only require locks for writes; carefully update data structures so readers see
consistent views of data all the time

* RCU ensures that reads are coherent by maintaining multiple version of objects
and ensuring that they are not freed up until all pre-existing read-side critical

sections complete.

* Widely-used for read-mostly data structures
— Directory entry caches, DNS name database, etc.

18

RCU Author: Paul McKenney

Refer to: https://scholargoogle.com/citations?user=k8F /-kUAAAA|&hl=en

19

https://scholar.google.com/citations?user=k8F7-kUAAAAJ&hl=en

RCU API Uses

RCU Usage in Linux Kernel

25000

20000

15660

10660

56800

1 1 1 1 1

1 1 1 1 1

o Ty] ® 7] o]

o] - - o Y

o o © © -] -]

N N &N N N N
Year

Source: RCU Linux Usage

2030

RCU/locking API Uses

186000

166000

146060806

1260006

166006

66000

40000

20000

-~
N
/

locking

RCU

2000

20085 |

2010

2015

Year

2020

2025

2030

20

http://www.rdrop.com/~paulmck/RCU/linuxusage.html

RWLock-based Linked List

* Even using a scalable rwlock, readers and a writer cannot concurrently access the

list
(@)
P
8 viricer [R N R S VR S R S
" Waiting
Jp— . A Locked list

4 \\ t I
,'
1
\

1
1
1

,l

M Reader W

Locked list

RCU-based Linked List

* Allow concurrent access of readers!

> 4 > IS

22

RCU-based Linked List

* A writer copies an element first

1 2

1 4 5

4

RCU-based Linked List
* And then It updates the element

1 2

> 4 5

100

RCU-based Linked List

* And then it makes rts change public by updating the next pointer of its previous
pointer = New readers will traverse 100 instead of 4.

> 2

1 3 4 5

= 100

RCU-based Linked List

Do not free the old node, 4, until no readers access it.

>

2

100

26

RCU-based Linked List

* When it is guaranteed that there is no reader accessing the old node, free the old
node.

1 2

>l 3 71 5

= 100

RCU API

/* linux/include/linux/rcupdate.h */
/* Mark the beginning of an RCU read-side critical section */

void rcu_read_lock(void);

/* Mark the end of an RCU read-side critical section */
void rcu_read_unlock(void) ;

/* Assign to RCU-protected pointer: p = v
* @p: pointer to assign to
* @v: value to assign (publish) */
#define rcu_assign_pointer(p, v)

/* Fetch RCU-protected pointer for dereferencing
* @: The pointer to read, prior to dereferencing */

#define rcu_dereference(p)

/* Queue an RCU callback for invocation after a grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period */

void call_rcu(struct rcu_head *head, rcu_callback_t func);

/* Wait until quiescent states */
void synchronize_rcu(void);

28

Replace rwlock by RCU

J*
1

2
3
4
5
6
F 4
8

RWLock */
struct el {

struct list_head lp;

long key;

int data;

/* Other data fields */
}i
DEFINE_RWLOCK(1listlock) ;
LIST_HEAD (head) ;

2% REU "F

¢
2
3
4
5
6
7
8

struct el {
struct list_head 1p;
long key,
int data;
/* Other data fields */
3
DEFINE_SPINLOCK (1listlock);
LIST_HEAD(head) ;

29

Replace rwlock by RCU

/* RWLock */
1 int search(long key, int *result)

2 {
3
4
5
6
7
8

9
10
11
12
13
14
15 }

struct el *p;

read_lock(&listlock);
list_for_each_entry(p,&head,lp) {
if (p->key == key) {
*result = p->data;
read_unlock(&listlock) ;
return 1;
}

}
read_unlock(&listlock);

return 0;

/* RCU */
1 int search(long key, int *result)
2 {
3 struct el *p;
4
5 rcu_read_lock();
6 list_for_each_entry_xrcu(p,&head,lp) {
7 if (p->key == key) {
8 *result = p->data;
9 rcu_read_unlock() ;
10 return 1;
11 }
12 }
13 rcu_read_unlock();
14 return 0,
15 }

30

Replace rwlock by RCU

/* RWLock */
1 int delete(long key)

2 {
3
4
5
6
7
8
9

10
11
12
13
14
15
16 }

struct el *p;

write_lock(&listlock) ;
list_for_each_entry(p, &head, 1lp) {
if (p->key == key) {
list_del(&p->1p);
write_unlock(&listlock);

kfree(p);
return 1;
}
}

write_unlock(&listlock);
return 0;

/* RCU */

1 int delete(long key)

2 {

3 struct el *p;

4

5 spin_lock(&listlock);

6 list_for_each_entry(p, &head, 1lp) {
7 if (p->key == key) {

8 list_del_rcu(&p->1p);

9 spin_unlock(&listlock);
10 synchronize_xcu();
11 kfree(p),;
12 return 1;
13 }
14 }
15 spin_unlock(&listlock);
16 return 0,
17 }

31

32

RCU Primer
Lock-freereads + Single pointer update + Delayed free

head N 1 N 2 N 3
length () { pop_n (n) {
rcu_read_lock () ; { for (p=head;p&&n;p=p->next, n—-)
p=rcu_dereference (head); //p=head call_rcu(free, p);
for (i=0;p;p=p—->next, i++) ; rcu_assign_pointer (head,p); //head=p
} rcu_read_unlock () ; }

return 1i;

}

RCU Primer

Lock-freereads + Single pointer update + Delayed free

head i 1 1 2 1 3
length () { pop_n (n) {
> rcu_read_Jlock () ; { for (p=head;p&&n;p=p->next, n—-)
P—ICu_deretierence (nead); //p—-nead call_rcu(free, p);
for (i=0;p;p=p->next, i++) ; rcu_assign_pointer (head,p); //head=p

) }

—

> } rcu_read _unlock

return 1i;

}

* No locks, no barriers
* rcu_read_lock () justsets the status
of a thread “reading” RCU data.

RCU Primer

Lock-freereads + Single pointer update + Delayed free

head m 3

length () { pop_n(n)
rcu_read_lock (); { for (p=head;p&&n;p=p->next, n--)
p=rcu_dereference (head); //p=head call_rcu(free, p);
for (i=0;p;p=p—->next, i++) ; > TCU_asSsSlgll_poOlINCer (nead, pj),; /70ead=p

} rcu_read_unlock () ;
return 1i;

}

* No locks, no barriers * Update exactly one pointer, which is
* rcu_read_lock () just sets the status atomic.
of a thread “reading” RCU data.

34

RCU Primer

Lock-freereads + Single pointer update + Delayed free

head
length () {
rcu_read_lock () ; {
p=rcu_dereference (head); //p=head

for (i=0;p;p=p—->next, i++) ;
} rcu_read_unlock () ;
return 1i;

}

No locks, no barriers
rcu_read_lock () just sets the status
of a thread “reading” RCU data.

Y

pop_n (n) {
for (p=head;pé&é&n;p=p—>next,n—-—)

call_rcu(free, p);

rcu_assign_pointer (head,p); //head=p
}

Update exactly one pointer, which is
atomic.

Free delayed until all readers return (e.g.,
by waiting for all CPU'’s to schedule)

35

Delayed Free

* Grace period, quiescent state
* Efficient and scalable grace period detection is a key challenge

— Some obvious solutions, such as reference counting, won't work ...

36

Atomic Increment does Not Scale

3000

2500 —

2000 —

1500 —

1000 —

time per increment (nanoseconds)

500 —

‘ 40
number of CPUs/threads

50

70

37

Toy RCU Implementation

static inline void rcu_read_lock(void)

{
preempt_disable();
}
static inline void rcu_read_unlock(void)
{
preempt_enable();
}
#define rcu_assign_pointer(p, V) ({ \
smp_wmb(); \
ACCESS_ONCE(p) = (v); \
})
#define rcu_dereference(p) ({ \

typeof(p) _value = ACCESS_ONCE(p); \
smp_read_barrier depends(); /* nop on most architectures */ \
(_value); \

})

38

Toy RCU Implementation

void call_rcu(void (*callback) (void *), void *argq)

{
/* add callback/arg pair to a list */

}

void synchronize_rcu(void)

{
int cpu, ncpus = 0,

for_each_cpu(cpu)
schedule_current_task_to(cpu);

for each entry in the call_rcu list
entry->callback (entry->argqg);

RCU List

/* 1linux/include/linux/rculist.h */
/* Circular doubly-linked list */

/* Add a new entry to rcu-protected list
* @new: new entry to be added
* @head: 1list head to add it after */
void list_add_rcu(struct list_head *new, struct list_head *head);

/* Deletes entry from list without re-initialization
* @entry: the element to delete from the list. */
void list_del_rcu(struct list_head *entry),

/* Replace old entry by new one
* @old : the element to be replaced
* @new :@ the new element to insert */
void list_replace_rcu(struct list_head *old, struct list_head *new);

/* Iterate over rcu list of given type

* @pos: the type * to use as a loop cursor.

* @head: the head for your 1list.

* @member: the name of the list _head within the struct. */
#define list_for_each_entry_rcu(pos, head, member)

40

RCU hlist

/* linux/include/linux/rculist.h */
/* Non-circular doubly-1linked list */

/* Adds the specified element to the specified hlist,
* while permitting racing traversals.
* @n: the element to add to the hash list.
* @h: the 1list to add to. */
void hlist_add_head_rcu(strxuct hlist_node *n, struct hlist_head *h);

/* Replace old entry by new one
* @old :@ the element to be replaced
* @new @ the new element to insert */
void hlist_replace_rcu(struct hlist_node *old, struct hlist_node *new);

/* Deletes entry from hash list without re-initialization
* @n: the element to delete from the hash list. */
void hlist_del_rcu(struct hlist_node *n);

/* Iterate over rcu list of given type

* @pos: the type * to use as a loop cursor.

* @head: the head for your 1list.

* @member: the name of the hlist_node within the struct. */
#define hlist_for_each_entry_rcu(pos, head, member)

41

RCU Limitations

* Do not provide a mechanism to coordinate multiple writers

— Most RCU-based algorithms end up using spinlock to prevent concurrent write operations

 All modifications should be a single-pointer-update

— Challenging to do in many cases ..

42

Further Readings +

* Read-log-update: al ightweight synchronization mechanism for concurrent
programming, SOSP’| 5

Structured Deferral: Synchronization via Procrastination

Introuction to RCU Concepts
LWN: What is RCU, Fundamentally?
Introduction to RCU

Userspace RCU

https://dl.acm.org/doi/10.1145/2815400.2815406
https://dl.acm.org/doi/10.1145/2815400.2815406
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://queue.acm.org/detail.cfm?id=2488549
http://www.rdrop.com/~paulmck/RCU/RCU.LinuxCon.2013.10.22a.pdf
https://lwn.net/Articles/262464/
https://docs.google.com/document/d/1X0lThx8OK0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit?tab=t.0
https://liburcu.org/

