
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 15

Synchronization III

March 25, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/


2
Previously: Kernel Synchronization
• Atomic operations
• Spinlocks, reader-writer spinlock (RWLock)
• Semaphore, mutex
• Sequential lock (seqlock)
• completion variable



3
Spinlock vs. Mutex



4
Preemption Disabling
• When a spin lock is held preemption is disabled
• Some situations need to disable preemption without involving spin locks
• Example: manipulating per-processor data:



5
Preemption Disabling

For per-CPU data: 



6
Ordering and Barriers
• Memory reads (load) and write (store) operations can be reordered for 

performance reasons
– by the compiler at compile time: compiler optimization
– by the CPU at run time: 

» TSO (total store ordering)
» PSO (partial store ordering)



7
Ordering and Barriers



8
Memory Barriers
• Instruct the compiler or the processor not to reorder instructions around a given 

point
• barrier() (i.e., compiler barrier)

– Prevents the compiler from reordering stores or loads across the barrier



9
Memory Barrier Instructions
• rmb(): prevents loads from being reordered across the barrier
• wmb(): prevents stores from being reordered across the barrier
• mb(): prevents loads and stores from being reordered across the barrier
• read_barrier_depends(): prevent data-dependent loads to be reordered across 

the barrier
– On some architectures, it is much faster than rmb() b/c it is not needed and is, thus, a 

noop



10
Memory Barrier Example
• Initial values: a = 1, b = 2
• mb() ensures that a is written before b
• rmb() ensures that b is read before a



11
Another Memory Barrier Example
• Initial value: a = 1, b = 2, and p = &b
• mb() ensures that a is written before p
• read_barrier_depends() is sufficient b/c the load of *pp depends on the load of p



12
Memory Barrier API
• On SMP kernel they are defined as the usual memory barriers
• On Uniprocessor kernel, they are defined only as a compiler barrier 



13
Synchronization Primitives
• Protect shared data from concurrent access
• Non-sleeping (non-blocking) synchronization primitives

– atomic operations, spinlock, read-write lock (rwlock), sequential lock (seqlock)
• Sleeping (blocking) synchronization primitives

– semaphore, mutex, completion variable



14
Recap: Spinlock
• Implemented by mutual exclusion



15
Recap: rwlock
• Allow multiple readers
• Mutual exclusion between readers and a writer
• Linux rwlock is a reader-preferred algorithm



16
Recap: seqlock
• Consistent mechanism without starving writers



17
Read-Copy-Update (RCU)
• RCU supports concurrency between multiple readers and a single writer

– A writer does not block readers!
– Allow multiple readers with almost zero overhead
– Optimize for reader performance



18

• Only require locks for writes; carefully update data structures so readers see 
consistent views of data all the time

• RCU ensures that reads are coherent by maintaining multiple version of objects 
and ensuring that they are not freed up until all pre-existing read-side critical 
sections complete.

• Widely-used for read-mostly data structures
– Directory entry caches, DNS name database, etc.



19
RCU Author: Paul McKenney

Refer to: https://scholar.google.com/citations?user=k8F7-kUAAAAJ&hl=en

https://scholar.google.com/citations?user=k8F7-kUAAAAJ&hl=en


20
RCU Usage in Linux Kernel

Source: RCU Linux Usage

http://www.rdrop.com/~paulmck/RCU/linuxusage.html


21
RWLock-based Linked List
• Even using a scalable rwlock, readers and a writer cannot concurrently access the 

list



22
RCU-based Linked List
• Allow concurrent access of readers!



23
RCU-based Linked List
• A writer copies an element first



24
RCU-based Linked List
• And then it updates the element



25
RCU-based Linked List
• And then it makes its change public by updating the next pointer of its previous 

pointer à New readers will traverse 100 instead of 4.



26
RCU-based Linked List
• Do not free the old node, 4, until no readers access it.



27
RCU-based Linked List
• When it is guaranteed that there is no reader accessing the old node, free the old 

node.



28
RCU API



29
Replace rwlock by RCU



30
Replace rwlock by RCU



31
Replace rwlock by RCU



32
RCU Primer



33
RCU Primer



34
RCU Primer



35
RCU Primer



36
Delayed Free
• Grace period, quiescent state
• Efficient and scalable grace period detection is a key challenge

– Some obvious solutions, such as reference counting, won’t work ...



37
Atomic Increment does Not Scale



38
Toy RCU Implementation



39
Toy RCU Implementation



40
RCU List



41
RCU hlist



42
RCU Limitations
• Do not provide a mechanism to coordinate multiple writers

– Most RCU-based algorithms end up using spinlock to prevent concurrent write operations
• All modifications should be a single-pointer-update

– Challenging to do in many cases ...



43
Further Readings
• Read-log-update: al ightweight synchronization mechanism for concurrent 

programming, SOSP’15
• Is Parallel Programming Hard, And, If So, What Can You Do About It?
• Structured Deferral: Synchronization via Procrastination
• Introuction to RCU Concepts
• LWN: What is RCU, Fundamentally?
• Introduction to RCU
• Userspace RCU

https://dl.acm.org/doi/10.1145/2815400.2815406
https://dl.acm.org/doi/10.1145/2815400.2815406
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://queue.acm.org/detail.cfm?id=2488549
http://www.rdrop.com/~paulmck/RCU/RCU.LinuxCon.2013.10.22a.pdf
https://lwn.net/Articles/262464/
https://docs.google.com/document/d/1X0lThx8OK0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit?tab=t.0
https://liburcu.org/

