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Previously: Kernel Synchronization
• Atomic operations
• Spinlocks, reader-writer spinlock (RWLock)
• Semaphore, mutex
• Sequential lock (seqlock)
• completion variable
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Spinlock vs. Mutex
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Preemption Disabling
• When a spin lock is held preemption is disabled
• Some situations need to disable preemption without involving spin locks
• Example: manipulating per-processor data:
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Preemption Disabling

For per-CPU data: 
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Ordering and Barriers
• Memory reads (load) and write (store) operations can be reordered for 

performance reasons
– by the compiler at compile time: compiler optimization
– by the CPU at run time: 

» TSO (total store ordering)
» PSO (partial store ordering)
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Ordering and Barriers
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Memory Barriers
• Instruct the compiler or the processor not to reorder instructions around a given 

point
• barrier() (i.e., compiler barrier)

– Prevents the compiler from reordering stores or loads across the barrier



9
Memory Barrier Instructions
• rmb(): prevents loads from being reordered across the barrier
• wmb(): prevents stores from being reordered across the barrier
• mb(): prevents loads and stores from being reordered across the barrier
• read_barrier_depends(): prevent data-dependent loads to be reordered across 

the barrier
– On some architectures, it is much faster than rmb() b/c it is not needed and is, thus, a 

noop
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Memory Barrier Example
• Initial values: a = 1, b = 2
• mb() ensures that a is written before b
• rmb() ensures that b is read before a
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Another Memory Barrier Example
• Initial value: a = 1, b = 2, and p = &b
• mb() ensures that a is written before p
• read_barrier_depends() is sufficient b/c the load of *pp depends on the load of p
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Memory Barrier API
• On SMP kernel they are defined as the usual memory barriers
• On Uniprocessor kernel, they are defined only as a compiler barrier 
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Synchronization Primitives
• Protect shared data from concurrent access
• Non-sleeping (non-blocking) synchronization primitives

– atomic operations, spinlock, read-write lock (rwlock), sequential lock (seqlock)
• Sleeping (blocking) synchronization primitives

– semaphore, mutex, completion variable
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Recap: Spinlock
• Implemented by mutual exclusion
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Recap: rwlock
• Allow multiple readers
• Mutual exclusion between readers and a writer
• Linux rwlock is a reader-preferred algorithm
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Recap: seqlock
• Consistent mechanism without starving writers
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Read-Copy-Update (RCU)
• RCU supports concurrency between multiple readers and a single writer

– A writer does not block readers!
– Allow multiple readers with almost zero overhead
– Optimize for reader performance
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• Only require locks for writes; carefully update data structures so readers see 
consistent views of data all the time

• RCU ensures that reads are coherent by maintaining multiple version of objects 
and ensuring that they are not freed up until all pre-existing read-side critical 
sections complete.

• Widely-used for read-mostly data structures
– Directory entry caches, DNS name database, etc.
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RCU Author: Paul McKenney

Refer to: https://scholar.google.com/citations?user=k8F7-kUAAAAJ&hl=en

https://scholar.google.com/citations?user=k8F7-kUAAAAJ&hl=en
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RCU Usage in Linux Kernel

Source: RCU Linux Usage

http://www.rdrop.com/~paulmck/RCU/linuxusage.html
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RWLock-based Linked List
• Even using a scalable rwlock, readers and a writer cannot concurrently access the 

list
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RCU-based Linked List
• Allow concurrent access of readers!
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RCU-based Linked List
• A writer copies an element first
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RCU-based Linked List
• And then it updates the element
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RCU-based Linked List
• And then it makes its change public by updating the next pointer of its previous 

pointer à New readers will traverse 100 instead of 4.
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RCU-based Linked List
• Do not free the old node, 4, until no readers access it.
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RCU-based Linked List
• When it is guaranteed that there is no reader accessing the old node, free the old 

node.
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RCU API
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Replace rwlock by RCU
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Replace rwlock by RCU
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Replace rwlock by RCU
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RCU Primer
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RCU Primer
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RCU Primer
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RCU Primer
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Delayed Free
• Grace period, quiescent state
• Efficient and scalable grace period detection is a key challenge

– Some obvious solutions, such as reference counting, won’t work ...
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Atomic Increment does Not Scale
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Toy RCU Implementation
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Toy RCU Implementation
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RCU List
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RCU hlist
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RCU Limitations
• Do not provide a mechanism to coordinate multiple writers

– Most RCU-based algorithms end up using spinlock to prevent concurrent write operations
• All modifications should be a single-pointer-update

– Challenging to do in many cases ...
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Further Readings
• Read-log-update: al ightweight synchronization mechanism for concurrent 

programming, SOSP’15
• Is Parallel Programming Hard, And, If So, What Can You Do About It?
• Structured Deferral: Synchronization via Procrastination
• Introuction to RCU Concepts
• LWN: What is RCU, Fundamentally?
• Introduction to RCU
• Userspace RCU

https://dl.acm.org/doi/10.1145/2815400.2815406
https://dl.acm.org/doi/10.1145/2815400.2815406
https://mirrors.edge.kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
https://queue.acm.org/detail.cfm?id=2488549
http://www.rdrop.com/~paulmck/RCU/RCU.LinuxCon.2013.10.22a.pdf
https://lwn.net/Articles/262464/
https://docs.google.com/document/d/1X0lThx8OK0ZgLMqVoXiR4ZrGURHrXK6NyLRbeXe3Xac/edit?tab=t.0
https://liburcu.org/

