
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 16

Memory Management

March 27, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/

2
Previously: Kernel Synchronization
• Pages and zones
• Page allocation
• kmalloc, vmalloc (recap)
• Slab allocator
• Stack, high memory, per-CPU data structures

3
Pages
• Memory is divided into physical pages or frames
• The page is the basic management unit in the kernel
• Page size is machine-dependent

– Determined by the memory management unit (MMU)
– 4KB in general, some are 2MB and 1GB: getconf PAGESIZE

4
Pages
• Each physical page is represented by ”struct page”

– Recently, converted to “folio” as a group of pages, but basic concept is the same
• Defined in “include/linux/mm_types.h”

5
Pages
• The kernel uses “struct page” to keep track of the owner of the page

– User-space process, kernel statically/dynamically allocated data, page cache, etc.
• There is one ”struct page” object per physical memory page

– sizeof(struct page): 64bytes
– Assuming 8GB of DRAM and 4K-sized pages: 128MB reserved for “struct page” objects

(~1.5%)

6
Zones
• Certain contexts require certain physical pages due to hardware limitations

– Some devices can only access the lowest 16MB of physical memory
– High memory should be mapped before being accessed

• Physical memory is partitioned into zones having the same constraints
– Zone layout is architecture- and machine-dependent

• Page allocator considers the constraints while allocating pages

7
Zones

8
Zones
• x86_32 zones layout

• x86_64 zones layout

9
Zones
• Each zone is managed with “struct zone” data structure defined in

“include/linux/mmzone.h”

10
Memory Layout (x86_32)

11
Memory Layout (x86_32)

12
Hierarchy of Memory Allocators

13
Low-level Memory Allocator
• Buddy system
• Low-level mechanisms to allocate memory at the page granularity
• Interfaces in “include/linux/gfp.h”

14
Buddy System
• Prevent memory from being fragmented

15
Status of Buddy System

16
Page Allocation / De-allocation

17
Page Access

18
Allocate Zeroed Page
• By default, the page data is not cleared
• May leak information through the page allocation
• to prevent information leakage, allocate a zero-out page for user-space request

– unsigned long get_zeroed_page(gfp_t gfp_mask);

19
gfp_t: get free page flags
• Specify options for memory allocations

– Action modifier
» How the memory should be allocated

– Zone modifier
» From which zone the memory should be allocated

– Type flags
» Combination of action and zone modifiers
» Generally preferred compared to the direct use of action/zone

– Defined in ”include/linux/gfp.h”

20
gfp_t: Action Modifiers

21
gfp_t: Action Modifiers
• Some action modifiers can be used together

22
gfp_t: Zone Modifier
• If not specified, allocated from ZONE_NORMAL or ZONE_DMA (preference to

ZONE_NORMAL)

23
gfp_t: Type Flags
• GFP_ATOMIC: Allocate without sleeping

– __GFP_HIGH
• GFP_NOWAIT: Same to GFP_ATOMIC but does not fall back to the emergency

pools

24
gfp_t: Type Flags
• GFP_NOIO: Can block but does not initiate disk I/O

– Used in block layer code to avoid recursion
– __GFP_WAIT

• GFP_NOFS: Can block and perform disk I/O, but does not initiate filesystem
operations

– Used in filesystem code
– __GFP_WAIT | __GFP_IO

• GFP_KERNEL: Default. can sleep and perform I/O
– __GFP_WAIT | __GFP_IO | __GFP_FS

• GFP_USER: Normal allocation for user-space memory
• GFP_HIGHUSER: Normal allocation for user-space memory

– GFP_USER | __GFP_HIGHMEM
• GFP_DMA: Allocate from ZONE_DMA

25
gfp_t: Cheat Sheet

26
Low-level Memory Allocation Example

27
High Memory
• On x86_32, physical memory above 896MB is not permanently mapped within the

kernel address space
– due to limited size of the addr space and the 1/3GB kernel/user-space memory split

• Before using them, pages from highmem should be mapped to the addr space

28
High Memory

29
High Memory Example

30
kmalloc() / kfree()
• void *kmalloc(size_t size, gfp_t flags)

– Allocates byte-sized chunks of memory
– Similar to the user-space malloc()

» Returns a pointer to the first allocated byte on success
» Returns NULL on err

– Allocated memory is physically contiguous
• void kfree(const void *ptr)

– Free the memory allocated with kmalloc()

31
Example

32
vmalloc()
• void *vmalloc(unsigned long size)

– allocates virtually contiguous chunk of memory
» May not be physically contiguous
» Cannot be used for I/O buffers requiring physically contiguous memory

– Used for allocating a large virtually contiguous memory
– May sleep so cannot be called from interrupt context

• void vfree(const void *addr)

33
vmalloc()
• However, most of the kernel uses kmalloc() for performance reasons

– Pages allocated with kmalloc() are directly mapped
– Less overhead in virtual-to-physical mapping setup and translation

• vmalloc() is still needed to allocate large protions of memory
• Declared in include/linux/vmalloc.h

34
vmalloc() vs. kmalloc()

35
Slab Allocator
• Allocating/freeing data structures is done very often in the kernel
• Q: how to make memory allocation faster?
• Caching using a free lislt

– Block of pre-allocated memory for a given type of data structure
– Allocate from the free list = pick an element in the free list
– Deallocate an element = add an element to the free list

36
Slab Allocator
• Issue with ad-hoc free lists: no global control

– When and how to free free lists?
• Slab allocator

– Generic allocation caching interface
– Cache objects of a data structure type

» e.g., an object cache for “struct task_struct”
– Consider the data structure size, page size, NUMA, and cache coloring ...

37
Slab Allocator
• A cache has one or more slabs

– One or several physically contiguous pages
• Slabs contain objects
• A slab may be empty, partially full, or full
• allocate objects from the partially full slabs to prevent memory fragmentation

38
Slab Allocator

39

40
Slab Allocator
• SLAB_HW_CACHEALIGN

– Align objects to the cache line to prevent false sharing
– Increase memory footprint

41
Slab Allocator
• SLAB_POISON

– Initially fill slabs with a known value(0xa5a5a5a5) to detect accesses to uninitialized
memory

• SLAB_RED_ZONE
– Put extra padding around objects to detect overflows

• SLAB_PANIC
– Panic if allocation fails

• SLAB_CACHE_DMA
– Allocate from DMA-enabled memory

42
Slab Allocator

43
Example

44
Slab Allocator Status

45
Slab Allocator Variants
• SLOB (Simple List of Blocks)

– Used in early Linux version
– Low memory footprint, suitable for embedded systems

• SLAB
– from 1999
– Cache-friendly

• SLUB
– in 2008
– Improved scalability over SLAB on many cores

46
Per-CPU Data Structure

47
Per-CPU API

48

49
Stack
• Each process has

– A userspace stack for execution
– A kernel stack for in-kernel execution

• Userspace stack is large and grows dynamically
• Kernel-stack is small and has a fixed-size à 2 pages
• Interrupt stack is for interrupt handlers à 1 page per CPU
• Reduce kernel stack usage to a minimum

– Local variables and function parameters

50
Takeaway
• Need physically contig memory

– kmalloc(), alloc_page()
• Virtually contig

– vmalloc()
• Frequently creating/destroying large amount of the same data structures

– Use SLAB allocator
• Need to allocate from high memory

– Use alloc_page() then kmap()/kmap_atomic()

51
Further Readings
• Virtual Memory: What is Virtual Memory?
• 20 years of Linux virtual memory
• complete virtual memory map x86_64 architecture

