
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 17

Memory Management (II)

April 1, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/

2
Previously:
• Pages and zones
• Page allocation
• kmalloc, vmalloc (recap)

è Today
• Slab allocator
• Stack, high memory, per-CPU data structures
• Page tables
• Address space
• Memory descriptor: mm_struct
• Virtual Memory Area (VMA)
• VMA manipulation

3
Page Tables
• Linux enables paging early in the boot process

– All memory accesses made by the CPU are virtual and translated to physical addresses
through the page tables

– Linux sets up the page table and the translation is made automatically by the hardware
(MMU) according to the page table content

• The address space is defined by VMAs and is sparsely populated
– One address space per process à one page table per process
– Lots of “empty” areas

4
Page Tables

5
Page Tables
• Address translation is performed by the hardware (MMU)

6
Virtual Address Map in Linux

7
Address Space
• The memory that a process can access

– Illusion that the process can access 100% of the system memory
– With virtual memory, can be much larger than the actual amount of physical memory

• Defined by the process page table setup by the kernel

8
Address Space
• A memory address is an index within the address space

– Identify a specific byte
• Each process is given a flat 32/64-bits address space

– Not segmented

9
Address Space
• Virtual Memory Areas (VMA)

– Interval of addresses that the process has the right to access
– Can be dynamically added or removed to the process address space
– Associated permissions: read, write, execute
– Illegal access à segmentation fault

10

• VMAs can contain:
– Mapping of the executable file code (text section)
– Mapping of the executable file initialized variables (data section)
– Mapping of the zero page for uninitialized variables (bss section)
– Mapping of the zero page for the user-space stack
– Text, data, bss for each shared library used
– Memory-mapped files, shared memory segment, anonymous mappings (used by malloc)

11

12
Memory Descriptor: mm_struct

13

• mm_users: number of processes (threads) using the addr space
• mm_count: reference count

– +1 if num_users > 0
– +1 if the kernel is using the address space
– When mm_count reaches 0, the mm_struct can be freed

• mmap and mm_rb are respectively a linked list and a tree containing all the VMAs
in the addr space

– List is used to iterate over all the VMAs in an ascending order
– Tree is used to find a specific VMA

• All mm_struct are linked together in a doubly linked list
– Through the mmlist field in the mm_struct

14
Allocating a Memory Descriptor
• A task memory descriptor is located in the ”mm” field of the “task_struct”

15
Allocating a Memory Descriptor
• Current task memory descriptor: current->mm
• During fork(), copy_mm() makes a copy of the parent memory descriptor for the

child
– copy_mm() calls dup_mm() which calls allocate_mm() à alloates an “mm” struct object

from a slab cache
• Two threads sharing the same address space have the ”mm” field of their

task_struct pointing to the same “mm_struct” object
– Threads are created using the “CLONE_VM” flag passed to clone() à allocate_mm() is

not called

16
Destroying a Memory Descriptor
• When a process exits, do_exit() is called and it calls exit_mm()

– Performs some housekeeping/statistics updates and calls mmput()

17
The mm_struct and Kernel Threads
• Kernel threads do not have a user-space address space

– mm field of a kernel thread task_struct is NULL

18

• The kernel threads still need to access the kernel address space
– When a kernel thread is scheduled, the kernel notices its mm is NULL, so it keeps the

previous address space loaded (page tables)
– Kernel makes the “active_mm” field of the kernel thread to point to the borrowed

mm_struct
– It is okay b/c the kernel address space is the same in all tasks

19
VMA
• Each line corresponds to one VMA

20

• Each VMA is represented by an object of type “vm_area_struct”

21
VMA
• The VMA exists over [vm start, vm end) in the corresponding address space à

size in bytes: (vm_end – vm_start)
• Address spaxe is pointed by the vm_mm field (of type mm_struct)
• Each VMA is unique to the associated mm_struct

– Two processes mapping the same file will have two different mm_struct objects, and two
different vm_area_struct objects

– Two threads sharing an mm_struct object also share the vm_area_struct objects

22
VMA Flags

23

24

25
VMA Flags
• Combining VM_READ, VM_WRITE, and VM_EXEC gives the permission for the

entire area, for example
– Object code is VM_READ and VM_EXEC
– Stack is VM_READ and VM_WRITE

• VM_SEQ_READ and VM_RAND_READ are set through the madvise() syscall
– Instructs the file pre-fetching algorithm read-ahread to increase or decrease its prefetch

window
• VM_HUGETLB indicates that the area uses pages larger than the regular size

– 2MB and 1GB on x86
– Larger page size à less TLB miss à faster memory access

26
VMA Operations
• vm_ops in vm_area_struct is a struct of function pointers to operate on a specific

VMA

27
VMA Manipulation: find_vma()

28

29
Creating an Address Interval
• do_mmap() is used to create a new linear address interval

– Can result in the creation of a new VMA
– Or a merge of the created area with an adjacent one when they have the same

permissions

30

31

• “flags” specifies the rest of the VMA options

32

33

• On error do_mmap() returns a negative value
• On success

– The kernel tries to merge the new interval with an adjacent one having the same
permissions

– Otherwise, create a new VMA
– Returns a pointer to the start of the mapped memory area

• do_mmap() is exported to user-space through mmap2()

34
Removing an Address Interval
• Removing an address interval is done through do_munmap()
• Exported to user-space through munmap()

35
Further Readings
• Introduction to Memory Management in Linux
• 20 years of Linux virtual memory
• Linux Kernel virtual Memory Map
• Kernel page-table isolation
• Heterogeneous memory support

– AutoNUMA, Transparent Hugepage Support, Five-level page tables
• Optimizations for virtualization

– Kernel same-page merging (KSM)
– MMU notifier

