CS 5264/4224; ECE 5414/4414

(Advanced) Linux Kernel Programming
Lecture 17

Memory Management (ll)
April 1, 2025

Huaicheng Li
https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Previously:

* Pages and zones
* Page allocation
* kmalloc, vmalloc (recap)

=» Today
e Slab allocator

Stack, high memory, per-CPU data structures

Page tables

Address space

Memory descriptor: mm_struct
Virtual Memory Area (VMA)
VMA manipulation

Page Tables

* Linux enables paging early in the boot process

— All memory accesses made by the CPU are virtual and translated to physical addresses
through the page tables

— Linux sets up the page table and the translation is made automatically by the hardware
(MMU) according to the page table content

* The address space is defined by VMAs and is sparsely populated

— One address space per process = one page table per process
— Lots of "empty” areas

Page Tables

struct mm_struct {
struct vm_area_struct *mmap;

struct rb_root mm_xb ; * rbtree of VMAs *.
pgd_t *pgd; /* page global director)
}s
0x1234
-1 > —
Cr3 CPU
register N
\ \
\
0x1234 /
S
PGD:
Page
Global
Directory
PUD: PMD: PTE:
Page Page Page
Upper Middle Table

Directory Directory Entry

Page Tables
* Address translation is performed by the hardware (MMU)

cr3

PGD PUD PMD PTE
Ll /7 - v
r /
- .

Virtual memory address

0000000000000000

hole caused by [47:

ffff800000000000
ffff880000000000
ffffc80000000000
ffffco90000000000
ffffe90000000000
ffffea®000000000

. unused hole ...

Ffffec0000000000

. unused hole .

fffffe0000000000
fffffe8000000000
ffffffoo00000000

. unused hole ...

FFfFffef00000000

. unused hole ...

ffffffff80000000
ffffffffa0000000
[fixmap start]

ffffffffffe00000
ffffffffffe00000

00007 FFFFFffffff

Virtual Address Map in Linux

(=47 bits) user space, different per mm

63] sign extension

FEFFR7FFFFFFFree
FEFFCTFFFFFFFFee
FEFFCBFFFFFFFree
FEFfe8FFFFffffff
FEFfeOfFFFFFFfee
ffffeaffffffffff

FEFFFofFFFFFFFee

(=43
(=64
(=40
(=45
(=40
(=40

bits)
TB)

bits)
bits)
bits)
bits)

guard hole, reserved for hypervisor
direct mapping of all phys. memory
hole

vmalloc/ioremap space

hole

virtual memory map (1TB)

(=44

bits) kasan shadow memory (16TB)

vaddr_end for KASLR

fEFFfe7fFFFFFfff
fEfffefFFFFFffff
FEFFFF7FFFFFFFff

fEfFffffefffrfreef

FEFFFFFFOFFFFree
FEFFFFFffefffffe
FEFFFFFFFFSTFFee
FEFFFFFFFF600FFT
FEFFFFFFFFFFFree

(=39
(=39
(=39

bits)
bits)
bits)

cpu_entry_area mapping
LDT remap for PTI

%esp fixup stacks

(=64 GB) EFI region mapping space

(=512 MB) kernel text mapping, from phys 0
(1520 MB) module mapping space
kernel-internal fixmap range
legacy vsyscall ABI

unused hole

(=4 kB)
(=2 MB)

Address Space

* The memory that a process can access
— lllusion that the process can access 100% of the system memory

— With virtual memory, can be much larger than the actual amount of physical memory

* Defined by the process page table setup by the kernel

Virtual Memory Area
represented by a

vm_area_ struct object
4>

text | data bss heap » ‘ mmap ‘ stack

Address space defined by amm_struct object

Address Space

* A memory address is an index within the address space

— Identify a specific byte

* Each process is given a flat 32/64-bits address space

— Not segmented

1C6PtL)JIt ».| Segment selector
(base): 0x1000 ‘
Address accessed: Resulting physical @:
0x10234
0x1234 Base*F+offset

_>

Adapted from
Memory address http://duartes.org/gustavo/blog/

(offset): 0x1234 post/memory-translation-and-segm
entation/

Address Space

* Virtual Memory Areas (VMA)

— Interval of addresses that the process has the right to access

— Can be dynamically added or removed to the process address space

— Associated permissions: read, write, execute

— lllegal access = segmentation fault

$ cat /proc/1/maps 7
55fe3bf02000-55fe3bffo000
55fe3bffa000-55fe3c021000
55fe3c021000-55fe3c022000
55fe3db4a@00-55fe3ddfdooo
717522769000-717522Td9000
717523150000-717523265000

L o~ S PV " A
O Ssuao Pn 1a P 1

r-Xp 00000000
r--p 0007000
Tw-p 0011e000
Tw-p 00000000
Tw-p 00000000
r-Xp 00000000

y |
L

fd:
fd:
fd:
00:
00:
fd:

00 1975429
00 1975429
00 1975429
00 ©
20 0
00 1979800

/usr/lib/systemd/systemd
/usr/lib/systemd/systemd
/usr/1lib/systemd/systemd
[heap]

/usr/1ib64/1ibm-2.25.s0

* VMAs can contain:
— Mapping of the executable file code (text section)
— Mapping of the executable file inrtialized variables (data section)
— Mapping of the zero page for uninitialized variables (bss section)
— Mapping of the zero page for the user-space stack
— Text, data, bss for each shared library used
— Memory-mapped files, shared memory segment, anonymous mappings (used by malloc)

10

Virtual Memor
represented by a

vm_area_struct object

>

Area

text

data

bss

heap »

‘ mmap

‘ stack

Address space defined by a mm_struct object

11

Memory Descriptor: mm_ struct

/* linux/include/linux/mm types.h */

struct mm_struct {

},

struct vm_area_struct *mmap;

struct rb_root

pgd_t
atomic_t
atomic_t
int

struct rw_semaphore

spinlock_t

struct list_head

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

unsigned
unsigned
unsigned
unsigned
unsigned
unsigned

long
long
long
long
long
long

long
long
long
long
long
long

spinlock_t

/L0 */

mm_xb;
*pgd;
mm_users;
mm_count;

map_count;

mmap_sem;

page_table_lock;

mmlist;

start_code;

end_code;

start_data;

end_data;

start_brk;

end_brk;

arg_start;

arg_end;

env_start;
total_vm;
locked_vm;

flags;

ioctx_lock;

/* 1ist of VMAs */

/* rbtree of VMAs */

/* page global directory */
/* address space users */
/* primary usage counters */
/* number of VMAs */

/* VMA semaphore */

/* page table lock */

/* 1ist of all mm_struct */
/* start address of code */
/* end address of code */
/* start address of data */
/* end address of data */

/* start address of heap */
/* end address of heap */

/*
/*
/*
/*
/*
/*
/*

start of arguments */

end of arguments */

start of environment */

total pages mapped */

number of locked pages */
architecture specific data */
Asynchronous I/0 1list lock */

12

mm_users: number of processes (threads) using the addr space
mm__count: reference count

— + | if num_users > 0
— + 1| if the kernel is using the address space

— When mm_count reaches O, the mm_struct can be freed

mmap and mm_rb are respectively a linked list and a tree containing all the VMAs
In the addr space

— List 1s used to iterate over all the VMAs in an ascending order
— Tree Is used to find a specific VMA

All mm_struct are linked together in a doubly linked list

— Through the mmlist field in the mm_struct

13

Allocating a Memory Descriptor

» A task memory descriptor is located in the "mm” field of the “task_struct”

/* 1linux/include/linux/sched.h */

struct task_struct {

struct thread_info thread_info;
/* ... */

const struct sched_class *sched_class;
struct sched_entity se,

struct sched_rt_entity rt;

/* ... */

struct mm_struct *mm;

struct mm_struct *active_mm;
/* ... */

},

14

Allocating a Memory Descriptor

* Current task memory descriptor: current->mm
* During fork(), copy_mm() makes a copy of the parent memory descriptor for the
child

— copy_mm() calls dup_mm() which calls allocate_mm() = alloates an “mm" struct object
from a slab cache

* Two threads sharing the same address space have the "mm?” field of their
task_struct pointing to the same “mm_struct” object

— Threads are created using the “CLONE_VM" flag passed to clone() = allocate_mm() is
not called

15

Destroying a Memory Descriptor

* When a process exits, do_exit() is called and 1t calls exit_mm()

— Performs some housekeeping/statistics updates and calls mmput()

void mmput(struct mm_struct *mm) {
might_sleep();
if (atomic_dec_and_test(&mm->mm_users))

__mmput (mm) ;
}
static inline void __mmput(struct mm_struct *mm) {
/* ... */
mmdxop (mm) ;
}

static inline void mmdrop(struct mm_struct *mm) {
if (unlikely(atomic_dec_and_test (&mm->mm_count)))

16

The mm_struct and Kernel Threads

* Kernel threads do not have a user-space address space

— mm field of a kernel thread task_struct is NULL

Process 1

Process 2

Kthread 1

Kernel User
address space address space

Kernel User
address space address space

Kernel
address space

* The kernel threads still need to access the kernel address space

— When a kernel thread is scheduled, the kernel notices its mm i1s NULL, so it keeps the
previous address space loaded (page tables)

— Kernel makes the "active_mm" field of the kernel thread to point to the borrowed
mMmm_struct

— It is okay b/c the kernel address space is the same in all tasks

18

VMA

* Each line corresponds to one VMA

$ cat /proc/l/maps # or sudo pmap 1

55fe3bf02000-55fe3bff9000 r-xp 00000000 fd:00 1975429 /usx/lib/systemd/systemd
55fe3bffa000-55fe3c021000 r--p 000f7000 fd:00 1975429 /usr/lib/systemd/systemd
55fe3c021000-55fe3c022000 rw-p 0011e000 fd:00 1975429 /usxr/lib/systemd/systemd
55fe3db4a000-55fe3ddfdo0d rw-p 00000000 00:00 O [heap]
7f7522769000-717522fd9000 rw-p 00000000 00:00 O

7f7523150000-717523265000 r-xp 00000000 fd:00 1979800 /usr/lib64/libm-2.25.so0
7f7523265000-717523464000 ---p 00115000 fd:00 1979800 /usr/lib64/l1ibm-2.25.so0
7t7523464000-717523465000 r--p 00114000 fd:00 1979800 /usr/lib64/1ibm-2.25.so0
7f7523465000-717523466000 rw-p 00115000 fd:00 1979800 /usr/1lib64/1ibm-2.25.so

r = read

w = write

X = execute

s = shared

p = private (copy on write)

* Each VMA is represented by an object of type

/* linux/include/l1inux/mm_types.h */

struct vm_area_struct {

struct
(mm_struct) */

unsigned long
unsigned long
struct vm_area_struct
struct vm_area_struct
pgprot_t
unsigned long
struct rb_node
struct list_head
struct anon_vma
struct vm_operation_struct
unsigned long
struct file
void

mm_struct *vm_mm;

vm_start,;
vim_end;
*vm_next ;
*vm_prev,;
vm_page_prot;
vm_flags;
vim_xb;
anon_vma_chain;
*anon_vma;
*vm_ops;
vm_pgoff;
*vm_file;

*vm_private_data;

/7('

/7('
/*
/*
/7(-
/*
/7('
/7('
/7(-
/*
/*
/7(-
/*
/7('

“vm_area_struct”

associated address space

WMA start, inclusive */

VWMA end, exclusive */

list of VMAs */

list of VMAs */

access permissions */

flags */

VMA node in the tree */

list of anonymous mappings */
anonmous vma object */
operations */

offset within file */
mapped file (can be NULL) */
private data */

20

VMA

* The VMA exists over [vm start, vm end) in the corresponding address space =>
size in bytes: (vm_end — vm_start)

* Address spaxe is pointed by the vin_mm field (of type mm_struct)

* Each VMA is unique to the associated mm_struct

— Two processes mapping the same file will have two different mm_struct objects, and two
different vm_area_struct objects

— Two threads sharing an mm_struct object also share the vm_area_struct objects

21

VMA Flags

Flag

VM_READ
VM_WRITE
VM_EXEC
VM_SHARED
VM_MAYREAD
VM_MAYWRITE
VM_MAYEXEC
VM_MAYSHARE

22

Effect on the VMA and Its Pages
Pages can be read from.

Pages can be written to.

Pages can be executed.

Pages are shared.

The VM_READ flag can be set.
The VM_WRITE flag can be set.
The VM_EXEC flag can be set.
The VM_SHARE flag can be set.

Flag
VM_GROWSDOWN
VM_GROWSUP
VM_SHM
VM_DENYWRITE
VM_EXECUTABLE
VM_LOCKED
VM_IO
VM_SEQ_READ

Effect on the VMA and Its Pages
The area can grow downward.

The area can grow upward.

The area is used for shared memory.
The area maps an unwritable file.
The area maps an executable file.
The pages in this area are locked.

The area maps a device’s |/O space.

The pages seem to be accessed sequentially.

23

Flag
VM_RAND_READ
VM_DONTCOPY
VM_DONTEXPAND
VM_RESERVED
VM_ACCOUNT
VM_HUGETLB
VM_NONLINEAR

Effect on the VMA and Its Pages

The pages seem to be accessed randomly.
This area must not be copied on fork().
This area cannot grow via mremap().

This area must not be swapped out.

This area is an accounted VM object.

This area uses hugetlb pages.

This area is a nonlinear mapping.

24

VMA Flags

* Combining VM_READ, VM_WRITE, and VM_EXEC gives the permission for the
entire area, for example

— Object code is VM_READ and VM_EXEC
— Stack is VM_READ and VM_WRITE

 VM_SEQ_READ and VM_RAND_READ are set through the madvise() syscall

— Instructs the file pre-fetching algorithm read-ahread to increase or decrease its prefetch
window

 VM_HUGETLB indicates that the area uses pages larger than the regular size
— 2MB and | GB on x86

— Larger page size = less TLB miss = faster memory access

25

VMA Operations

* vm_ops In vm_area_struct is a struct of function pointers to operate on a specific
VMA

/* 1inux/include/l1inux/mm.h */

struct vm_operations_struct {
/* called when the area is added to an address space */
void (*open) (struct vm_area_struct * area),

/* called when the area is removed from an address space */
void (*close)(struct vm_area_struct * area);

/* invoked by the page fault handler when a page that 1is
* not present in physical memory is accessed*/
int (*fault) (struct vm_area_struct *vma, struct vm_fault *vmf);

/* invoked by the page fault handler when a previously read-only
* page is made writable */

int (*page_mkwrite) (struct vm_area_struct *vma, struct vm_fault *vmf);
/* ... */

26

VMA Manipulation: find_vma()

/* 1inux/mm/mmap.c */

/* Look up the first VMA which satisfies addr < vm_end, NULL if none.

*/

struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)

{

struct rb_node *rb_node;
struct vm_area_struct *vma;

/* Check the cache first. */
vma = vmacache_find(mm, addr);
if (likely(vma))

return vma;

rb_node = mm->mm_xrb.rb_node;

while (xb_node) {
struct vm_area_struct *tmp;

tmp = rb_entry(rb_node, struct vm_area_struct, vm_xb);

if (tmp->vm_end > addr) {

vma = tmp;
if (tmp->vm_start <- addr)
break;
rb_node = rb_node->rb_left;
} else

rb_node = rb_node->rb_right;
}
if (vma)

vmacache_update(addr, vma);
return vma;

27

/* 1linux/include/linux/mm.h */

/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr);

/*
* Same as find_vma, but also return a pointer to the previous VMA in *pprev.
*/
struct vm_area_struct *
find_vma_prev(struct mm_struct *mm, unsigned long addr,
struct vm_area_struct **pprev);

/* Look up the first VMA which intersects the interval start_addr..end addr-1,
NULL if none. Assume start _addr < end addr. */
struct vm_area_struct * find_vma_intersection(strxruct mm_struct * mm,
unsigned long start_addr, unsigned long end_addr),

28

Creating an Address Interval

* do_mmap() is used to create a new linear address interval
— Can result in the creation of a new VMA

— Or a merge of the created area with an adjacent one when they have the same
permissions

/*
* The caller must hold down_write(¤t->mm->mmap_sem).
5/
unsigned long do_mmap(struct file *file, unsigned long addr,
unsigned long len, unsigned long prot,
unsigned long flags, vm_flags_t vm_flags,
unsigned long pgoff, unsigned long *populate,
struct list_head *uf);

29

prot specifies access permissions for the memory pages

Flag Effect on the new interval
PROT_READ Corresponds to VM_READ
PROT_WRITE Corresponds to VM_WRITE
PROT_EXEC Corresponds to VM_EXEC

PROT_NONE Cannot access page

30

» “flags” specifies the rest of the VMA options

Flag Effect on the new interval

MAP_SHARED The mapping can be shared.

MAP_PRIVATE The mapping cannot be shared.

MAP_FIXED The new interval must start at the given address

addr.

MAP_ANONYMOUS The mapping is not file-backed, but is anonymous.

MAP_GROWSDOWN Corresponds to VM_GROWSDOWN .

31

Flag
MAP_DENYWRITE
MAP_EXECUTABLE
MAP_LOCKED
MAP_NORESERVE
MAP_POPULATE
MAP_NONBLOCK

Effect on the new interval
Corresponds to VM_DENYWRITE .
Corresponds to VM_EXECUTABLE .
Corresponds to VM_LOCKED .

No need to reserve space for the mapping.

Populate (prefault) page tables.
Do not block on 1/O.

32

* On error do_mmap() returns a negative value
* On success

— The kernel tries to merge the new interval with an adjacent one having the same
permissions

— Otherwise, create a new VMA

— Returns a pointer to the start of the mapped memory area

* do_mmap() is exported to user-space through mmap2()

void *mmap2(void *addr, size_t length, int prot,
int flags, int fd, off_t pgoffset);

33

Removing an Address Interval

* Removing an address interval is done through do_munmap()
* Exported to user-space through munmap()

/* linux/include/l1inux/mm.h */
int do_munmap(struct mm_struct *, unsigned long, size_t);

int munmap(void *addr, size_t len);

34

Further Readings >

* Introduction to Memory Management in Linux

20 years of Linux virtual memory

Linux Kernel virtual Memory Map

Kernel page-table isolation

Heterogeneous memory support
— AutoNUMA, Transparent Hugepage Support, Five-level page tables

Optimizations for virtualization

— Kernel same-page merging (KSM)
— MMU notifier

