CS 5264/4224; ECE 5414/4414

(Advanced) Linux Kernel Programming
Lecture |8

Virtual File System
April 3, 2025

Huaicheng Li
https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Recap Page Tables

struct mm__ struct {
struct vm_area_struct *mmap; /* 1ist of VMAs

struct rb_root mm_xb; e of W
pgd_t *pgd; lobal director)
}i
0x1234
-1 > —
Cr3 CPU
register N
\ \
Y
0x1234 /
N
PGD:
Page
Global
Directory
PUD: PMD: PTE:
Page Page Page
Upper Middle Table

Directory Directory Entry

Recap: Page Tables
* Address translation is performed by the hardware (MMU)

cr3

PGD PUD PMD PTE
Ll /7 - v
r /
- .

Virtual memory address

Virtual File System (VFS)
» Abstract all the filesystem models supported by Linux

— Similar to an abstract base class in C++

* Allow FSes to coexist

— Example: a user can have a USB drive formatted with FAT32 mounted at the same time as
an HDD rootfs with ext4

* Allow them to cooperate

— Example: a user can seamlessly copy a file between the FAT32 and ext4 partitions

User space application (ex: cp)

User-space

— Syscalls: open, read, write, etc.

Kernel-space

VFS: Virtual File System

Filesystems ext4 FAT32 JFFS2

Hardware

. . Embedded
Hard disk USB drive flash

Common Filesystem Interface
* VFS allows user-space to access files independently of the concrete filesystem they
are stored on with a common interface
— Standard system calls: open(), read(), write(), Iseek(), etc
— "top” VFS interface (with user-space)
* Interface can work transparently between filesystems

L

open ()

User-space program

1
2. oPen()

Filel

3

read ()

|
4. write() |

[
=

Filesystem Abstraction Layer

* VFS redirects user-space requests to the corresponding concrete filesystem
— "bottom” VFS interface (with the filesystem)

— Developing a new filesystem for Linux means conforming with the bottom interface

1f£s2 1te begi
write() [™| sys write() [™ Jffs2_write begin ()

jffs2 write end()

l

Driver (MTD) &
Storage media (flas

Unix Filesystem

* The term filesystem can refer to a filesystem type or a partition

* Hierarchical tree of files organized into directories

.bam

Desktop

Documents

file

home

user2

Pictures

Desktop

* File: ordered string of bytes from file address O to address (file size — I)

— Metadata: name, access permission, modification date, etc.

— Separated from the file data into specific objects inodes, dentries

* directory: folder containing files or other directories (sub-directories)

— Sub-directories can be nested to create path: /home/lkp/Desktop/file

@file_size-1

Y

File content

10

Path example: /home/lkp/Desktop/.f1ile

(root directory)

.bashrc

Documents

Pictures

Desktop

11

VFS Data Structures
* dentry: contains file/directory name and hierarchical links defining the filesystem
directory tree
* Inode: contains file/directory metadata
* file: contains information about a file opened by a process
 superblock: contains general information about the partition
* file_system_type: contains information about a file system type (ext4)
» Associated operations (“bottom” VFS interface):
— super_operations
— iInode_operations
— dentry_operations

— file_operations

12

Superblock

descriptor

Dentry cache

13

Superblock

» Contains global information about the filesystem (partition)
* Created by the filesystme and given to VFS at mount time:

— Disk-based filesystem store it in a special location
— Other filesystems have a way to generate it at mount time

 “struct super_block”, include/linux/fs.h

/* 1inux/include/linux/fs.h */
struct super_block {

struct list_head s_list; /** 1ist of all superblocks **/
dev_t s_dev; /* identifier */

unsigned long s_blocksize; /* block size (bytes) */
unsigned long s_blocksize_bits; /* block size (bits) */

loff_t s_maxbytes; /* max file size */

/* ... */

14

Superblock

/* ... */
struct file_system_type
struct super_operations
struct dquot_operations
struct quotactl_ops
unsigned long
unsigned long
struct dentry
struct rw_semaphore
int
atomic_t
struct xattr_handler
*/
struct list_head
struct hlist_bl_head
struct list_1ru
struct block_device
struct hlist_node
*/
struct quota_info
char
void

*s_type,
*s_op,;
*dg_op;
*s_qcop,
s_flags;
s_magic;
s_root;
s_umount;
s_count;
s_active;
**s xattr;

s_inodes;
s_anon;

s_dentry_lru;

*s_bdev;
s_instances;

s_dquot;
s_id[32];
*s_fs_info;

/** filesystem type **/

/** superblock operations **/
/* quota methods */

/* quota control methods */
/** mount flags **/

/* filesystem magic number */
/** directory mount point **/
/* umount semaphore */

/* superblock reference count */
/* active reference count */
/* extended attributes handler

/** inodes 1ist **/

/* anonymous entries */

/* 1ist of unused dentries */
/** associated block device **/
/* instances of this filesystem

/* quota-specific options */
/* text name */
/* filesystem-specific info */

15

Superblock Operations

* struct super_operations
— Each field is a function pointer operating on a “struct super_block”

— Usage: sb->s_op->alloc_inode(sb)

/* linux/include/linux/fs.h */
struct super_operations {
struct inode *(*alloc_inode) (struct super_block *sb);
void (*destroy_inode) (struct inode *);
void (*dirty_inode) (struct inode *, int flags);
int (*write_inode) (struct inode *, struct writeback_control *wbc);
int (*drop_inode) (struct inode *);
void (*evict_inode) (struct inode *);
void (*put_super) (struct super_block *);
int (*sync_fs) (struct super_block *sb, int wait);

16

Superblock operations: inode

* struct inode *alloc_inode(struct super_block *sb)

— Create and initialize a new inode

* void destroy_inode(struct inode *inode)
— Deallocate an inode

* void dirty_inode(struct inode *inode)
— Marks an inode as dirty (ext filesys)

17

Superblock Operations: inode

* void write_inode(struct inode *inode, int wait)

— Writes the inode to disk, wait specifies if the write should be synchronous
* void clear_inode(struct inode *inode)

— Releases the inode and clear any page containing related data
* void drop_inode(struct inode *inode)

— Called by VFS when the last reference to the inode is dropped

18

Superblock Operations: superblock

* void put_super(struct super_block *sb)
— Called by VFS on unmount (holding s_lock)
* void write_super(struct super_block *sb)

— Update the on-disk superblock, caller must hold s_lock

19

. . 20
Superblock Operations: Filesystem

* int sync_fs(struct super_block *sb, int wait)

— Synchronize filesystem metadata with on-disk filesystem, “wait” specifies If the operation
should be synchronous

* void write_super_lockfs(struct super_block *sb)

— Prevent changes to the filesystem and update the on-disk superblock (used by the Logical
volume Manager)

* void unlockfs(struct super_block *sb)
— Unlock the filesystem locked by write_super_lockfs()
* Int statfs(struct super_block *sb, struct statfs *statfs)
— Obtain filesystem statistics
* Iint remount_fs(struct super_block *sb, int *flags, char *data)
— Remount the filesystem with new options, caller must hold s_lock
* void umount_begin(struct super_block *sb)
— Called by VFS to interrupt a mount operation (NFS)

 All these functions are called by VFS and may block (except dirty_inode())
* Function to mount a file system?

— mount_bdev() In fs/super.c

21

inode

descriptor

Dentry cache

22

Related to a file or directory, contains metadata plus information about how to
manipulate the file/directory

Metadata: file size, owner id/group, etc
Must be produced by the filesystem on-demand when a file/directory is accessed

— Read from disk in Unix-like filesystem
— Reconstructed from on-disk information for other filesystems
Cached in a hashtable

— Inode_hashtable in fs/inode.c

23

inOde /* linux/include/linux/fs.h */
struct inode {

struct hlist_node i_hash; AF% haeh 1TisE %)

struct list_head i_lru; /* inode LRU 1ist*/

struct list_head i_sb_1list; /** inode list in superblock **/
struct list_head i_dentry; /** 1ist of dentries **/
unsigned long i_ino; /** inode number **/

atomic_t i_count; /** reference counter **/
unsigned int i_nlink; /* number of hard links */

uid_t i_uid; /** user id of owner **/

gid_t i_gid; /** group id of owner **/

kdev_t i_rdev; /* real device node */

u64 i_version; /* versioning number */

loff_t i_size; /* file size in bytes */
seqcount_t i_size_seqcount /* seqlock for i_size */

struct timespec i_atime; /** last access time **/

struct timespec i_mtime; /** last modify time (file content) **/
struct timespec i_ctime; /#** last change time (contents or

attributes) **/

unsigned int i_blkbits;

const struct inode_operations *i_op;

struct super_block *i_sb;

struct address_space *i_mapping;

unsigned long i_dnotify_mask;
struct dnotify_struct *i_dnotify;
struct list_head inotify_watches;
struct mutex inotify_mutex;
unsigned long i_state;
unsigned long dirtied_when;
unsigned int i_flags;
atomic_t i_writecount;
void * i_private;

/* ... %/

/* block size in bits */

/** inode operations **/

/** associated superblock **/
/** associated page cache **/
/* directory notify mask */
/* dnotify */

/* inotify watches */

/* protects inotify watches */
/* state flags */

/* first dirtying time */

/* filesystem flags */

/* count of writers */

/* filesystem private data */

24

. . 25
inode Operations

* Iint create(struct inode *dir, struct dentry *dentry, int mode)
— Create a new inode with access mode “mode”
— Called from "creat()” and "open() syscalls
— Q: how does it return a new inode!
* struct dentry *lookup(struct inode *dir, struct dentry *dentry)
— Search a directory (inode) for a file/directory (dentry)
* int link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
— Creates a hard link with name dentry in the directory "dir’, pointing to “old_dentry”
* Iint unlink(struct inode *dir, struct dentry *dentry)
— Remove an inode "dentry” from the directory "dir”
* Iint symlink(struct inode *dir, struct dentry *dentry, const char *symname)

— Creates a symbolic link named “symname, to the file dentry in directory dir

iInt mkdir(struct inode *dir, struct dentry *dentry, int mode)
— Create a directory inside “dir’” with name

int rmdir(struct inode *dir, struct dentry *dentry)
— Remove a directory dentry from dir

iInt mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rev)
— Create a special file (device file, pipe, socket)

Int rename(struct struct inode *old_dir, struct dentry *old_dentry, struct inode
*new_dir, struct dentry *new_dentry)

— Move a file

26

dentry (or Directory Entry)

descriptor

Dentry cache

i

dentry

struct dentry ({
atomic_t d_count; /* usage count */
unsigned int d_flags,; /* dentry flags */
spinlock_t d_lock; /* per-dentry lock */
int d_mounted; /* indicate if it is a mount point */
struct inode *d_inode; /** associated inode **/
struct hlist_node d_hash; /** 1ist of hash table entries **/
struct dentry *d_parent; /** parent dentry **/
struct gstr d_name; /* dentry name */

struct list_head d_lru;
struct list_head
struct list_head

unsigned long
struct dentry_operations
struct super_block

void
unsigned char
VA 4

/* unused 1ist */

d_subdirs; /** sub-directories **/
d_alias; /** 1ist of dentries

** pointing to the same inode **/
d_time; /* last time validity was checked */
*d_op; /** operations **/
*d_sb; /** superblock **/
d_fsdata,; / filesystem private data */

d_iname [DNAME_INLINE_LEN_MIN],; /* short name */

28

dentry

» Associated with a file or a directory to:

— Store the file/directory “name”

— Store its location in the directory

— Perform direcotry specific operations, for example pathname lookup
* /home/lkp/test.txt

— One dentry associated with each of: "/, ""home”, “lkp", and “testixt"

» Constructed on the fly as files and directories are accessed
— Cache of disk representation

29

30
dentry

* A dentry can be "used”, “unused”, or "negative”

Used: correspond to a valid inode (pointed by d_inode) with one or more users
(d_count)

— Cannot be discarded to free memory

Unused: valid inode, but no current users
— Kept in RAM for caching
— Can be discarded

Negative: does not point to a valid inode

— e.g,, open() on a file that does not exist
— Kept around for caching
— Can be discarded

* Dentries are constructed on demand and kept in DRAM for quick pathname
lookups

— dentry cache or dcache

Q: Why does Linux cache negative dentries!?

31

dentry Cache
* Linked list of used dentries linked by the i_dentry field of their inode

— One inode can have multiple links, thus multiple dentries

Linked list of LRU sorted unused and negative dentries
— LRU: quick reclamation from the tail of the list

Hash table + hash function to quickly resolve a path into the corresponding dentry
present in the dcache

Hash table: dentry_hashtable array

— Each element is a pointer to a list of dentries hashing to the same value

Hashing function: d_hash()

— Filesystem can provide its own hashing function

Dentry lookup in the dcache: d_lookup()

— Returs dentry on success, NULL on failure

Inodes are similarly cached in DRAM, in the inode cache

— Dentries in the dcache are pinning inodes in the inode cache

dentry Operations

/* 1linux/include/linux/dcache.h */
struct dentry_operations ({
int (*d_revalidate)(struct dentry *, unsigned int);
int (*d_weak_revalidate) (struct dentry *, unsigned int);
int (*d_hash)(const struct dentry *, struct qgstr *),
int (*d_compare)(const struct dentry *,
unsigned int, const char *, const struct qstr *);
int (*d_delete)(const struct dentry *),;
int (*d_init) (struct dentry *);
void (*d_release) (struct dentry *);
void (*d_prune)(struct dentry *);
void (*d_iput) (struct dentry *, struct inode *);
char *(*d_dname) (struct dentry *, char *, int),;
struct vfsmount *(*d_automount) (struct path *);
int (*d_manage)(const struct path *, bool);
struct dentry *(*d_real) (struct dentry *, const struct inode *,
unsigned int);
} __ cacheline_aligned,;

. 33
dentry Operations

* Iint d_revalidate(struct dentry *dentry, struct nameidata *)
— Determine if an entry to use from the dcache is valid
— Generally set to NULL
* int d_hash(struct dentry *dentry, struct gstr *name)
— Create a hash value for a dentry to insert in the dcache
* Int d_compare(struct dentry *dentry, struct gstr *namel, struct gstr *name?2)
— compare two filenames, requires dcache_lock
* Iint d_delte(struct dentry *dentry)
— Called by VFS when d_count reaches zero, requires dcache_lock and d_lock
* void d_release(struct dentry *dentry)
— Called when the dentry is going to be freed
* void d_iput(struct dentry *dentry, struct inode *inode)

— Called when the dentry looses its inode
— Calls “iput()”

File Object

Superblock
object

Inode object

Dentry object

File object

Dentry object

File object

Dentry object

Dentry object

<G
¢
on-disk
data
¢
~__
File
descriptor
process -
process -
-

process

File object

Dentry cache

34

File Object
* The "file” object

— Represents a file opened by a process
— Created on "open()” and destroyed on “close()"
2 processes opening the same file:
— Two file objects, pointing to the same unigue dentry, that points itself on a unigue inode

* No corresponding on-disk data structure

35

File Object

/* linux/include/l1inux/fs.h

struct file {

s

struct path

struct file_operations

spinlock_t
atomic_t
unsigned int
mode_t
loff_t

struct fown_struct
const struct cred
struct file_ra_state

ubs
void

struct list_head

spinlock_t

struct address_space

/* L0 */

*/

f_path;
*f_op;
f_lock;
f_count;
f_flags;
f_mode;
f_pos;
f_owner;

*f _cred;

f_ra;
f_version;
*private_data;
f_ep_link;
f_ep_lock;
*f_mapping;

/* contains the dentry */
/** operations **/
/* lock */
/* usage count */
/* open flags */
/* file access mode */
/** file offset **/
/* owner data for signals */
/* file credentials */
/* read-ahead state */
/* version number */
/* private data */
/* 1ist of epoll links */
/* epoll lock */
/** page cache
** == jnode->i_mapping **/

36

File Operations

/* 1linux/include/l1inux/fs.h */

struct file_operations {
loff_t (*1llseek) (stxruct file *, loff_t, int);
ssize_t (*read) (struct file *, char _user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_context *);
int (*iterate_shared) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
/* ... */

}i

37

. . 38
File Operations

 |off_t llseek(struct file *file, loff_t offset, int origin)
— Update file offset

* ssize_t read(struct file *file, char *buf, size_t count, loff_t *offset)
— read operation

* ssize_t alo_read(struct kiocb *iocb, char *buf, size_t count, loff_t offset)
— asynchronous read

* ssize_t write(struct file *file, const char *buf, size_t count, loff_t *offset)
— Write operation

* ssize_t alo_write(struct kiocb *iocb, const char *buf, size_t count, loff_t offset)
— Async write

* Iint readdir(struct file *file, void *dirent, filldir_t filldir)
— Read the next directory in a directory listing

 unsigned int poll(struct file *file, struct poll_table_struct *poll_table)
— Sleeps waiting for activity on a given file

* Iint ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
— Sends a command and arguments to a device
— Unlcoked/compat versions

* Int mmap(struct file *file, struct vm_area_struct *vma)

— Maps a file into an addr space

39

Int open(struct inode *inode, struct file *file)
— Opens a file
int flush(struct file *file)
— Called by VFS when the reference count of an open file decreases
Int release(struct inode *inode, struct file *file)
— Called by VFS when the last reference to a file is destroyed close()/exit
int fsync(struct file *file, struct dentry *dentry, int datasync)
— flush cached data on disk
int alo_fsync(struct kiocb *iocb, int datasync)

— flush alo cached data on disk

40

ssize_t sendfile(struct file *file, loff_t *offset, size_t size, read_actor_t actor, void
*target)

— Copy data from one file to another entirely in the kernel
ssize_t snedpage(struct file *file, struct page *page, int offset, size_t size, loff_t
*pos, Int more)

— Send data from one file to another

get_unmapped_areas(), flock() ...

41

Filesystem Data Structures

* struct file_system_type: information about a specific concrete filesystem type

* One per filesystem supported (chosen at compile time) independently of the
mounted filesystem

e include/linux/fs.h

42

struct file_system_type {
const char *name; /** name: e.qg., ext4d **/
int fs_flags,; /* flags */

/** mount a partition **/
struct dentry *(*mount) (struct file_system_type *, int,
const char *, void *);

/** terminate access to the superblock **/
void (*kill_sb) (struct super_block *);

struct module *owner; /* module owning the fs */
struct file_system_type * next; /* linked list of fs types */
struct hlist_head fs_supers; /* linked 1list of superblocks */

/* runtime lock validation */

struct lock_class_key s_lock_key;

struct lock_class_key s_umount_key;

struct lock_class_key s_vfs_rename_key;

struct lock_class_key s_writers_key[SB_FREEZE_LEVELS],;

struct lock_class_key i_lock_key,
struct lock_class_key i_mutex_key;

* When a filesystem is mounted, a vfsmount structure is created

— Represent a specific instance of the filesystem: a mount point

/* 1linux/include/l1inux/fs.h */

struct vfsmount {
struct dentry *mnt_root; /* root of the mounted tree */
struct super_block *mnt_sb; /* pointer to superblock */
int mnt_flags;

}i

44

Process Data Structure
* struct files_struct: contains per-process information about open files and file
descriptors
— include/linux/fdtable.h
* struct fs_struct: filesystem information related to a process

— include/linux/fs_struct.h

* struct mnt_namespace: provide processes with unique views of a mounted
filesystem

— fs/mount.h

45

Summary

» Key data structures
— struct file_system_type: file system (e.g, ext4)
— struct super_block: mounted file system instance (ie, partition)
— struct dentry: path name
— struct inode: file metadata
— struct file: open file descriptor
— struct address_space: per-inode page cache
* Three key caches
— dentry cache: dentry_hashtable, dentry->d_hash
— Inode cache: inode_hashtable, inode->i_hash

— page cache: iInode->i_mapping

46

47

