
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 18

Virtual File System

April 3, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/


2
Recap: Page Tables



3
Recap: Page Tables
• Address translation is performed by the hardware (MMU)



4
Virtual File System (VFS)
• Abstract all the filesystem models supported by Linux

– Similar to an abstract base class in C++
• Allow FSes to coexist

– Example: a user can have a USB drive formatted with FAT32 mounted at the same time as 
an HDD rootfs with ext4

• Allow them to cooperate
– Example: a user can seamlessly copy a file between the FAT32 and ext4 partitions



5



6
Common Filesystem Interface
• VFS allows user-space to access files independently of the concrete filesystem they 

are stored on with a common interface
– Standard system calls: open(), read(), write(), lseek(), etc
– “top” VFS interface (with user-space)

• Interface can work transparently between filesystems



7



8
Filesystem Abstraction Layer
• VFS redirects user-space requests to the corresponding concrete filesystem

– “bottom” VFS interface (with the filesystem)
– Developing a new filesystem for Linux means conforming with the bottom interface



9
Unix Filesystem
• The term filesystem can refer to a filesystem type or a partition
• Hierarchical tree of files organized into directories



10

• File: ordered string of bytes from file address 0 to address (file size – 1)
– Metadata: name, access permission, modification date, etc.
– Separated from the file data into specific objects inodes, dentries

• directory: folder containing files or other directories (sub-directories)
– Sub-directories can be nested to create path: /home/lkp/Desktop/file



11



12
VFS Data Structures
• dentry: contains file/directory name and hierarchical links defining the filesystem 

directory tree
• inode: contains file/directory metadata
• file: contains information about a file opened by a process
• superblock: contains general information about the partition
• file_system_type: contains information about a file system type (ext4)
• Associated operations (“bottom” VFS interface): 

– super_operations 
– inode_operations
– dentry_operations
– file_operations



13
Superblock



14
Superblock
• Contains global information about the filesystem (partition)
• Created by the filesystme and given to VFS at mount time:

– Disk-based filesystem store it in a special location
– Other filesystems have a way to generate it at mount time

• “struct super_block”, include/linux/fs.h



15
Superblock



16
Superblock Operations
• struct super_operations

– Each field is a function pointer operating on a “struct super_block”
– Usage: sb->s_op->alloc_inode(sb)



17
Superblock operations: inode
• struct inode *alloc_inode(struct super_block *sb)

– Create and initialize a new inode
• void destroy_inode(struct inode *inode)

– Deallocate an inode
• void dirty_inode(struct inode *inode)

– Marks an inode as dirty (ext filesys)



18
Superblock Operations: inode
• void write_inode(struct inode *inode, int wait)

– Writes the inode to disk, wait specifies if the write should be synchronous
• void clear_inode(struct inode *inode)

– Releases the inode and clear any page containing related data
• void drop_inode(struct inode *inode)

– Called by VFS when the last reference to the inode is dropped



19
Superblock Operations: superblock
• void put_super(struct super_block *sb)

– Called by VFS on unmount (holding s_lock)
• void write_super(struct super_block *sb)

– Update the on-disk superblock, caller must hold s_lock



20
Superblock Operations: Filesystem
• int sync_fs(struct super_block *sb, int wait)

– Synchronize filesystem metadata with on-disk filesystem, “wait” specifies if the operation 
should be synchronous

• void write_super_lockfs(struct super_block *sb)
– Prevent changes to the filesystem and update the on-disk superblock (used by the Logical 

volume Manager)
• void unlockfs(struct super_block *sb)

– Unlock the filesystem locked by write_super_lockfs()
• int statfs(struct super_block *sb, struct statfs *statfs)

– Obtain filesystem statistics
• int remount_fs(struct super_block *sb, int *flags, char *data)

– Remount the filesystem with new options, caller must hold s_lock
• void umount_begin(struct super_block *sb)

– Called by VFS to interrupt a mount operation (NFS)



21

• All these functions are called by VFS and may block (except dirty_inode())
• Function to mount a file system?

– mount_bdev() in fs/super.c



22
inode



23

• Related to a file or directory, contains metadata plus information about how to 
manipulate the file/directory

• Metadata: file size, owner id/group, etc
• Must be produced by the filesystem on-demand when a file/directory is accessed

– Read from disk in Unix-like filesystem
– Reconstructed from on-disk information for other filesystems

• Cached in a hashtable
– inode_hashtable in fs/inode.c



24
inode



25
inode Operations
• int create(struct inode *dir, struct dentry *dentry, int mode)

– Create a new inode with access mode “mode”
– Called from ”creat()” and ”open() syscalls
– Q: how does it return a new inode?

• struct dentry *lookup(struct inode *dir, struct dentry *dentry)
– Search a directory (inode) for a file/directory (dentry)

• int link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
– Creates a hard link with name dentry in the directory ”dir”, pointing to “old_dentry”

• int unlink(struct inode *dir, struct dentry *dentry)
– Remove an inode ”dentry” from the directory “dir”

• int symlink(struct inode *dir, struct dentry *dentry, const char *symname)
– Creates a symbolic link named “symname, to the file dentry in directory dir



26

• int mkdir(struct inode *dir, struct dentry *dentry, int mode)
– Create a directory inside “dir” with name

• int rmdir(struct inode *dir, struct dentry *dentry)
– Remove a directory dentry from dir

• int mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t rev)
– Create a special file (device file, pipe, socket)

• int rename(struct struct inode *old_dir, struct dentry *old_dentry, struct inode 
*new_dir, struct dentry *new_dentry)

– Move a file



27
dentry (or Directory Entry)



28
dentry



29
dentry
• Associated with a file or a directory to:

– Store the file/directory “name”
– Store its location in the directory
– Perform direcotry specific operations, for example pathname lookup

• /home/lkp/test.txt
– One dentry associated with each of: “/”, ’”home”, “lkp”, and “test.txt”

• Constructed on the fly as files and directories are accessed
– Cache of disk representation



30
dentry
• A dentry can be ”used”, “unused”, or ”negative”
• Used: correspond to a valid inode (pointed by d_inode) with one or more users 

(d_count)
– Cannot be discarded to free memory

• Unused: valid inode, but no current users
– Kept in RAM for caching
– Can be discarded

• Negative: does not point to a valid inode
– e.g., open() on a file that does not exist
– Kept around for caching
– Can be discarded

• Dentries are constructed on demand and kept in DRAM for quick pathname 
lookups

– dentry cache or dcache
• Q: Why does Linux cache negative dentries?



31
dentry Cache
• Linked list of used dentries linked by the i_dentry field of their inode

– One inode can have multiple links, thus multiple dentries
• Linked list of LRU sorted unused and negative dentries

– LRU: quick reclamation from the tail of the list
• Hash table + hash function to quickly resolve a path into the corresponding dentry 

present in the dcache
• Hash table: dentry_hashtable array

– Each element is a pointer to a list of dentries hashing to the same value
• Hashing function: d_hash()

– Filesystem can provide its own hashing function
• Dentry lookup in the dcache: d_lookup()

– Returs dentry on success, NULL on failure
• Inodes are similarly cached in DRAM, in the inode cache

– Dentries in the dcache are pinning inodes in the inode cache



32
dentry Operations



33
dentry Operations
• int d_revalidate(struct dentry *dentry, struct nameidata *)

– Determine if an entry to use from the dcache is valid 
– Generally set to NULL

• int d_hash(struct dentry *dentry, struct qstr *name)
– Create a hash value for a dentry to insert in the dcache

• Int d_compare(struct dentry *dentry, struct qstr *name1, struct qstr *name2)
– compare two filenames, requires dcache_lock

• int d_delte(struct dentry *dentry)
– Called by VFS when d_count reaches zero, requires dcache_lock and d_lock

• void d_release(struct dentry *dentry)
– Called when the dentry is going to be freed

• void d_iput(struct dentry *dentry, struct inode *inode)
– Called when the dentry looses its inode
– Calls “iput()”



34
File Object



35
File Object
• The ”file” object

– Represents a file opened by a process
– Created on ”open()” and destroyed on “close()”

• 2 processes opening the same file:
– Two file objects, pointing to the same unique dentry, that points itself on a unique inode

• No corresponding on-disk data structure



36
File Object



37
File Operations



38
File Operations
• loff_t llseek(struct file *file, loff_t offset, int origin)

– Update file offset
• ssize_t read(struct file *file, char *buf, size_t count, loff_t *offset)

– read operation
• ssize_t aio_read(struct kiocb *iocb, char *buf, size_t count, loff_t offset)

– asynchronous read
• ssize_t write(struct file *file, const char *buf, size_t count, loff_t *offset)

– Write operation
• ssize_t aio_write(struct kiocb *iocb, const char *buf, size_t count, loff_t offset)

– Async write
• int readdir(struct file *file, void *dirent, filldir_t filldir)

– Read the next directory in a directory listing



39

• unsigned int poll(struct file *file, struct poll_table_struct *poll_table)
– Sleeps waiting for activity on a given file

• int ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
– Sends a command and arguments to a device
– Unlcoked/compat versions

• int mmap(struct file *file, struct vm_area_struct *vma)
– Maps a file into an addr space



40

• int open(struct inode *inode, struct file *file)
– Opens a file

• int flush(struct file *file)
– Called by VFS when the reference count of an open file decreases

• int release(struct inode *inode, struct file *file)
– Called by VFS when the last reference to a file is destroyed close()/exit

• int fsync(struct file *file, struct dentry *dentry, int datasync)
– flush cached data on disk

• int aio_fsync(struct kiocb *iocb, int datasync)
– flush aio cached data on disk



41

• ssize_t sendfile(struct file *file, loff_t *offset, size_t size, read_actor_t actor, void 
*target)

– Copy data from one file to another entirely in the kernel
• ssize_t snedpage(struct file *file, struct page *page, int offset, size_t size, loff_t 

*pos, int more)
– Send data from one file to another

• get_unmapped_areas(), flock() ...



42
Filesystem Data Structures
• struct file_system_type: information about a specific concrete filesystem type
• One per filesystem supported (chosen at compile time) independently of the 

mounted filesystem
• include/linux/fs.h



43



44

• When a filesystem is mounted, a vfsmount structure is created
– Represent a specific instance of the filesystem: a mount point



45
Process Data Structure
• struct files_struct: contains per-process information about open files and file 

descriptors
– include/linux/fdtable.h

• struct fs_struct: filesystem information related to a process
– include/linux/fs_struct.h

• struct mnt_namespace: provide processes with unique views of a mounted 
filesystem

– fs/mount.h



46
Summary
• Key data structures

– struct file_system_type: file system (e.g, ext4)
– struct super_block: mounted file system instance (ie, partition)
– struct dentry: path name
– struct inode: file metadata
– struct file: open file descriptor
– struct address_space: per-inode page cache

• Three key caches
– dentry cache: dentry_hashtable, dentry->d_hash
– inode cache: inode_hashtable, inode->i_hash
– page cache: inode->i_mapping



47


