CS 5264/4224; ECE 5414/4414

(Advanced) Linux Kernel Programming
Lecture |9

Page Cache
April 8, 2025

Huaicheng Li
https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.


https://people.cs.vt.edu/huaicheng/lkp-sp25/

Superblock

descriptor

Dentry cache







Latency Numbers

[EINcache e ey el Ce N it e et e e eta s 0.5
=5 o= Tl 1 1T Erd o ] = o o o e >
L2 cache reliereNEe e s sulwn ias ssis s sin o sinn s aine s 7/
LU=y @ L o] x0T T e e G S e e O o 25
Mailn memory Feference . .i s sssssisssainnsiees 100
Compress 1K bytes with Zippy cveesenennsns 3,000
Send 2K bytes over 1 Gbps network ....... 20,000
SSD random read ..veesnnssnnnnnnnnnnnnns 150,000
Read 1 MB sequentially from memory ..... 250,000
Round trip within same datacenter ...... 500,000
Read 1 MB sequentially from SSDx ..... 1,000,000
DISK SEEK « iusmans vw s s en min i s 10,000,000

Read 1 MB sequentially from disk .... 20,000,000
Send packet CA->Netherlands—>CA .... 150,000,000

Source: https://gist.github.com/hellerbarde/2843375

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

20
150
250
0.5

10
20
150

us
us
us
us
ms
ms
ms
ms
ms



Minute:

Latency Numbers

L1 cache reference 0.5 s One heart beat (0.5 s)
Branch mispredict 5s Yawn
L2 cache reference 7 s Long yawn
Mutex lock/unlock 25 s Making a coffee
Hour:
Main memory reference 100 s Brushing your teeth
Compress 1K bytes with Zippy 50 min One episode of a TV show (including ad breaks)
f_ Day:
. T Send 2K bytes over 1 Gbps network 5.5 hr From lunch to end of work day
durations by a billion:
Week
SSD random read 1.7 days A normal weekend
Read 1 MB sequentially from memory 2.9 days A long weekend
Round trip within same datacenter 5.8 days A medium vacation
Read 1 MB sequentially from SSD 11.6 days Waiting for almost 2 weeks for a delivery
Year
Disk seek 16.5 weeks A semester in university
Read 1 MB sequentially from disk 7.8 months Almost producing a new human being
The above 2 together 1 year
Decade

Send packet CA->Netherlands->CA 4.8 years Average time it takes to complete a bachelor's degree



Why Caching

* Disk access is several orders of magnitude slower than memory access
* Data accessed once will likely be accessed again in the near future

— Temporal locality

Financial 1 device 1

600000 . .

500000 }

— Spatial locality

Write

400000 F

300000 t

———

200000 t

Address (sector)

100000 r

0 le+07 2e+07 3e+07 4e+07 Se+07
Time (ms)



Page Cache
* Physical pages in DRAM holding disk content (blocks)

— Disk is called a backing store

— Works for regular files, memory mapped files, and block device files

Dynamic size
— Grows to consume free memory not used by kemel and processes

— Shrinks to relieve memory pressure

Buffered I/O operations (w/o O_DIRECT), the page cache of a file is first checked
Cache hit: if data Is in the page cache, return directly
Cache miss: otherwise, VFS asks the FS (e.g., ext4) to read data from disk

— Read/write operations populate the page cache



Write Cache Policies

* No-write: does not cache write operations

* Write-through: write operations immediately
go through to disk

— Keeping the cache coherent
— No need to invalidate cached data = simple

* Write-back: write operations update page
cache but disk is not immediately updated -
Linux page cache policy

— Pages written are marked dirty using a tab in
radix tree

— Periodically write dirty pages to disk =
writeback

— Page cache absorbs temporal locality to reduce
disk access

Invalidate
No-write gromm— .
\J
Application Cache
Write req.

Write-through

Application

‘WCache

Write-back

Application




Cache Eviction

* When should data be removed from the cache?
— Need more free memory (memory pressure)
* What data should be removed from the cache?
— Ideally, evict cache pages that will not be accessed in the future

— Eviction policy: deciding what to evict



Eviction Policy: LRU
* Least recently used (LRU) policy

— Keep track of when each page is accessed
— Evict the pages with the oldest timestamp
* Failure cases of LRU policy
— Many files are accessed once and then never again
— LRU puts them at the top of the list = suboptimal
* How to track page reference?

S0 +» 25 | 12 |—»| 10

A

Least recently used
page, next to evict




Two-list Strategy
* Active list

— Pages in the active list is considered hot

— Not available for eviction

Inactive list
— Pages in the inactive list i1s considered cold

— Avallable for eviction

Newly accessed pages are added to inactive list

If a page in an inactive list is accessed again, it is promoted to an active list

— When a page is moved to an inactive list, its access permission in a page table is removed

If an active list becomes much larger than an inactive list, items from the active
list's head are moved back to the inactive list

When a page is added to the inactive list, its access permission in the page table is
disabled to track its access.

11



Active list: hot pages,
not available for
eviction

Evict from
inactive list only

12



4

’

’

N T T

Accessed pages not in the list are added to
the the inactive list

13



Inactive page accessed
are added to the active list

14



Lists are balanced and active pages are evicted in the inactive list

15



Linux Page Cache

/* linux/include/linux/fs.h */
struct inode {
const struct inode_operations
struct super_block
struct address_space
unsigned long

}s

struct address_space {
struct inode
struct radix_tree_root
spinlock_t

}i

*1_op,;
*1_sb;
*1_mapping;
i_ino;

*host; /* owner: inode, block device */
page_tree;, /* radix tree of all pages */
tree_lock; /* and lock protecting it */

16



17
address_space

* An entity present in the page cache
— An address_space = a file = accessing a page cache of a file

— An address_space = one or more vm_area_struct

address_space
\

\
File

Process /
1 \ /
\ /

G AN N
N

vin_area_ struct




address_space

/* 1linux/include/linux/fs.h */
struct address_space {

struct inode *host; /* owning inode */
struct radix_tree_root page_tree; /* radix tree of all pages */
spinlock_t tree_lock; /* page tree lock */
unsigned int i_mmap_writable; /* VM _SHARED (writable)

* mapping count */
struct rb_root i_mmap,; /* 1ist of all mappings */
unsigned long nrpages,; /* total number of pages */
pgoff_t writeback_index; /* writeback start offset */
struct address_space_operations a_ops; /* operations table */
unsigned long flags; /* error flags */
gfp_t gfp_mask; /* gfp mask for allocation */
struct backing_dev_info backing_dev_info,; /* read-ahead info */
spinlock_t private_lock; /* private lock */
struct list_head private_list; /* private 1list */
struct address_space assoc_mapping; /* associated buffers */
/* ... */



address_space operations

/* 1linux/include/linux/fs.h */
struct address_space_operations {
int (*writepage) (struct page *page, struct writeback_control *wbc);
int (*readpage) (struct file *, struct page *);
int (*writepages) (struct address_space *, struct writeback_control *);
int (*set_page_dirty) (struct page *page);
int (*readpages) (struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nx_pages);
int (*write_begin) (struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata);
int (*write_end)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata);
LR aae B2



Page Read Operation

* read() function from file_operations
— generic_file_buffered_read()
» Search the data in the page cache
— page = find_get_page(mapping, index)
* Adding the page to the page cache
— page = __page_cache_alloc(gfp_mask)
* Then, read data from disk
— mapping->a_ops->readpage(filp, page)

20



Page Write Operation

* When a page is modified in the page cache, mark it as dirty
— SetPageDirty(page)
* Default write path: in mm/filemap.c

/* search the page cache for the desired page. If the page is not present,

an entry is allocated and added: */

page = __grab_cache_page(mapping, index, &cached_page, &lru_pvec);

/* Set up the write request: */

status = a_ops->write_begin(file, mapping, pos, bytes, flags, &page, &fsdata);
/* Copy data from user-space into a kernel buffer: */

copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);

/* write data to disk: */

status = a_ops->write_end(file, mapping, pos, bytes, copied, page, fsdata),



Interaction with Memory Management

* file, file_operations
— How to access the file contents
* address_space, address_space_operations
— How to access the page cache of a file?
* vm_area_struct, vm_operations_struct
— How to handle page fault of a virtual memory region!?

* Page table in x86

22



A File

/* linux/include/linux/fs.h */
struct file {

struct path f_path; /* contains the dentry */
struct file_operations *f_op; /* operations */
spinlock_t f lock; /* lock */

atomic_t f _count; /* usage count */
unsigned int f_flags,; /* open flags */

mode_t f _mode; /* file access mode */
logg_t f_pos,; /* file offset */

struct fown_struct f_owner; /* owner data for signals */
const struct cred *f _cred; /* file credentials */
struct file ra_state f ra; /* read-ahead state */
u64 f_version; /* version number */

void *private_data, /* private data */

struct list head f_ep_link; /* 1ist of epoll links */
spinlock_t f_ep_lock; /* epoll lock */

struct address_space *f_mapping; /* page cache mapping */
/* ... */



file_operations

/* 1linux/include/l1inux/fs.h */

struct file_operations ({
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size t, loff_t *);
ssize_ t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_ context *);
int (*iterate_shared) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
/* ... */

24



address_space

/* linux/include/linux/fs.h */
struct address_space {

struct inode *host; /* owning inode */
struct radix_tree_root page_tree; /* radix tree of all pages */
spinlock_t tree_lock; /* page tree lock */
unsigned int i_mmap_writable; /* VM _SHARED (writable)

* mapping count */
struct rb_root i_mmap; /* 1ist of all mappings */
unsigned long nrpages,; /* total number of pages */
pgoff_t writeback _index; /* writeback start offset */
struct address_space_operations a_ops; /* operations table */
unsigned long flags; /* error flags */
gfp_t gfp_mask; /* gfp mask for allocation */
struct backing_dev_info backing_dev_info,; /* read-ahead info */
spinlock_t private_lock; /* private lock */
struct list_head private_list; /* private list */
struct address_space assoc_mapping; /* associated buffers */
/* oL */



address_space

/* linux/include/linux/fs.h */
struct address_space_operations {
int (*writepage)(struct page *page, struct writeback_control *wbc);
int (*readpage) (struct file *, struct page *);
int (*writepages)(struct address_space *, struct writeback_control *);
int (*set_page_dirty) (struct page *page),;
int (*readpages)(struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages);
int (*write_begin) (struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata);
int (*write_end)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata),
PE oy 5F



vim_area struct

struct vm_area_struct {
struct
unsigned long
unsigned long
struct vm_area_struct
struct vm_area_struct
pgprot_t
unsigned long
struct rb_node
struct list_head
struct anon_vma
struct vm_operation_struct
unsigned long
struct file
void
/E oL */

mm_struct *vm_mm;
vm_start;

vm_end;

*vm_next;
*vm_prev,
vm_page_prot;
vm_flags;

vm_xb;
anon_vma_chain;
*anon_vma;
*Vm_ops ;
vm_pgoff;
*vm_file;
*vm_private_data;

/*
/7(‘
/*
/*
/7('
/7('
/7('
/7('
/7('
/7('
/*
/*
/7(‘
/*

associated address space */
VMA start, inclusive */

WMA end, exclusive */

list of VMAs */

list of VMAs */

access permissions */

flags */

VMA node in the tree */

list of anonymous mappings */
anonmous vma object */
operations */

offset within file */
mapped file (can be NULL) */
private data */

27



/* linux/include/linux/mm.h */
struct vm_operations_struct ({
/* called when the area is added to an address space */

void (*open)(struct vm_area_struct * area),;

/* called when the area is removed from an address space */
void (*close) (struct vm_area_struct * area);

/* invoked by the page fault handler when a page that is
* not present in physical memory is accessed*/
int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);

/* invoked by the page fault handler when a previously read-only

* page is made writable */
int (*page_mkwrite) (struct vm_area_struct *vma, struct vm_fault *vmf);
/* .. */

28



vm_area_struct — page table

7y

struct mm_start* vm_mm

unsigned long vim_start

task struct ;, mm_struct _": C'} vm_area_strut Virtual address Physical address
mm_struct* mm vm_area_struct* | struct mm_start* vm_mm o ,_yq} page
struct fs_struct fs mmap unsigned long vm_start ' E| 7
files_struct files |—| mm_rb unsigned ongvm end | | | :
mm_struct* : mmap_cache | ~| vm_next I
active_mm 17]_Pgd /|| struct file*vm_file : . ]
: mmlist I" pgprot_t vm_page_prot ‘ T B e
| prev next | vm_flag :Paging
: |~ vim_rb |
| e e |
|
|
|

unsigned long vm_end

vmpext |\ T

|
I
|
I
|
|
I
I
|
|
: Key "vm_starnt
I struct file*'vm_file
|
I
|
|
I
I
|
|
|

pgprot_t vim_page_prot

vm_fl

=1 —~| DIRECTORY | TABLE | OFFSET |
vm_rb 4KB Page frame
vm_pgoff

Page Table ?—‘ PA 1
Page Directory _
=

?—om

—

memory region

Context
Switching

awelyy abed



task_struct

Page Cache — Physical Page

struct fs_struct fs

files_struct

file fd_array[fd]

file

strcut files_struct files

count

f_dentry

struct_mm_struct * mm;

f_mapping

f op

address_space

host

— inode

i_sh

i_mapping

i_dentry

i_mmap

slots[0] slots[2]

radix_tree_node radix_tree_node

page_tree

Page

mapping

private

Memory

30



Page Fault Handling

* Entry point: handle_pte_fault (mm/memory.c)
* |dentify which VMA faulting address falls in

* |dentify if VMA has a registered fault handler
* Default fault handlers

— do_anonymous_page: no page and no file
— filemap_fault: page backed by file

— do_wp_page: write protected page (CoW)
— do_swap_page: page backed by swap

31



File-mapped Page Fault

* filemap_fault
« PTE entry does not exist (---)

* But, VMA is marked as accessible (e.g, rwx) and has an associated file (vm_file)
» Page fault handler notices differences

— In filemap_fault

— Look up a page cache of the file

— If cache hit, map the page in the cache

— Otherwise, mapping->a_ops->readpage(file, page)

32



Copy on Write (CoW)

* do_wp_page

* PTE entry is marked as un-writable (e.g., r--)
* But VMA is marked as writable (e.g., rw-)

» Page fault handler notices differences
— In do_wp_page
— Must mean CoW
— Make a duplicate of physical page
— Update PTEs and flush TLB

33



34
Flusher Daemon

* Write operation are deferred, data is marked as dirty
— DRAM data is out-of-sync with the storage media

Dirty page writeback occurs

— Free memory is low and the page cache needs to shrink

— Dirty data grows older than a specific threshold

— User process calls sync() or fsync()
Multiple flusher threads are in charge of syncing dirty pages from the page cache to
disk
When the free memory goes below a given threshold, the kernel
wakeup_flusher_threads()

— Wakes up one or several flusher threads performing writeback through bdi_riteback_all
Thread write data to disk until

— num_pages_to_write have been written

— and the amount of memory drops below the threshold

Percentage of total memory to trigger flusher daemon:



At boot time, a timer is initialized to wake up a flusher thread calling
wb_writeback()

Writes back all data older than a given value
— /proc/sys/vm/dirty_expire_interval

Timer reinitialized to expire at a given time in the future: now + period
— /proc/sys/vm/dirty_writeback_interval

Multiple other parameters related to the writeback and the control of the page
cache in general are present in /proc/sys/vm

— More info: Documentation/admin-guide/sysctl/vm.rst

35



What Happens in the Kernel?

00 int main(int argc, char *argv([])

01 {
02
23
04
@5
06
Q7
08
29
10

11
12
13
14
15
16
17 }

char buff[8192];
char *addr;

int fd;

int 1i;

fd = open ("test-file.dat", O_CREAT | O_RDWR | O_TRUNC);
for (1 =0; 1 < 10; ++1)
write(fd, buff, sizeof(buff));
addr = mmap(NULL, sizeof(buff), PROT_READ | PROT_WRITE,
MAP_PRIVATE, fd, 0);
memcpy (buff, addr, sizeof(buff));
memset (addr, 1, sizeof(buff));
munmap (addr, sizeof (buff));
close(fd) ;

return 0;

36



Further Readings

* LWN: Better active/inactive list balancing

« MGLRU
* LWN: Flushing out pdflush
* LWN: User-space page fault handling

37


https://lwn.net/Articles/495543/
https://www.youtube.com/watch?v=9HvJfN21H9Y
https://lwn.net/Articles/326552/
https://lwn.net/Articles/636226/

38



