
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 19

Page Cache

April 8, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/


2
Superblock



3



4
Latency Numbers

Source: https://gist.github.com/hellerbarde/2843375



5
Latency Numbers

If we multiply these 
durations by a billion:



6
Why Caching
• Disk access is several orders of magnitude slower than memory access
• Data accessed once will likely be accessed again in the near future

– Temporal locality
– Spatial locality



7
Page Cache
• Physical pages in DRAM holding disk content (blocks)

– Disk is called a backing store
– Works for regular files, memory mapped files, and block device files

• Dynamic size
– Grows to consume free memory not used by kernel and processes
– Shrinks to relieve memory pressure

• Buffered I/O operations (w/o O_DIRECT), the page cache of a file is first checked
• Cache hit: if data is in the page cache, return directly
• Cache miss: otherwise, VFS asks the FS (e.g., ext4) to read data from disk

– Read/write operations populate the page cache



8
Write Cache Policies
• No-write: does not cache write operations
• Write-through: write operations immediately 

go through to disk
– Keeping the cache coherent
– No need to invalidate cached data à simple

• Write-back: write operations update page 
cache but disk is not immediately updated à 
Linux page cache policy

– Pages written are marked dirty using a tab in 
radix tree

– Periodically write dirty pages to disk à 
writeback

– Page cache absorbs temporal locality to reduce 
disk access



9
Cache Eviction
• When should data be removed from the cache?

– Need more free memory (memory pressure)
• What data should be removed from the cache?

– Ideally, evict cache pages that will not be accessed in the future
– Eviction policy: deciding what to evict



10
Eviction Policy: LRU
• Least recently used (LRU) policy

– Keep track of when each page is accessed
– Evict the pages with the oldest timestamp

• Failure cases of LRU policy
– Many files are accessed once and then never again
– LRU puts them at the top of the list à suboptimal

• How to track page reference?



11
Two-list Strategy
• Active list

– Pages in the active list is considered hot
– Not available for eviction

• Inactive list
– Pages in the inactive list is considered cold
– Available for eviction

• Newly accessed pages are added to inactive list
• If a page in an inactive list is accessed again, it is promoted to an active list

– When a page is moved to an inactive list, its access permission in a page table is removed
• If an active list becomes much larger than an inactive list, items from the active 

list’s head are moved back to the inactive list
• When a page is added to the inactive list, its access permission in the page table is 

disabled to track its access.



12



13



14



15



16
Linux Page Cache



17
address_space
• An entity present in the page cache

– An address_space = a file = accessing a page cache of a file
– An address_space = one or more vm_area_struct



18
address_space



19
address_space_operations



20
Page Read Operation
• read() function from file_operations

– generic_file_buffered_read()
• Search the data in the page cache

– page = find_get_page(mapping, index)
• Adding the page to the page cache

– page = __page_cache_alloc(gfp_mask)
• Then, read data from disk

– mapping->a_ops->readpage(filp, page)



21
Page Write Operation
• When a page is modified in the page cache, mark it as dirty

– SetPageDirty(page)
• Default write path: in mm/filemap.c



22
Interaction with Memory Management
• file, file_operations

– How to access the file contents
• address_space, address_space_operations

– How to access the page cache of a file?
• vm_area_struct, vm_operations_struct

– How to handle page fault of a virtual memory region?
• Page table in x86



23
A File



24
file_operations



25
address_space



26
address_space



27
vm_area_struct



28



29
vm_area_struct – page table



30
Page Cache – Physical Page



31
Page Fault Handling
• Entry point: handle_pte_fault (mm/memory.c)
• Identify which VMA faulting address falls in
• Identify if VMA has a registered fault handler
• Default fault handlers

– do_anonymous_page: no page and no file
– filemap_fault: page backed by file
– do_wp_page: write protected page (CoW)
– do_swap_page: page backed by swap



32
File-mapped Page Fault
• filemap_fault
• PTE entry does not exist (---)
• But, VMA is marked as accessible (e.g, rwx) and has an associated file (vm_file)
• Page fault handler notices differences

– In filemap_fault
– Look up a page cache of the file
– If cache hit, map the page in the cache
– Otherwise, mapping->a_ops->readpage(file, page)



33
Copy on Write (CoW)
• do_wp_page
• PTE entry is marked as un-writable (e.g., r--)
• But VMA is marked as writable (e.g., rw-)
• Page fault handler notices differences

– In do_wp_page
– Must mean CoW
– Make a duplicate of physical page
– Update PTEs and flush TLB



34
Flusher Daemon
• Write operation are deferred, data is marked as dirty

– DRAM data is out-of-sync with the storage media
• Dirty page writeback occurs

– Free memory is low and the page cache needs to shrink
– Dirty data grows older than a specific threshold
– User process calls sync() or fsync()

• Multiple flusher threads are in charge of syncing dirty pages from the page cache to 
disk

• When the free memory goes below a given threshold, the kernel 
wakeup_flusher_threads()

– Wakes up one or several flusher threads performing writeback through bdi_riteback_all
• Thread write data to disk until

– num_pages_to_write have been written
– and the amount of memory drops below the threshold

• Percentage of total memory to trigger flusher daemon: 
/proc/sys/vm/dirty_background_ratio



35

• At boot time, a timer is initialized to wake up a flusher thread calling 
wb_writeback()

• Writes back all data older than a given value
– /proc/sys/vm/dirty_expire_interval

• Timer reinitialized to expire at a given time in the future: now + period
– /proc/sys/vm/dirty_writeback_interval

• Multiple other parameters related to the writeback and the control of the page 
cache in general are present in /proc/sys/vm

– More info: Documentation/admin-guide/sysctl/vm.rst



36
What Happens in the Kernel?



37
Further Readings
• LWN: Better active/inactive list balancing
• MGLRU
• LWN: Flushing out pdflush
• LWN: User-space page fault handling

https://lwn.net/Articles/495543/
https://www.youtube.com/watch?v=9HvJfN21H9Y
https://lwn.net/Articles/326552/
https://lwn.net/Articles/636226/


38


