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Latency Numbers
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Minute:

Latency Numbers

L1 cache reference 0.5 s One heart beat (0.5 s)
Branch mispredict 5s Yawn
L2 cache reference 7 s Long yawn
Mutex lock/unlock 25 s Making a coffee
Hour:
Main memory reference 100 s Brushing your teeth
Compress 1K bytes with Zippy 50 min One episode of a TV show (including ad breaks)
f_ Day:
. T Send 2K bytes over 1 Gbps network 5.5 hr From lunch to end of work day
durations by a billion:
Week
SSD random read 1.7 days A normal weekend
Read 1 MB sequentially from memory 2.9 days A long weekend
Round trip within same datacenter 5.8 days A medium vacation
Read 1 MB sequentially from SSD 11.6 days Waiting for almost 2 weeks for a delivery
Year
Disk seek 16.5 weeks A semester in university
Read 1 MB sequentially from disk 7.8 months Almost producing a new human being
The above 2 together 1 year
Decade

Send packet CA->Netherlands->CA 4.8 years Average time it takes to complete a bachelor's degree



Why Caching

* Disk access is several orders of magnitude slower than memory access
* Data accessed once will likely be accessed again in the near future

— Temporal locality
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Page Cache
* Physical pages in DRAM holding disk content (blocks)

— Disk is called a backing store

— Works for regular files, memory mapped files, and block device files

Dynamic size
— Grows to consume free memory not used by kemel and processes

— Shrinks to relieve memory pressure

Buffered I/O operations (w/o O_DIRECT), the page cache of a file is first checked
Cache hit: if data Is in the page cache, return directly
Cache miss: otherwise, VFS asks the FS (e.g., ext4) to read data from disk

— Read/write operations populate the page cache



Write Cache Policies

* No-write: does not cache write operations

* Write-through: write operations immediately
go through to disk

— Keeping the cache coherent
— No need to invalidate cached data = simple

* Write-back: write operations update page
cache but disk is not immediately updated -
Linux page cache policy

— Pages written are marked dirty using a tab in
radix tree

— Periodically write dirty pages to disk =
writeback

— Page cache absorbs temporal locality to reduce
disk access
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Cache Eviction

* When should data be removed from the cache?
— Need more free memory (memory pressure)
* What data should be removed from the cache?
— Ideally, evict cache pages that will not be accessed in the future

— Eviction policy: deciding what to evict



Eviction Policy: LRU
* Least recently used (LRU) policy

— Keep track of when each page is accessed
— Evict the pages with the oldest timestamp
* Failure cases of LRU policy
— Many files are accessed once and then never again
— LRU puts them at the top of the list = suboptimal
* How to track page reference?
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Two-list Strategy
* Active list

— Pages in the active list is considered hot

— Not available for eviction

Inactive list
— Pages in the inactive list i1s considered cold

— Avallable for eviction

Newly accessed pages are added to inactive list

If a page in an inactive list is accessed again, it is promoted to an active list

— When a page is moved to an inactive list, its access permission in a page table is removed

If an active list becomes much larger than an inactive list, items from the active
list's head are moved back to the inactive list

When a page is added to the inactive list, its access permission in the page table is
disabled to track its access.
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Active list: hot pages,
not available for
eviction

Evict from
inactive list only
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Accessed pages not in the list are added to
the the inactive list
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Inactive page accessed
are added to the active list
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Lists are balanced and active pages are evicted in the inactive list
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Linux Page Cache

/* linux/include/linux/fs.h */
struct inode {
const struct inode_operations
struct super_block
struct address_space
unsigned long

}s

struct address_space {
struct inode
struct radix_tree_root
spinlock_t

}i

*1_op,;
*1_sb;
*1_mapping;
i_ino;

*host; /* owner: inode, block device */
page_tree;, /* radix tree of all pages */
tree_lock; /* and lock protecting it */
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17
address_space

* An entity present in the page cache
— An address_space = a file = accessing a page cache of a file

— An address_space = one or more vm_area_struct

address_space
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address_space

/* 1linux/include/linux/fs.h */
struct address_space {

struct inode *host; /* owning inode */
struct radix_tree_root page_tree; /* radix tree of all pages */
spinlock_t tree_lock; /* page tree lock */
unsigned int i_mmap_writable; /* VM _SHARED (writable)

* mapping count */
struct rb_root i_mmap,; /* 1ist of all mappings */
unsigned long nrpages,; /* total number of pages */
pgoff_t writeback_index; /* writeback start offset */
struct address_space_operations a_ops; /* operations table */
unsigned long flags; /* error flags */
gfp_t gfp_mask; /* gfp mask for allocation */
struct backing_dev_info backing_dev_info,; /* read-ahead info */
spinlock_t private_lock; /* private lock */
struct list_head private_list; /* private 1list */
struct address_space assoc_mapping; /* associated buffers */
/* ... */



address_space operations

/* 1linux/include/linux/fs.h */
struct address_space_operations {
int (*writepage) (struct page *page, struct writeback_control *wbc);
int (*readpage) (struct file *, struct page *);
int (*writepages) (struct address_space *, struct writeback_control *);
int (*set_page_dirty) (struct page *page);
int (*readpages) (struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nx_pages);
int (*write_begin) (struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata);
int (*write_end)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata);
LR aae B2



Page Read Operation

* read() function from file_operations
— generic_file_buffered_read()
» Search the data in the page cache
— page = find_get_page(mapping, index)
* Adding the page to the page cache
— page = __page_cache_alloc(gfp_mask)
* Then, read data from disk
— mapping->a_ops->readpage(filp, page)
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Page Write Operation

* When a page is modified in the page cache, mark it as dirty
— SetPageDirty(page)
* Default write path: in mm/filemap.c

/* search the page cache for the desired page. If the page is not present,

an entry is allocated and added: */

page = __grab_cache_page(mapping, index, &cached_page, &lru_pvec);

/* Set up the write request: */

status = a_ops->write_begin(file, mapping, pos, bytes, flags, &page, &fsdata);
/* Copy data from user-space into a kernel buffer: */

copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);

/* write data to disk: */

status = a_ops->write_end(file, mapping, pos, bytes, copied, page, fsdata),



Interaction with Memory Management

* file, file_operations
— How to access the file contents
* address_space, address_space_operations
— How to access the page cache of a file?
* vm_area_struct, vm_operations_struct
— How to handle page fault of a virtual memory region!?

* Page table in x86
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A File

/* linux/include/linux/fs.h */
struct file {

struct path f_path; /* contains the dentry */
struct file_operations *f_op; /* operations */
spinlock_t f lock; /* lock */

atomic_t f _count; /* usage count */
unsigned int f_flags,; /* open flags */

mode_t f _mode; /* file access mode */
logg_t f_pos,; /* file offset */

struct fown_struct f_owner; /* owner data for signals */
const struct cred *f _cred; /* file credentials */
struct file ra_state f ra; /* read-ahead state */
u64 f_version; /* version number */

void *private_data, /* private data */

struct list head f_ep_link; /* 1ist of epoll links */
spinlock_t f_ep_lock; /* epoll lock */

struct address_space *f_mapping; /* page cache mapping */
/* ... */



file_operations

/* 1linux/include/l1inux/fs.h */

struct file_operations ({
struct module *owner;
loff_t (*llseek) (struct file *, loff_t, int);
ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
ssize_t (*write) (struct file *, const char __user *, size t, loff_t *);
ssize_ t (*read_iter) (struct kiocb *, struct iov_iter *);
ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);
int (*iterate) (struct file *, struct dir_ context *);
int (*iterate_shared) (struct file *, struct dir_context *);
unsigned int (*poll) (struct file *, struct poll_table_struct *);
/* ... */
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address_space

/* linux/include/linux/fs.h */
struct address_space {

struct inode *host; /* owning inode */
struct radix_tree_root page_tree; /* radix tree of all pages */
spinlock_t tree_lock; /* page tree lock */
unsigned int i_mmap_writable; /* VM _SHARED (writable)

* mapping count */
struct rb_root i_mmap; /* 1ist of all mappings */
unsigned long nrpages,; /* total number of pages */
pgoff_t writeback _index; /* writeback start offset */
struct address_space_operations a_ops; /* operations table */
unsigned long flags; /* error flags */
gfp_t gfp_mask; /* gfp mask for allocation */
struct backing_dev_info backing_dev_info,; /* read-ahead info */
spinlock_t private_lock; /* private lock */
struct list_head private_list; /* private list */
struct address_space assoc_mapping; /* associated buffers */
/* oL */



address_space

/* linux/include/linux/fs.h */
struct address_space_operations {
int (*writepage)(struct page *page, struct writeback_control *wbc);
int (*readpage) (struct file *, struct page *);
int (*writepages)(struct address_space *, struct writeback_control *);
int (*set_page_dirty) (struct page *page),;
int (*readpages)(struct file *filp, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages);
int (*write_begin) (struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata);
int (*write_end)(struct file *, struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata),
PE oy 5F



vim_area struct

struct vm_area_struct {
struct
unsigned long
unsigned long
struct vm_area_struct
struct vm_area_struct
pgprot_t
unsigned long
struct rb_node
struct list_head
struct anon_vma
struct vm_operation_struct
unsigned long
struct file
void
/E oL */

mm_struct *vm_mm;
vm_start;

vm_end;

*vm_next;
*vm_prev,
vm_page_prot;
vm_flags;

vm_xb;
anon_vma_chain;
*anon_vma;
*Vm_ops ;
vm_pgoff;
*vm_file;
*vm_private_data;

/*
/7(‘
/*
/*
/7('
/7('
/7('
/7('
/7('
/7('
/*
/*
/7(‘
/*

associated address space */
VMA start, inclusive */

WMA end, exclusive */

list of VMAs */

list of VMAs */

access permissions */

flags */

VMA node in the tree */

list of anonymous mappings */
anonmous vma object */
operations */

offset within file */
mapped file (can be NULL) */
private data */
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/* linux/include/linux/mm.h */
struct vm_operations_struct ({
/* called when the area is added to an address space */

void (*open)(struct vm_area_struct * area),;

/* called when the area is removed from an address space */
void (*close) (struct vm_area_struct * area);

/* invoked by the page fault handler when a page that is
* not present in physical memory is accessed*/
int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);

/* invoked by the page fault handler when a previously read-only

* page is made writable */
int (*page_mkwrite) (struct vm_area_struct *vma, struct vm_fault *vmf);
/* .. */
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vm_area_struct — page table

7y

struct mm_start* vm_mm

unsigned long vim_start
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task_struct

Page Cache — Physical Page

struct fs_struct fs

files_struct

file fd_array[fd]

file

strcut files_struct files

count

f_dentry

struct_mm_struct * mm;

f_mapping

f op

address_space

host

— inode

i_sh

i_mapping

i_dentry

i_mmap

slots[0] slots[2]

radix_tree_node radix_tree_node

page_tree

Page

mapping

private

Memory
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Page Fault Handling

* Entry point: handle_pte_fault (mm/memory.c)
* |dentify which VMA faulting address falls in

* |dentify if VMA has a registered fault handler
* Default fault handlers

— do_anonymous_page: no page and no file
— filemap_fault: page backed by file

— do_wp_page: write protected page (CoW)
— do_swap_page: page backed by swap

31



File-mapped Page Fault

* filemap_fault
« PTE entry does not exist (---)

* But, VMA is marked as accessible (e.g, rwx) and has an associated file (vm_file)
» Page fault handler notices differences

— In filemap_fault

— Look up a page cache of the file

— If cache hit, map the page in the cache

— Otherwise, mapping->a_ops->readpage(file, page)
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Copy on Write (CoW)

* do_wp_page

* PTE entry is marked as un-writable (e.g., r--)
* But VMA is marked as writable (e.g., rw-)

» Page fault handler notices differences
— In do_wp_page
— Must mean CoW
— Make a duplicate of physical page
— Update PTEs and flush TLB
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34
Flusher Daemon

* Write operation are deferred, data is marked as dirty
— DRAM data is out-of-sync with the storage media

Dirty page writeback occurs

— Free memory is low and the page cache needs to shrink

— Dirty data grows older than a specific threshold

— User process calls sync() or fsync()
Multiple flusher threads are in charge of syncing dirty pages from the page cache to
disk
When the free memory goes below a given threshold, the kernel
wakeup_flusher_threads()

— Wakes up one or several flusher threads performing writeback through bdi_riteback_all
Thread write data to disk until

— num_pages_to_write have been written

— and the amount of memory drops below the threshold

Percentage of total memory to trigger flusher daemon:



At boot time, a timer is initialized to wake up a flusher thread calling
wb_writeback()

Writes back all data older than a given value
— /proc/sys/vm/dirty_expire_interval

Timer reinitialized to expire at a given time in the future: now + period
— /proc/sys/vm/dirty_writeback_interval

Multiple other parameters related to the writeback and the control of the page
cache in general are present in /proc/sys/vm

— More info: Documentation/admin-guide/sysctl/vm.rst
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What Happens in the Kernel?

00 int main(int argc, char *argv([])

01 {
02
23
04
@5
06
Q7
08
29
10

11
12
13
14
15
16
17 }

char buff[8192];
char *addr;

int fd;

int 1i;

fd = open ("test-file.dat", O_CREAT | O_RDWR | O_TRUNC);
for (1 =0; 1 < 10; ++1)
write(fd, buff, sizeof(buff));
addr = mmap(NULL, sizeof(buff), PROT_READ | PROT_WRITE,
MAP_PRIVATE, fd, 0);
memcpy (buff, addr, sizeof(buff));
memset (addr, 1, sizeof(buff));
munmap (addr, sizeof (buff));
close(fd) ;

return 0;
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Further Readings

* LWN: Better active/inactive list balancing

« MGLRU
* LWN: Flushing out pdflush
* LWN: User-space page fault handling
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https://lwn.net/Articles/495543/
https://www.youtube.com/watch?v=9HvJfN21H9Y
https://lwn.net/Articles/326552/
https://lwn.net/Articles/636226/
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