CS 5264/4224; ECE 5414/4414

(Advanced) Linux Kernel Programming
Lecture 21

The Block I/O Layer

April 29, 2025
Huaicheng Li
https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Filesystems

Syscalls: open, read, write, etc.

User-space

Kernel-space

Hard disk

USB drive

Embedded
flash

Hardware

Layering
* Human:
— “Jump to slide #20 of /tmp/slides.ppt” = Random access (/tmp mounted on /dev/sda4)

Powerpoint application:

— Convert “slide #20" to byte offset (e.g. 20000-th byte)”
System calls:

— open()tlseek()+read() = “read(/tmp/slides.ppt, byte offset 20000)"
File System:

— Get the file information of /tmp/slides.ppt = inode #76 (today)

— Convert byte offset into block offset in a file (e.g. block offset # 20)

— Get the block number at the block offset # 20 (e.g. block number 6543), e.g., using multi-
level indexed file = Previous lecture

— To block layer: “read logical block number 6543" (logical wrt this partition /dev/hda4)

Block layer:
— Converts LBN # 6543 of /dev/hda4 to disk sector#

— Block layer to device driver: “read sector #"

Copy-on-Write (CoW) File System
* File System Design for an NFS File Server Appliance
— USENIX Winter 1994
— Whrite-Anywhere File Layout (WAFL): the core design of NetApp
* Inspired by LFS
— Never overwrite a block like LFS
— No segment cleaning unlike LFS
* Key idea

— represent a filesystem as a single tree; never overwrite blocks (CoW)

WAFL Layout: A Tree of Blocks

* A root inode: root of everything

* An inode file: contains all inodes

* A block map file: indicate free blocks

* An inode map file: indicates free inodes

Root Inode
Inode File II EEn EEan EEE
All Other Files EEE EEE

Block Map Inode Map Other Files in the File system
File File

Why Keeping Metadata in Files

* Allow metadata blocks to be written anywhere on disk
— This is the origin of “Write Anywhere File Layout”

 Easy to increase the size of the file system dynamically
— Add a disk can lead to adding I-nodes

* Eanble copy-on-write to create snpshots

— copy-on-write new data and meatada on new disk locations

— fixed metadata locations are cumbersome

WAFL Read

* Reads are similar to UFS, once we find the inode for a file
— root inode =2 inode file =2 inode

— inode: file offset = disk block mapping

WAFL Write

WAFL filesystem is a tree of blocks

Never overwrite blocks — Copy-on-Write

Initial layout After updating D

Root Root R
e bk
L AT %

0000 08060 ~

Crash Consistency in LFS
Each root inode represents a consistent snapshot of a file system

Initial layout After updating D

oo S

*f 8

0000 0000 ¢

CoW FS in Linux
* btrfs (b-tree file system)

— A file system is a tree of four CoW-optimized B-trees

« ZFS

— Default file system of Solaris

10

User-space

Filesystems

Kernel-space

Hardware

11

Block I/O Layer

* Block devices and the block layer
 Buffers and buffer heads

* The “bio” structure and request queues
* /O schedulers

12

Block Devices and Block Layer

* BIO layer
* Request layer
* /O scheduler

13

Anatomy of a Block Device

» Sector
— Minimum addressable unit in a block device

— Physical property of the device = hard sector, device block

* Block
— Unit of filesystem access =2 filesystem block, I/O block

— Multiple of a sector (device limitation) and multiple of a page (kernel limitations)
— Mostly 4KB

14

hard disk

block

sector

sector

mapping from sectors to blocks

15

16

Buffers and Buffer Heads

 Buffer: blocks are stored in memory
» Buffer head: metadata of a buffer

/* linux/include/linux/buffer _head.h */
struct buffer_head {

unsigned long b_state,; /* buffer state flags */

struct buffer_head; *b_this_page; /* 1list of page's buffers */

struct page *b_page, /* associated page */

sector_t b_blocknr; /* starting block number */

size_t b_size; /* size of mapping */

char *b_data, /* pointer to data within the page */
struct block _device *b_bdeyv; /* associated block device */
bh_end_io_t *b_end_io; /* I/0 completion */

void *b_private,; /* reserved for b_end _io */

struct list head b_assoc_buffers; /* associated mappings */

struct address_space *b_assoc_map; /* associated address space */
atomic_t b_count; /* use count: get_bh(), put-bh() */

Buffer State: b _state !

/* 1inux/include/l1inux/buffer_head.h*/

enum bh_state_bits {
BH_Uptodate, /* Contains valid data */
BH_Dirty, /% IS dixty */
BH_Lock, /* Is locked */
BH_Req, /* Has been submitted for I/0 */
BH_Uptodate_Lock, /* Used by the first bh in a page, to serialise

* I0 completion of other buffers in the page */

BH_Mapped, /* Has a disk mapping */
BH_New, /* Disk mapping was newly created by get_block */
BH_Async_Read, /* Is under end_buffer_async_read 1I/0 */
BH_Async_Write, /* Is under end_buffer_async_write I/0 */
BH_Delay, /* Buffer is not yet allocated on disk */

BH_Boundary, /* Block is followed by a discontiguity */

BH Write EIO, /* I/0 error on write */

BH_Unwritten, /* Buffer is allocated on disk but not written */
BH_Quiet, /* Buffer Error Prinks to be quiet */

BH_Meta, /* Buffer contains metadata */

BH_Prio, /* Buffer should be submitted with REQ_PRIO */

BH_Defexr_Completion, /* Defer AIO completion to workqueue */

BH_PrivateStart, /* not a state bit, but the first bit available
* for private allocation by other entities */

The bio Structure

* Basic container for an active block I/O operation

* An individual buffer being divided into segments, it needs not to be contiguous in
memory

segment

Memory
page

18

The bio Structure

/* linux/include/linux/blk_types.h */
struct bio {

¥i

struct bio
struct block_device
unsigned short
unsigned int
struct bvec_iter
unsigned int
unsigned int
bio_end_io_t
void

unsigned short
unsigned short
atomic_t

struct bio_vec
struct bio_vec
F* v e

*bi_next;
*bi_bdev;
bi_flags;
bi_phys_segments;
bi_iter;
bi_seg_front_size;
bi_seg_back_size;
*bi_end_io;
*bi_private;
bi_vcnt;
bi_max_vecs;

__bi_cnt;

*bi_io_vec;
bi_inline_vecs[0];

/7('
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

list of requests */
associated block device */
status and command flags */
number of segments */
vector iterator */

size of front segment */
size of last segment */

I/0 completion method */
owner private data */
number of bio_vecs */
maximum bio_vecs possible */
usage counter */

bio vec list */

inline bio vectors */

19

/* linux/include/linux/bvec.h */
struct bvec_iter {

sector_t bi_sector; /* target address on the device in sectors
unsigned int bi_size; /* I/0 count */

unsigned int bi_idx; /* current index into bi_io_vec */

/* ... */

}s

/* linux/include/linux/bio.h */

struct bio_vec {
/* pointer to the target physical page: */
struct page *bv_page;
/* length in bytes of the buffer: */

unsigned int bv_1len;
/* offset inside the page where the buffer resides: */
unsigned int bv_offset;

}s

*/

20

The bio Structure

bi_i o_vec

page

bhi iter

Memory
page

P struct bvec iter

Memory
page

21

Request Queues

* Block devices maintain request queues to store pending I/O requests

* Request queues are represented by the request_queue structure defined in
include/linux/blkdev.h

* Requests are added to the queue by a file system

* Requests are pulled from the queue by the block device driver and submitted to
the device

struct request_queue {
/* Together with queue_head for cacheline sharing */

struct list head queue_head;
struct request *last_merge;
struct elevator_queue *elevator;
/* ... */

22

Request Queues

* A single request:

— Represented by "struct request”
— Can operate on multiple consecutive disk blocks, so it consists of one or more bio objects

struct request {
struct list_head queuelist;

union {
struct call_single_data csd;
ué4 fifo_time;

}s

struct request_queue *q;
struct blk_mqg_ctx *mg_ctx;
/* ... */

23

/O Schedulers

* Directly sending requests to the disk as they arrive is sub-optimal:
— Increase random accesses
— The kernel tries to reduce disk seek as much as possible
* The kernel combines and re-order I/O requests in the request queue
— merging, sorting
* Rules for merging and sorting are defined by the I/O scheduler
— Multiple I/O scheduler models implemented in Linux

* The I/O scheduler virtualizes the disk as the process scheduler virtualizes the CPU

24

Linus Elevator

* Default I/O scheduler until v2.4
* Define where an upcoing request should be added into the queue:

— front merge, back merge
— sorted insertion

* Goal: minimize disk seek, best global throughput

25

Linus Elevator
* If a request to an adjacent on-disk sector is in the queue, the existing request and
the new request merge into a single request

* If a request in the queue is sufficiently old, the new request is inserted at the tail of
the queue to prevent starvation of the other, older, requests

* If a surtable location sector-wise is in the queue, the new request is inserted there.
This keeps the queue sorted by physical location on disk.

* Finally, the request is inserted at the tail of the queue.

26

Incoming requests

15
4
ol
N
18 10 5 5
Back (tail) Request queue Fromh_eﬁ
18 10 5 Back merge
Request queue
18 10 514 Front merge
Request queue
18 15 10 415 Sorted insertion

Request queue

27

Problems with Linus Elevator
* Goal: minimize disk seek, best global throughput

— Can cause starvation
* Writes starve reads
— Buffer I/O operation with buffer page cache
— Write operations are buffered to page cache = asynchronous

— Read operations upon page cache miss should be immediately handled = synchronous
— Read latency is important for the system = read starvation must be minimized

28

The Deadline I/O Scheduler

* Tries to provide fairness while maximizing the global throughput

* Each request is given an expiration time, the deadline:

— Reads = now + .5s, Writes = now + 5s

Upcoming
n requests

R

Processed when the
head request expires

— -

Read FIFO queue

Write FIFO queue —| Dispatch queue

-

Sorted (sector) queue

Processed during
normal operation

disk

29

The Anticipatory I/O Scheduler

* Tries to improve the throughput of the deadline scheduler
* Anticipation heuristic

— Instead of immediately seeking back; it waits for a few milliseconds hoping an application
sends other I/O requests.

Upcoming
requests Wait a few ms)
Req. Read FIFO queue
[g— |
> , Req\.\ O
Write FIFO queue N~
~_
Sorted (sector) queue

The Complete Fair Queuing (CFQ)
* Default I/O scheduler (for a long time ...)

 Per-process request queues

* Serves the queues round robin

Merge and
insertion sort

A

Process A queue

Process B queue

Round
robin

Process C queue

Dispatch queue

disk

31

The NOOP I/O Scheduler

* Does not perform anything in particular apart from merging sequential requests
* Used for truly random devices such as NAND Flash SSDs

32

Configuring I/O Scheduler

* |[/O scheduler can be selected at boot time as a kernel parameter:

— elevator=<value>-<value> could be erther of cfq, deadline, or noop

* Or you can choose an I/O scheduler per device

$> cat /sys/block/<block device name>/queue/scheduler
$> echo noop /sys/block/<block device name>/queue/scheduler

33

Adding a New |/O Scheduler

/* linux/include/linux/elevator.h */
struct elevator_type

{

/* managed by elevator core */
struct kmem_cache *icq_cache;

/* fields provided by elevator implementation */

union {
struct elevator_ops sq;
struct elevator_mg_ops mq;
} ops;
size_t icq_size; /* see iocontext.h */
size_t icq_align; /* ditto */
struct elv_fs_entry *elevator_attrs;
char elevator_name[ELV_NAME_MAX] ;
struct module *elevator_owner;
bool uses_mq;

/* managed by elevator core */

char icq_cache_name[ELV_NAME_MAX + 6], /*

struct list_head list;

elvname +

n

io_cq" */

34

/* 1linux/include/linux/elevator.h */
struct elevator_ops

{

elevator_merge_fn *elevator_merge_fn;

elevator_merged_fn *elevator_merged_fn;
elevator_merge_req_fn *elevator_merge_req_fn;
elevator_allow_bio_merge_fn *elevator_allow_bio_merge_fn;
elevator_allow_rq_merge_fn *elevator_allow_rq_merge_fn;
elevator_bio_merged_fn *elevator_bio_merged_fn;

elevator_dispatch_fn *elevator_dispatch_fn;
/* ... */

35

Linux blk-mq

* blk-mq: Multi-Queue Block IO Queueing Mechanism

* Since v3.13

* "“Blk-mq allows for over |5 million |IOPS with high-performance flash devices (e.g. PCle
55Ds) on 8-socket servers, though even single and dual socket servers also benefit

considerably from blk-mq”

36

https://www.thomas-krenn.com/en/wikiEN/index.php?title=IOPS&action=edit&redlink=1

Userspace

Process Process
Kernel libaio and others
A |
Submit 1O
[
\
Submission/Completion y A ~ Block Layer

Staging (Merge, Insertion)

Tagging > Per Core

I Software Queues
Fairness Scheduling

IO Accounting

Hardware
Dispatch Queues

Block device specific driver

Status / Completion
Interrupt A |

Refer to here. Single or multi-queue capable hardware device

https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

38

39

Mainstream SSDs in the NVMe “Hat”

SSD Flavors:

Storage Media: T & BB 30KeONT

Why NVMe?

* Performance: reduce the legacy storage stack overhead

— SATA
— HDD
2??
Software
2??
Hardware
Software SATA/ HDD
Overhead (%): nnnn

From “Performance Analysis of SAS/SATA and NVMe SSDs”: https://www.architecting.it/blog/performance-analysis-sas-sata-nvme/

40

Why NVMe?

* Performance: reduce the legacy storage stack overhead

— SATA
— HDD
70us
Software
10ms
Hardware
Software SATA/ HDD

Overhead (%): ~0 70/o

Why NVMe?

* Performance: reduce the legacy storage stack overhead
— SATA
— HDD - SSD

70us 299

Software

Hardware

Software
Overhead (%): ~0.7%

42

Why NVMe?
* Performance: reduce the legacy storage stack overhead
— SATA
rous 35us
Software
10ms
Hardware 100us
Software SATA/HDD SATA/SSD

Overhead (%): ~0.7% 26%

43

Why NVMe?
* Performance: reduce the legacy storage stack overhead
— SATA =2 NVMe
70us 35us
Software
Hardware
Softuare SATA/HDD SATA/SSD

Overhead (%): ~0.7% 260/0

?2??

NVMe/SSD

44

45

Why NVMe?

* Performance: reduce the legacy storage stack overhead
— SATA =2 NVMe

— HDD = SSD e

70us 35us 8us

NVMe overhead is
small for SSDs!

Software

Hardware

Software

Overhead (%): ~0.7% 26° /o 7%

NVMe vs. SATA

Samsung SM951 SSDs

Measure performance in IOPS: I/Os per second
Under NVMe interface: 120K IOPS
Under SATA interface: 90K IOPS

33%

NVMe Processing Flow

NVMe Driver

NVMe Command NVMe Completion

(64 Bytes) Entry (4 Bytes) Entry
[T)
Y o)
3 s
° o
© 2
5 g
5 o
® D
. ®

Subm|SS|on Queue
Tail Doorbell Regis

% Q ¢
Completlon Queue
ter Head Doorbell Register

NVMe Controller (4]

47

Further Readings

LWN: A block layer introduction part |: the bio layer

LWN: A block layer introduction part 2: the request layer

Linux Block 1O: Introducing Multi-queue SSD Access on Multi-core Systems,

SYSTORI3

LWN: The multiqgueue block layer

L WN: Two new block |/O schedulers for 4.12

L WN: The future of DAX

Kermel Recipes 201/ - What's new in the world of storage for linux -Jens Axboe

https://lwn.net/Articles/736534/
https://lwn.net/Articles/738449/
http://kernel.dk/blk-mq.pdf
http://kernel.dk/blk-mq.pdf
https://lwn.net/Articles/552904/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/717953/
https://www.youtube.com/watch?v=g14zAvrU3Jg&index=2&list=PLQ8PmP_dnN7IuQPW8WGYU12f5i_hrKllZ

RAID (Optional)

Wish Lists for Disks

e “Disk’” can be SSD, HDD, etc.
— Refer to block storage device (in contrast to byte-addressable devices, e.g., DRAM)

* Performance:
— Faster
» Capacity:
— Larger
 Reliablility:

— More reliable (or ideally a disk that never fails, “‘even when you shout at it” ©)

50

Multi-disk Systems 7

« Reason |: Storage capacity Application
* Problem: cost, data growth !
e Solution: use multiple disks File System
* Reason 2: Performance I
* Problem: load balancing Here — Block Service
* Solutions: dynamic placement, striping
* Reason 3: Reliability Device driver

* Problem: guaranteeing fault tolerance

!
* Solutions: replication, parity m m m

Example storage stack

Popular solution: RAID!

Exposing Disk Arrays
- Simplest solution: Just-a-Bunch-Of-Disks (JBOD) JBOF - for SSDs,"F" for“Flash”

Individual disks are exposed through controller

This i1s what you actually buy

RAID 0: Disk Striping

* Data interleaved across multiple disks

* Large file streaming benefits from parallel transfers
* “Large” defined relative to stripe unit
* Thorough load balancing ideal for high-throughput requests

* Hot file blocks get spread uniformly across all disks (good enough?)

File foo

<+ —>

Stripe unit
(e.g. fs block)

53

Disk Striping 101

* How disk striping works
* Break up LBN space into fixed-size stripe units
* Distribute stripe units among disks in round-robin fashion
* Straight-forward to compute location of block #B

e Disk # = B % N, where % = modulo, N = number of disks
e Disk block # = B/ N (computes block offset on given disk)

* Key design decision: picking the stripe unit size

* Assist alignment: choose multiple of file system block size

Too small Too big
» Even small transfers » No parallel transfers
span stripe units » Poorer load balancing

» Extra seeks/accesses
for little/no benefit (HDDs)

54

What Happens if a Disk Fails?
* In a JBOD (independent disk) system

* All file systems on the disk are lost
* In a striped system

* Part of each file system residing on failed disk is lost

* Backups can help, but are hard to get right
* Backup scheduling is difficult
* Choosing backup interval: how much data can you afford to lose?
* Impact on performance while backing up
* Storage provisioning for backup is non-trivial

* Client data growth vs. number of backups stored

95

RAID-1: Mirroring (Redundancy via Replicas)

* Two (or more) copies of each write

* Terms used: mirroring, shadowing, duplexing, etc.

* Write both replicas, read from either

LR

~
~
~

\\
\
e N N N —

Disk | Disk 2 Disk 3 Disk 4

56

RAID-4: Parity Disks
 All writes update parity disk

— downsides!?

Data disks

(
T
~

\.

T
~

sIp Ajled

57

RAID-5: Striping the Parity

* Removes parity disk bottleneck

— Parity is distributed across all disks

Parity
blocks

58

Redundant Array of Inexpensive (or Independent) Disks

* By UC-Berkeley researchers in late 80s (Garth Gibson)
RAID 0 — Course-grained Striping with no redundancy
RAID | — Mirroring of independent disks

RAID 4 — Coarse-grained data striping plus parity disk

RAID 5 — Coarse-grained data striping plus striped parity
RAID 6 — Coarse-grained data striping plus 2 striped codes
RAID N+3 — Coarse-grained data striping plus 3 striped codes
Erasure Coding: more general ...

59

