
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 21

The Block I/O Layer

April 29, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/


2



3
Layering
• Human: 

– “Jump to slide #20 of /tmp/slides.ppt” à Random access (/tmp mounted on /dev/sda4)
• Powerpoint application:

– Convert “slide #20” to byte offset (e.g. 20000-th byte)”
• System calls: 

– open()+lseek()+read() à “read(/tmp/slides.ppt, byte offset 20000)”
• File System: 

– Get the file information of /tmp/slides.ppt à inode #76 (today)
– Convert byte offset into block offset in a file (e.g. block offset # 20)
– Get the block number at the block offset # 20 (e.g. block number 6543), e.g., using multi-

level indexed file à Previous lecture
– To block layer: “read logical block number 6543” (logical wrt this partition /dev/hda4)

• Block layer:
– Converts LBN # 6543 of /dev/hda4 to disk sector# 
– Block layer to device driver: “read sector #” 



4
Copy-on-Write (CoW) File System
• File System Design for an NFS File Server Appliance

– USENIX Winter 1994
– Write-Anywhere File Layout (WAFL): the core design of NetApp

• Inspired by LFS
– Never overwrite a block like LFS
– No segment cleaning unlike LFS

• Key idea
– represent a filesystem as a single tree; never overwrite blocks (CoW)



5
WAFL Layout: A Tree of Blocks
• A root inode: root of everything
• An inode file: contains all inodes
• A block map file: indicate free blocks
• An inode map file: indicates free inodes



6
Why Keeping Metadata in Files
• Allow metadata blocks to be written anywhere on disk

– This is the origin of “Write Anywhere File Layout”
• Easy to increase the size of the file system dynamically

– Add a disk can lead to adding i-nodes
• Eanble copy-on-write to create snpshots

– copy-on-write new data and meatada on new disk locations
– fixed metadata locations are cumbersome



7
WAFL Read
• Reads are similar to UFS, once we find the inode for a file

– root inode à inode file à inode
– inode: file offset à disk block mapping



8
WAFL Write



9
Crash Consistency in LFS



10
CoW FS in Linux
• btrfs (b-tree file system)

– A file system is a tree of four CoW-optimized B-trees
• ZFS

– Default file system of Solaris



11



12
Block I/O Layer
• Block devices and the block layer
• Buffers and buffer heads
• The “bio” structure and request queues
• I/O schedulers



13
Block Devices and Block Layer
• BIO layer
• Request layer
• I/O scheduler



14
Anatomy of a Block Device
• Sector

– Minimum addressable unit in a block device
– Physical property of the device à hard sector, device block

• Block
– Unit of filesystem access à filesystem block, I/O block
– Multiple of a sector (device limitation) and multiple of a page (kernel limitations)
– Mostly 4KB



15



16
Buffers and Buffer Heads
• Buffer: blocks are stored in memory
• Buffer head: metadata of a buffer



17
Buffer State: b_state



18
The bio Structure
• Basic container for an active block I/O operation
• An individual buffer being divided into segments, it needs not to be contiguous in 

memory



19
The bio Structure



20



21
The bio Structure



22
Request Queues
• Block devices maintain request queues to store pending I/O requests
• Request queues are represented by the request_queue structure defined in 

include/linux/blkdev.h
• Requests are added to the queue by a file system
• Requests are pulled from the queue by the block device driver and submitted to 

the device



23
Request Queues
• A single request:

– Represented by “struct request”
– Can operate on multiple consecutive disk blocks, so it consists of one or more bio objects



24
I/O Schedulers
• Directly sending requests to the disk as they arrive is sub-optimal:

– Increase random accesses
– The kernel tries to reduce disk seek as much as possible

• The kernel combines and re-order I/O requests in the request queue
– merging, sorting

• Rules for merging and sorting are defined by the I/O scheduler
– Multiple I/O scheduler models implemented in Linux

• The I/O scheduler virtualizes the disk as the process scheduler virtualizes the CPU



25
Linus Elevator
• Default I/O scheduler until v2.4
• Define where an upcoing request should be added into the queue:

– front merge, back merge
– sorted insertion

• Goal: minimize disk seek, best global throughput



26
Linus Elevator
• If a request to an adjacent on-disk sector is in the queue, the existing request and 

the new request merge into a single request
• If a request in the queue is sufficiently old, the new request is inserted at the tail of 

the queue to prevent starvation of the other, older, requests
• If a suitable location sector-wise is in the queue, the new request is inserted there. 

This keeps the queue sorted by physical location on disk.
• Finally, the request is inserted at the tail of the queue.



27



28
Problems with Linus Elevator
• Goal: minimize disk seek, best global throughput

– Can cause starvation
• Writes starve reads

– Buffer I/O operation with buffer page cache
– Write operations are buffered to page cache à asynchronous
– Read operations upon page cache miss should be immediately handled à synchronous
– Read latency is important for the system à read starvation must be minimized



29
The Deadline I/O Scheduler
• Tries to provide fairness while maximizing the global throughput
• Each request is given an expiration time, the deadline:

– Reads = now + .5s, Writes = now + 5s



30
The Anticipatory I/O Scheduler
• Tries to improve the throughput of the deadline scheduler
• Anticipation heuristic

– Instead of immediately seeking back, it waits for a few milliseconds hoping an application 
sends other I/O requests.



31
The Complete Fair Queuing (CFQ)
• Default I/O scheduler (for a long time ...)
• Per-process request queues
• Serves the queues round robin



32
The NOOP I/O Scheduler
• Does not perform anything in particular apart from merging sequential requests
• Used for truly random devices such as NAND Flash SSDs



33
Configuring I/O Scheduler
• I/O scheduler can be selected at boot time as a kernel parameter:

– elevator=<value>-<value> could be either of cfq, deadline, or noop
• Or you can choose an I/O scheduler per device



34
Adding a New I/O Scheduler



35



36
Linux blk-mq
• blk-mq: Multi-Queue Block IO Queueing Mechanism
• Since v3.13
• “Blk-mq allows for over 15 million IOPS with high-performance flash devices (e.g. PCIe 

SSDs) on 8-socket servers, though even single and dual socket servers also benefit 
considerably from blk-mq”

https://www.thomas-krenn.com/en/wikiEN/index.php?title=IOPS&action=edit&redlink=1


37

Refer to here.

https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details


38



39
Mainstream SSDs in the NVMe “Hat”

Storage Media:

SSD Flavors:



40
Why NVMe?
• Performance: reduce the legacy storage stack overhead

– SATA
– HDD

???

???

SATA/HDD

Software

Hardware

From “Performance Analysis of SAS/SATA and NVMe SSDs”: https://www.architecting.it/blog/performance-analysis-sas-sata-nvme/

????
Software 
Overhead (%):



41
Why NVMe?
• Performance: reduce the legacy storage stack overhead

– SATA
– HDD

10ms

70us

SATA/HDD

Software

Hardware

~0.7%
Software 
Overhead (%):



42
Why NVMe?
• Performance: reduce the legacy storage stack overhead

– SATA
– HDD à SSD

10ms

70us

SATA/HDD

Software

Hardware

~0.7%

???

???

SATA/SSDSoftware 
Overhead (%):



43
Why NVMe?
• Performance: reduce the legacy storage stack overhead

– SATA
– HDD à SSD

10ms

70us

SATA/HDD

Software

Hardware

~0.7%

100us

35us

SATA/SSD
26%

Software 
Overhead (%):

SATA overhead is 
high for SSDs!



44
Why NVMe?
• Performance: reduce the legacy storage stack overhead

– SATA à NVMe
– HDD à SSD

10ms

70us

SATA/HDD

Software

Hardware

~0.7%

100us

35us

SATA/SSD

100us

???

NVMe/SSD
26%

Software 
Overhead (%):

SATA overhead is 
high for SSDs!



45
Why NVMe?
• Performance: reduce the legacy storage stack overhead

– SATA à NVMe
– HDD à SSD

10ms

70us

SATA/HDD

Software

Hardware

~0.7%

100us

35us

SATA/SSD

100us

8us

NVMe/SSD
26% 7%

Software 
Overhead (%):

SATA overhead is 
high for SSDs!

NVMe overhead is 
small for SSDs!



46
NVMe vs. SATA

q Samsung SM951 SSDs
§ Measure performance in IOPS: I/Os per second
§ Under NVMe interface: 120K IOPS
§ Under SATA interface: 90K IOPS

33% 



47
NVMe Processing Flow

Where does the performance benefit come from?



48
Further Readings
• LWN: A block layer introduction part 1: the bio layer
• LWN: A block layer introduction part 2: the request layer
• Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems, 

SYSTOR13
• LWN: The multiqueue block layer
• LWN: Two new block I/O schedulers for 4.12
• LWN: The future of DAX
• Kernel Recipes 2017 - What’s new in the world of storage for linux -Jens Axboe

https://lwn.net/Articles/736534/
https://lwn.net/Articles/738449/
http://kernel.dk/blk-mq.pdf
http://kernel.dk/blk-mq.pdf
https://lwn.net/Articles/552904/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/717953/
https://www.youtube.com/watch?v=g14zAvrU3Jg&index=2&list=PLQ8PmP_dnN7IuQPW8WGYU12f5i_hrKllZ


49

RAID (Optional)



50
Wish Lists for Disks
• “Disk” can be SSD, HDD, etc.

– Refer to block storage device (in contrast to byte-addressable devices, e.g., DRAM)
• Performance: 

– Faster
• Capacity: 

– Larger
• Reliability: 

– More reliable (or ideally a disk that never fails, “even when you shout at it” J)



51
Multi-disk Systems

• Reason 1: Storage capacity
• Problem: cost, data growth
• Solution: use multiple disks

• Reason 2: Performance
• Problem: load balancing
• Solutions: dynamic placement, striping

• Reason 3: Reliability
• Problem: guaranteeing fault tolerance
• Solutions: replication, parity

• Popular solution: RAID!

Device driver

File System

Application

Example storage stack

Here

SSD SSD SSD

SSD SSD SSD

SSD SSD SSD

Block Service



52
Exposing Disk Arrays

• Simplest solution: Just-a-Bunch-Of-Disks (JBOD)
• Individual disks are exposed through controller
• This is what you actually buy

A 1

A 0

A n

…

B 1

B 0

B n

…
C 1

C 0

C n

…

D 1

D 0

D n

…

JBOF -- for SSDs, “F” for “Flash”



53
RAID 0: Disk Striping
• Data interleaved across multiple disks

• Large file streaming benefits from parallel transfers
• “Large” defined relative to stripe unit

• Thorough load balancing ideal for high-throughput requests
• Hot file blocks get spread uniformly across all disks (good enough?)

File foo

Stripe unit
(e.g. fs block)



54
Disk Striping 101
• How disk striping works

• Break up LBN space into fixed-size stripe units
• Distribute stripe units among disks in round-robin fashion
• Straight-forward to compute location of block #B

• Disk # = B % N, where % = modulo, N = number of disks

• Disk block # = B / N (computes block offset on given disk)

• Key design decision: picking the stripe unit size
• Assist alignment: choose multiple of file system block size

Too small
 

Ø Even small transfers
span stripe units

Ø Extra seeks/accesses
for little/no benefit (HDDs)

Too big
 

Ø No parallel transfers
Ø Poorer load balancing



55
What Happens if a Disk Fails?
• In a JBOD (independent disk) system

• All file systems on the disk are lost
• In a striped system

• Part of each file system residing on failed disk is lost

• Backups can help, but are hard to get right
• Backup scheduling is difficult

• Choosing backup interval: how much data can you afford to lose?
• Impact on performance while backing up
• Storage provisioning for backup is non-trivial

• Client data growth vs. number of backups stored



56
RAID-1: Mirroring (Redundancy via Replicas)
• Two (or more) copies of each write

• Terms used: mirroring, shadowing, duplexing, etc.
• Write both replicas, read from either

A 1

A 0

A n

…

B 1

B 0

B n

…
A 1

A 0

A n

…

B 1

B 0

B n
…

Disk 1 Disk 2 Disk 3 Disk 4



57
RAID-4: Parity Disks
• All writes update parity disk

– downsides?

A 1

A 0

A n

…

D 1

D 0

D n

…
B 1

B 0

B n

…

C 1

C 0

C n

…

P 1

P 0

P n

…D
at

a 
di

sk
s Parity disk



58
RAID-5: Striping the Parity
• Removes parity disk bottleneck

– Parity is distributed across all disks

A 4 D 4B 4 C 4P 4

Parity
blocks

A 3 D 3B 3 C 3P 3

A 2 D 2B 2 C 2P 2

A 1 D 1B 1 C 1 P 1

A 0 D 0B 0 C 0 P 0



59

• Redundant Array of Inexpensive (or Independent) Disks
• By UC-Berkeley researchers in late 80s (Garth Gibson)

• RAID 0 – Course-grained Striping with no redundancy
• RAID 1 – Mirroring of independent disks
• RAID 2 – Fine-grained data striping plus Hamming code disks

• Uses Hamming codes to detect and correct multiple errors
• Originally implemented when drives didn’t always detect errors
• Not used in real systems

• RAID 3 – Fine-grained data striping plus parity disk
• RAID 4 – Coarse-grained data striping plus parity disk
• RAID 5 – Coarse-grained data striping plus striped parity
• RAID 6 – Coarse-grained data striping plus 2 striped codes
• RAID N+3 – Coarse-grained data striping plus 3 striped codes
• Erasure Coding: more general ...


