
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 22

Virtualization

May 6, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

https://people.cs.vt.edu/huaicheng/lkp-sp25/

2
Outline
• Virtualization Overview
• Memory Management
• I/O Virtualization
• Wrap-up

3
Introduction

• What is virtualization?
• Virtualization is a way to run multiple operating systems and user

applications on the same hardware
• Virtual Machine Monitor (Hypervisor) is a software layer that allows

several virtual machines to run on a physical machine

• Types of VMMs
• Type-1: hypervisor runs directly on hardware
• Type-2: hypervisor runs on a host OS

4

Xen, VMware ESX, Microsoft Hyper-V

Hardware
VMM

VM1 VM2
Type 1

Host

Guest

• Virtual Machine Monitor (VMM) = Hypervisor = Host OS
• Virtual Machine (VM) = Guest OS

Hardware
OS

Process VMM
VM1 VM2

Type 2

KVM, VMware Workstation, Sun VirtualBox, QEMU

Host

Guest

5

• Advantages
– Isolation

• Limits security exposures
• Reduces spread of risks

– Roll-Back
• Quickly recovers from security breaches

– Abstraction
• Limits direct access to hardware

– Portability
• Disaster recovery
• Switches to “standby” VMs

– Deployment
• Distributes workloads
• Customizes guest OS security settings

6

• Applications
– Server virtualization

• Green IT
• Xen, VMware ESX Server

– Desktop virtualization
• VMware, VirtualBox, Citrix’s Xen HDX

– Mobile virtualization
• Secure execution
• Xen on ARM

– Cloud computing
• Storage/platform cloud services
• Amazon EC2, MS Azure, Google AppEngine
• Serverless

– Emulation
• iPhone/Android emulator
• Qemu, Bochs

7
Processor Virtualization
• Classic virtualization

– Trap and emulate: For an architecture to be virtualizable, all sensitive instructions must be
handled by VMM

– Sensitive instructions include
• Instruction that changes processor mode
• Instruction that accesses hardware directly
• Instruction whose behavior is different in user/kernel mode

8

• Para-virtualization
– Requires modifications to the guest OS

• Guest is aware that it is running on a VM
– Example

• Instead of doing “cli” (turn off interrupts), guest OS should do
hypercall(DISABLE_INT)

– Pros
• Near-native performance
• No hardware support required

– Cons
• Requires specifically modified guest

– Solutions : Xen
Hypervisor

Hardware
EFLAGS register

cli

Guest Hypercall(DISABLE_INT)

9

• Full-virtualization (Emulation)
• Process of implementing the interface and functionality of one system on a different

system
• Do whatever the CPU does, but in software

• CPU emulation
– Fetches and decodes the next instruction
– Executes using the emulated registers and memory

Pros
– No hardware support required
– Simple

Cons
– Very slow

• Solutions : Bochs

addl %ebx, %eax

unsigned long regs[8];
regs[EAX] +=
regs[EBX];

10
Processor Virtualization – Full-Virtualization
• Binary translation

– Translates code block to safe code block (like JIT) directly
– Dynamically translates privileged instructions to normal instructions which can be executed

in user mode
– Pros

» No hardware support required
» Fast

– Cons
» Hard to implement
» VMM needs x86-to-x86 binary compiler

– Solutions: VMware, QEMU

JIT: Just in time compilation

11

• Full-virtualization
– Hardware-assisted virtualization

• Runs the VM directly on the CPU
– No emulation

• Integrates new execution mode into the CPU by extending the instruction set and control
structure

• Pros
– Fast

• Cons
– Need hardware support

» AMD SVM
» Intel VT

• Solutions : KVM, Xen

AMD SVM : Secure Virtual Machine
Intel VT : Virtualization Technology

Ring 3

Ring 0

VMX
Root

Virtual Machines (VMs)

Apps

OS

VM Monitor (VMM)

Apps

OS

VM Exit VM Entry

12

Intel VMX
• VMX (Virtual Machine Extension) supports virtualization of processor

hardware.
• Two new VT-x operating modes

– Less-privileged mode
(VMX non-root) for guest OSes

– More-privileged mode
(VMX root) for VMM

• Two new transitions
– VM entry to non-root operation
– VM exit to root operation

• Execution controls determine when exits occur
– Access to privilege state, occurrence of exceptions, etc.
– Flexibility provided to minimize unwanted exits

• VM Control Structure (VMCS) controls VMX operation
– Also holds guest and host state

Ring 3

Ring 0

VMX
Root

Virtual Machines (VMs)

Apps

OS

VM Monitor (VMM)

Apps

OS

VM Exit VM Entry

13

Processor Virtualization
• Comparison

Full-vir tualization
(Emulation, Binary Translation)

Operating System

Hardware

Guest

Virtual Machine Monitor

Native OS

User Application

User
Application

Virtual Machine Monitor
Hardware

Modified Guest

Modified OS

User Application

Hypercall Interface

Modified Guest

Modified OS

User Application

Para-vir tualization Full-vir tualization
(Hardware-assisted VT)

Virtual Machine Monitor

Hardware
(Intel VT, AMD SVM support)

Guest

Native OS

User Application

Guest

Native OS

User Application

14

Processor Virtualization (cont’d)
• Comparison

Para-
vir tualization

Full-
vir tualization
(Emulation)

Full-
vir tualization

(Binary translation)

Full-
vir tualization

(Hardware-assisted VT)

Speed Very Fast
(Almost Native)

Very Slow Fast Fast

Guest Kernel
Modification

Yes No No No

Support
Other Arch

No Yes No No

Solutions Xen,
VMWare ESX

Bochs VMWare, QEMU KVM, Xen

Purposes Server virtualization Emulator Desktop virtualization Desktop
virtualization

15

Virtual Machine Memory Map

Host
Physical Memory

Host
Virtual Memory

Guest
Physical Memory

Guest
Virtual Memory

16

Memory Virtualization
• Direct Paging

– Guest operating system directly maintains a mapping of Guest Virtual Address to Host
Physical Address (GVA à HPA).

– When a logical address is access, the hardware walks these page tables to determine the
corresponding physical address.

– Dedicated physical memory region is allocated at the initialization of guest OS.
– Pros

• Simple to implement
• High performance (no virtualization overhead)

– Cons
• Need to modify guest kernel (not applicable to closed-source OS)
• Inflexible memory management

Virtual Machine 1
Process 1 Process 2

Virtual Machine 2

Process 1 Process 2
Guest
Virtual

Address
(GVA)

Host
Physical
Address
(HPA)

17Memory Virtualization (cont’d)
• Shadow Paging

– VMM maintains GVAàGPA mappings in its internal data structures and stores GVAàHPA
mappings in shadow page tables that are exposed to the hardware.

– The VMM keeps these shadow page tables synchronized to the guest page tables.
– This synchronization introduces virtualization overhead when the guest updates its page tables.
– Pros

• Support unmodified guest OS
– Cons

• Hard to implement and maintain
• Large virtualization overhead

Virtual Machine 1
Process 1 Process 2

Virtual Machine 2
Process 1 Process 2

Shadow Paging

Host
Physical
Address
(HPA)

Guest
Physical
Address
(GPA)

Guest
Virtual

Address
(GVA)

18Shadow Paging

Host
Physical Memory

Host
Virtual Memory

Guest
Physical Memory

Guest
Virtual Memory

•MMU with host page table
created by host kernel

•One-to-one mapping • Guest page table
• It represents some ‘logical’ address in guest
environment. It cannot be used for MMU, because
guest physical address is another virtual address.

•MMU with shadow page table created
by hypervisor

19Memory Virtualization (cont’d)
• Nested Paging

– Guest operating system continues to maintain GVA-->GPA mappings in the guest page tables.
– But the VMM maintains GPA->HPA mappings in an additional level of page tables, called nested page tables.
– Both the guest page tables and the nested page tables are exposed to the hardware.
– When a logical address is accessed, the hardware walks the guest page tables as in the case of native

execution, but for every GPA accessed during the guest page table walk, the hardware also walks the nested
page tables to determine the corresponding HPA.

– Pros
• Simple to implement
• Support unmodified guest OS

– Cons
• H/W supports is needed.
• Larger TLB footprint

Virtual Machine 1
Process 1 Process 2

Virtual Machine 2
Process 1 Process 2

Host
Physical
Address
(HPA)

Guest
Physical
Address
(GPA)

Guest
Virtual

Address
(GVA)

20
Memory Virtualization (cont’d)

Direct Paging Shadow Paging Nested Paging

Speed Very Fast
(Almost Native)

Very Slow Fast

Guest Kernel
Modification

Yes No No

Need H/W Support No No Yes

Complexity Simple Complex Very Simple

21

EPT

• The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of
physical memory.

• Guest-physical addresses are translated by traversing a set of EPT paging structures to produce physical
addresses that are used to access memory.

• Guest can have full control over page tables/events
– CR3, CR0, CR4 paging bits, INVLPG, page fault

• VMM controls Extended Page Tables
• CPU uses both tables, guest paging structure and EPT paging structure
• EPT activated on VM entry

– When EPT active, EPT base pointer (loaded on VM entry from VMCS) points to extended page tables
• EPT deactivated on VM exit

22

EPT Translation

• All guest-physical addresses go through extended page tables
– Includes address in CR3, address in PDE, address in PTE, etc.

• In addition to translating a guest-physical address to a physical address, EPT
specifies the privileges that software is allowed when accessing the address.
Attempts at disallowed accesses are called EPT violations and cause VM exits.

23How OS and a device interacts

set cylinder

set hcylinder

set drive

issue command = DMA WRITE

set DMA SG list address

set DMA command = START

…

interrupt

24IO Virtualization
• Front-end/Back-end Driver Model
– Guest OS uses para-virtualized front-end driver to send requests to

backend driver.
– Back-end driver on secure domain receives the requests, performs actual

IO using the native driver.

Dom0 (Secure Domain)
Process

Modified Linux Kernel

Xen(Hypervisor)

CPU Memory Storage Network

Native Driver

Backend Driver

Safe HW IF

Process
DomU (General Domain)

Process

Modified Linux Kernel
Frontend Driver

Process

Virtual CPU Virtual MMU

25
IO Virtualization (cont’d)
• Emulation
– Behavior of a particular device is emulated as a software module.
– Guest OS uses the native device driver for the particular device.
– VMM intercepts all the access from guest OS to the device.
– The intercepted accesses are sent to the emulated device.
– The Emulated device do the actual IO operations.

Guest OS
Process

Linux Kernel (Guest)

Linux Kernel

CPU Memory Storage Network

Device Drivers

Normal
Process

Device Drivers

Hypervisor

QEMU
Process

Emulated
Device

26IO Virtualization (cont’d)
• H/W Assisted IO Virtualization
– A specially designed H/W supports concurrent accesses from multiple guest OS.
– Guest OS use the unmodified device driver.
– Guest OS can access arbitrary host physical memory through DMA.

• Intel VT-d controls the host physical memory access from the guest OS through DMA.

Guest VM

Guest Kernel

Hypervisor

CPU Memory Storage Network

Device Drivers

Process

Guest VM

Guest Kernel

Device Drivers

Process Process Process

27IO Virtualization Model Revisited
Front-end/Back-end Model

Disk Network
Interface Card Frame buffer …

Linux Kernel

Virtual Machine

process process

Linux Kernel

Disk Device
Driver

NIC
Device
Driver

…

Hypervior

Disk Device
Driver

NIC Device
Driver

FB Device
Driver …

vmexit handler

Device Emulation Process

Disk Device
Thread

Disk
Backend
Device
Driver

VMEXITVINT

INT

28

IO Virtualization (cont’d)

Front-end/Back-end Driver
Model

Emulation H/W Assisted IO Vir tualization

Speed Very Slow Very Slow Fast

Device Driver
Modification

Yes No No

Need H/W Support No No Yes

Complexity Simple Complex Simple

29• Virtualization Overview
– Introduction
– Processor Virtualization

• Para-virtualization, Emulation, Binary Translation, H/W assisted VT
– Memory Virtualization

• Direct Paging, Shadow Paging, Nested Paging
– IO Virtualization

• Front-end/Back-end Driver Model, Emulation, H/W assisted IO Virtualization

• Memory Management
– Monitoring page access and swap device
– VMM swapping without double paging
– QoS aware memory allocation
– Ballooning

• I/O Virtualization
– Accelerating Virtual Machine Storage I/O for Multicore Systems

• Virtualization overhead = direct cost + indirect cost + synchronous cost
– “Towards Bare-metal Network Performance via Para-virtualized Socket Library and Exitless I/O”

• Exitless IO
• Paravirtualized Network Library

30

