
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 4

Kernel Modules & Data Structures

February 4, 2025

Huaicheng Li

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.



2
Ex0 Kernel Compilation Time CDF



3

From COMS W4118 Operating Systems I



4

• Example: syscall implemented in linux sources in linux/my_syscall/my_func.c

• Create a linux/my_syscall/Makefile

– obj-y += my_func.o

• Add “my_syscall” in linux/Makefile

– core-y += kernel/ certs/ mm/ fs/ .... my_syscall/



5
Why Not to Add a New Syscall

• Pros

– Easy to implement and use, fast

• Cons

– Need an official syscall number

– Interface cannot change after implementation, need to maintain it forever

– Must support every architecture

– Probably too much work for small exchanges of information, easily an overkill!

• Alternative

– Create a device node and “read()” / “write()”

– Use “ioctl()”



6
Improving Syscall Performance

• System call performance is critical in many applications

– Web server: select(), poll()

– Game engine: gettimeofday()

• Hardware: add a new fast system call instruction

– int 0x80 → syscall

• Software: vDSO (virtual dynamically linked shared object)

– A kernel mechanism for exporting a kernel space routines to user space applications

– No context switching overhead

– e.g., “gettimeofday()”

» the kernel allows the page containing the current time to be mapped read-only into user space

• Software: FlexSC: Exception-less system call, OSDI 2010

– Optimizing system call performance for large multi-core systems

– “FlexSC improves performance of Apache by up to 116%, MySQL by up to 40%, and 
BIND by up to 105% while requing no modifications to the applications



7
Readings

• LWN: Anatomy of a system call: part 1 and part 2

• LWN: On vsyscalls and the vDSO

• Linux Inside: system calls

• Linux Performance Analysis: New Tools and Old Secrets

https://lwn.net/Articles/604287/
https://lwn.net/Articles/604515/
https://lwn.net/Articles/446528/
https://0xax.gitbooks.io/linux-insides/content/SysCall/
https://www.usenix.org/conference/lisa14/conference-program/presentation/gregg


8
Today’s Agenda

• Memory allocation APIs

• Kernel module basics

• Data structures



9

• Two types of memory allocation functions are provided

– kmalloc(size, gfp_mask), kfree(addr)

– vmalloc(size), vfree(addr)

• gfp_mask is used to specify

– which types of pages can be allocated

– whether the allocator can wait for more memory to be free

• Frequently used gfp_mask

– GFP_KERNEL: a caller might sleep

– GFP_ATOMIC: a caller will not sleep → higher chance of failure



10
kmalloc(size, gfp_mask)

• Allocate virtually and physically contiguous memory

– where physically contiguous memory is necessary

– e.g., DMA, MMIO, performance in accessing

• The maximum allocatable size through one kmalloc() call is limited

– e.g., 4MB on x86 (arch dependent)



11
vmalloc(size)

• Allocate memory that is virtually contiguous, but not physically contiguous

• No size limit other than the amount of free RAM

– swapping is not supported for kernel memory

• Memory allocator might sleep to get more free memory

• Unit of allocation is a page (4KB)



12
Kernel Modules

• Modules are pieces of kernel code that can be dynamically loaded and unloaded at 
runtime

– No need for reboot ... 

• Appeared in Linux 1.2 (1995)

• Numerous Linux features can be compiled as modules

– Selection in the configuration .config file



13
Benefit of Kernel Modules

• No reboot → saves a lot of time when developing/debugging code

• No need to compile the entire kernel

• Save memory and CPU time by running on-demand

• No performance difference between module and built-in kernel code

• Help identifying buggy code

– e.g., identifying a buggy driver compiled as a module by selectively running them



14
Writing a Kernel Module

• Module is linked against the entire kernel

• Module can access all of the kernel global symbols

– EXPORT_SYMBOL(function or variable name)

• To avoid namespace pollution and involuntary reuse of variable names

– Put prefix of your module name to symbols:

» my_module_func_a()

» Use static if a symbol is not global

• Kernel symbols list are at /proc/kallsyms



15



16
Building a Kernel Module

• Source code of a module is out of the kernel source

• Put a Makefile in the module source directory

• After compilation, the compiled module is the file with .ko extension



17
Launching a Kernel Module

• Needs root privilege becauses you are executing kernel code

• Loading a kernel module with insmod / modprobe

– sudo insmod file.ko

– Module is loaded and init function is executed

• Note that a module is compiled against a specific kernel version and will not load on 
another kernel

– This check can be bypassed through a mechanism called “modversions” but it can be 
dangerous



18

• Remove the module with rmmod / modprobe –r

– sudo rmmod file

– sudo rmmod file.ko

– Module exit function is called before unloading

• make modules_install from the kernel sources installs the modules in a standard 
location

– /lib/modules/<kernel version>/ ...



19

• Modprobe

– sudo modprobe <module name>  no need to give the file name

– Contrary to insmod, modprobe handles module dependencies

» dependency list generated in /lib/modules/<kernel version>/modules.dep

– Unload a module using modprobe –r <module name>

– Sunc installed modules can be loaded automatically at boot time by editing /etc/modules or 
the files in /etc/modprobe.d



20
Module Parameters

• command line arguments for module



21
Module metadata

• modinfo [module name | file name]

• lsmod: list currently running modules



22
Further Readings

• The Linux Kernel Module Programming Guide

• Passing Command Line Arguments to a Module

• Building External Modules



23

• Kernel Data Structure!



24

• Essential kernel data structures

– list, hash table, red-black tree, ...

• Design patterns of kernel data structures

– Embedding its pointer structure

– Too box rather than a complete solution for generic service

– Caller locks (not thread-safe)



25
Singly Linked List (CS101)

struct my_list_element {

    void *data; /* pointer to generic data */

    struct my_list_element *next;

}

• Starts from HEAD and terminates at NULL

• Traverses forward only

• When empty, HEAD is NULL



26
Doubly Linked List (CS101)

• Starts from HEAD and terminates at NULL

• Traverses forward and backward

• When empty, HEAD is NULL



27
Circular Linked List (CS1010

• Starts from HEAD and terminates at HEAD

• When empty, HEAD is NULL

• Easy to insert a new element at the end of a list



28
Linux Linked List

• Starts from HEAD and terminates at HEAD

• When empty, HEAD is not NULL

– prev and next of HEAD  points to HEAD

– HEAD is a sentinel node

• Easy to insert a new element at the end of a list

• There is no exceptional case to handle NULL



29
Linux Linked List

• A circular doubly linked list

• Tow differences from the typical design

– Embedding a linked list node in the structure

– Using a sentinel node as a list header

• linux/include/linux/list.h



30

• “struct list_head” is the key data structure

• ”list_head” is embedded in the data structure

• Start of a list is also “list_head”, my_car_list → sentinel node



31
Getting Data from list_head

• How to get the pointer of “struct car” from its list

– use list_entry(ptr, type, member)

– just a pointer arithmetic



32
Defining a List

• Initializing a list_head

– list_head->prev = &list_head

– list_head->next = &list_head



33
Manipulating a List: O(1)



34
Iterating over a List: O(n)



35

Backward iteration? → list_for_each_entry_reverse(pos, head, member)



36
Iterating while Removing Entries

• For each iteration, next points to the next node

– Can safely remove the current node

– Otherwise, can cause a use-after-free bug



37
Linked List Usage in the Kernel

• Kernel code makes extensive use of linked lists

– a list of threads under the same parent PID

– a list of superblocks of a file systems

– ...



38
Linux Hash Table

• A simple fixed-size open chaining hash table

– The size of bucket array is fixed at initialization as a 2^N

– Each bucket has  a singly linked list to resolve hash collision

– Time Complexity: O(1)



39



40
Linux Hash Table API



41



42



43
Linux Hash Table Examples

• Transparent hugepages

– finds physically consecutive 4KB pages

– rempas consecutive 4KB pages to a 2MB page (huge page)

– saves TLB entries and improves memory access performance by reducing TLB miss

– maintains per-process memory structure, “struct mm_struct”



44



45



46



47



48



49


	Slide 1: CS 5264/4224; ECE 5414/4414 (Advanced) Linux Kernel Programming Lecture 4  Kernel Modules & Data Structures
	Slide 2: Ex0 Kernel Compilation Time CDF
	Slide 3
	Slide 4
	Slide 5: Why Not to Add a New Syscall
	Slide 6: Improving Syscall Performance
	Slide 7: Readings
	Slide 8: Today’s Agenda
	Slide 9
	Slide 10: kmalloc(size, gfp_mask)
	Slide 11: vmalloc(size)
	Slide 12: Kernel Modules
	Slide 13: Benefit of Kernel Modules
	Slide 14: Writing a Kernel Module
	Slide 15
	Slide 16: Building a Kernel Module
	Slide 17: Launching a Kernel Module
	Slide 18
	Slide 19
	Slide 20: Module Parameters
	Slide 21: Module metadata
	Slide 22: Further Readings
	Slide 23
	Slide 24
	Slide 25: Singly Linked List (CS101)
	Slide 26: Doubly Linked List (CS101)
	Slide 27: Circular Linked List (CS1010
	Slide 28: Linux Linked List
	Slide 29: Linux Linked List
	Slide 30
	Slide 31: Getting Data from list_head
	Slide 32: Defining a List
	Slide 33: Manipulating a List: O(1)
	Slide 34: Iterating over a List: O(n)
	Slide 35
	Slide 36: Iterating while Removing Entries
	Slide 37: Linked List Usage in the Kernel
	Slide 38: Linux Hash Table
	Slide 39
	Slide 40: Linux Hash Table API
	Slide 41
	Slide 42
	Slide 43: Linux Hash Table Examples
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

