
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 5

Kernel Data Structures & Debugging

February 6, 2025

Huaicheng Li

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

2
Improving Syscall Performance

• System call performance is critical in many applications

– Web server: select(), poll()

– Game engine: gettimeofday()

• Hardware: add a new fast system call instruction

– int 0x80 → syscall

• Software: vDSO (virtual dynamically linked shared object)

– A kernel mechanism for exporting a kernel space routines to user space applications

– No context switching overhead

– e.g., “gettimeofday()”

» the kernel allows the page containing the current time to be mapped read-only into user space

• Software: FlexSC: Exception-less system call, OSDI 2010

– Optimizing system call performance for large multi-core systems

– “FlexSC improves performance of Apache by up to 116%, MySQL by up to 40%, and
BIND by up to 105% while requing no modifications to the applications

3
Readings

• LWN: Anatomy of a system call: part 1 and part 2

• LWN: On vsyscalls and the vDSO

• Linux Inside: system calls

• Linux Performance Analysis: New Tools and Old Secrets

https://lwn.net/Articles/604287/
https://lwn.net/Articles/604515/
https://lwn.net/Articles/446528/
https://0xax.gitbooks.io/linux-insides/content/SysCall/
https://www.usenix.org/conference/lisa14/conference-program/presentation/gregg

4
Today’s Agenda

• Data structures

• Kernel debugging

5
Linux Linked List

• Starts from HEAD and terminates at HEAD

• When empty, HEAD is not NULL

– prev and next of HEAD points to HEAD

– HEAD is a sentinel node

• Easy to insert a new element at the end of a list

• There is no exceptional case to handle NULL

6
Manipulating a List: O(1)

7
Iterating over a List: O(n)

8

Backward iteration? → list_for_each_entry_reverse(pos, head, member)

9
Linux Hash Table

• A simple fixed-size open chaining hash table

– The size of bucket array is fixed at initialization as a 2^N

– Each bucket has a singly linked list to resolve hash collision

– Time Complexity: O(1)

10

11
Linux Hash Table API

12

13

14
Linux Hash Table Examples

• Transparent hugepages

– finds physically consecutive 4KB pages

– rempas consecutive 4KB pages to a 2MB page (huge page)

– saves TLB entries and improves memory access performance by reducing TLB miss

– maintains per-process memory structure, “struct mm_struct”

15

16

17

18
Binary Tree

• Nodes have zero, one, or two children

• Root has no parent, other nodes have one

19
Binary Search Tree

• Left children < parent

• Right children > parent

• Search and ordered traversal are efficient

20
Balanced Binary Search Tree

• Depth of all leaves differs by at most one

• Puts a boundary on the worst-case operations

21
Tree Basics: Red-Black Tree

• A type of self-balancing binary search tree

– Nodes: red or black

– Leaves: black, no data

• The following properties are maintained during tree modifications:

– The path from a node to one of its leaves contains the same number of black nodes as the
shortest path to nay of its other leaves

• Fast search, insert, delete operations: O(log N)

22
Linux Red-Black Tree (or rbtree)

23

24

25

26
Linux Red-Black Tree Example

• Completely Fair Scheduling (CFS)

– Default task scheduler in Linux for a long time ...

– Each task has “vruntime”, which presents how much time a task has run

– CFS always picks a process with the smallest “vruntime” for fairness

– Per-task “vruntime” structure is maintained in a rbtree

27

28

29

30

31
Kernel Debugging

• tools, techniques, and tricks

32
Kernel Development Cycle

• Write code → build kernel/modules → Deploy → Test and debug

• Debugging is the real bottleneck even for experienced kernel developers due to
limitations in kernel debugging

• It is important to be familiar with kernel debugging techniques to save time

33
Kernel Debugging Techniques

• Print debug message: printk()

• Assert your code: BUG_ON(c), WARN_ON(c)

• Analyze kernel panic message

• Debug with QEMU/gdb

34
Print Debugging Message: printk()

• Similar to printf() in C library

• Need to specify a log level (the default level is KERN_WARNING or KERN_ERR)

35

• Prints out only messages whose log level is higher than the current

• The kernel message buffer is a fixed-size circular buffer.

• If the buffer fills up, it wraps around and you can lose messages

• Increasing the buffer size would help a bit

– e.g., add “log_buf_len=1M” to kernel boot parameter (2^N)

36

• Support additional specifiers

• Reference: How to get printk format specifiers right

https://github.com/torvalds/linux/blob/master/Documentation/core-api/printk-formats.rst

37
BUG_ON(), WARN_ON()

• Similar to assert(c) in userspace

• BUG_ON(c)

– if c is false, kernel panics with its call stack

• WARN_ON(c)

– if c is false, kernel prints out its call stack and keeps running

38
Kernel Panic Message

39
Analyze Kernel Panic Message

• Find where sd_remove() is, e.g., in linux/driver/scsi/sd.c

• Load its object file with gdb

• Use gdb to identify the offending code, “list *(function+offset)”

40
QEMU

• Full system emulator: emulates and entire virtual machine

– Using a software model for the CPU, memory, devices

– Emulation is slow ...

• Can be used in conjunction with hardware virtualization extensions to provide high
performance virtualization

– KVM: in-kernel support for virtualization + extensions to QEMU

41
GDB Server

• Originally used to debug a program executing on a remote machine

• for example, when GDB is not available on that remote machine

– e.g., low performance embedded systems

42
Debugging with QEMU/GDB

• Linux kernel runs in a virtual machine (KVM or emulated on QEMU)

• Hardware devices are emulated with QEMU

• GDB server runs at QEMU, emulated VM, so it can fully control Linux kernel running
on QEMU

• Powerful for debugging and code exploration ...

43
Two Ways for Kernel Debugging

• Running minimal Linux dis

– Use a “debootstrap”-ed distribution

– Root file system is a directory in a host system

– Limited functional in userspace applications

• Running full Linux distro

– Use a QEMU disk image (qcow2, or raw disk)

– Root file system is on the disk image

– Able to run full userspace applications

44
Build Kernel for QEMU Debugging

• Rebuild kernel with gdb script, 9p, and virtio enabled

• Following should be built-in not built as a kernel module

45

46
Debootstrap Linux Distribution

• install-debian.sh

47
QEMU Options for Kernel Debugging

• “-kernel vmlinux”, path to the vmlinux of the kernel to debug

• “-s”: enable the GDB server and open a port 1234

• “-S”: (optional) pause on the first kernel instruction waiting for a GDB client connection
to continue

$ cd /path/to/linux-build

$ gdb vmlinux

(gdb) target remote :1234

48
Tips

• Disable optimizations ...

• Terminate QEMU with “halt” to avoid corrupting the disk image

• Run QEMU with KVM, “enable-kvm” (only for Linux host)

49

50
Other Tools

• ftrace

• kprobes

• dump_stack()

• ...

51
Further Readings

• Debugging by printing

• Kernel Debugging Tricks

• Kernel Debugging Tips

• Debugging kernel and modules via gdb

• gdb Cheatsheet

• Speed up your kernel development cycle with QEMU

• Migrate a VirtualBox Disk Image (.vdi) to a QEMU Image

http://elinux.org/Debugging_by_printing
https://wiki.ubuntu.com/Kernel/KernelDebuggingTricks
http://www.elinux.org/Kernel_Debugging_Tips
https://www.kernel.org/doc/html/v5.19/dev-tools/gdb-kernel-debugging.html
https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf
https://kernel-recipes.org/en/2015/talks/speed-up-your-kernel-development-cycle-with-qemu/
https://www.agix.com.au/migrate-a-virtualbox-disk-image-vdi-to-a-qemu-image-img/

52

53
Radix Tree (or tries)

• The key at each node is compared chunk-of-bits by chunk-of-bits

• All descendents of a node have a common prefix

• Values are only associated with leaves

• See Wiki

https://en.wikipedia.org/wiki/Trie

54
Linux Radix Tree

• Mapping between “unsigned long” and “void *”

• Each node has 64 slots

• Slots are indexed by a 6-bit portion of the key

• Source: LWN

• At leaves, a slot points to an address of data

• At non-leaf nodes, a slot points to another node in a lower layer

• Other metadata is also stored at each node: tags, parent pointer, offset in
parent, etc.

• tags: specific bits can be set on items in the trees (0, 1, 2)

– e.g., set the status of memory pages, which are dirty or under writeback

https://lwn.net/Articles/175432/

55
Linux Radix Tree API

56

57

58

• When failure to insert an item into a radix tree can be a significant problem, use
“radix_tree_preload”

59

60

61
Linux Radix Tree Example

• The most important user is the page cache

– Every time, we look up a page in a file, we consult the radix tree to see if the page is
already in the cache

– Use tags to maintain the status of the page, e.g.,

» PAGECACHE_TAG_DIRTY

» PAGECACHE_TAG_WRITEBACK

62

63

64
XArray

• A nicer API wrapper for linux radix tree (merged to 4.19)

• An automatically resizing array of pointers indexed by an unsigned long

• Entries may have up to three tag bits (get/set/clear)

• You can iterate over entires

• You can extract a batch of entires

• Embeds a spinlock

• Loads are store-free using RCU

• Reference: XArray API reference

https://www.kernel.org/doc/html/latest/core-api/xarray.html

65
XArray API

66

67

68
Linux bitmap

• A bit array that consumes one or more “unsigned long”

• Used in many places in the kernel

– a set of online/offline processors for ssytems which support hot-plug cpu

– a set of allocated IRQs during initialization of the Linux kernel

69

70

71
Linux bitmap Example

• Free inode/disk block management in ext2/3/4 file system

72

	Slide 1: CS 5264/4224; ECE 5414/4414 (Advanced) Linux Kernel Programming Lecture 5 Kernel Data Structures & Debugging
	Slide 2: Improving Syscall Performance
	Slide 3: Readings
	Slide 4: Today’s Agenda
	Slide 5: Linux Linked List
	Slide 6: Manipulating a List: O(1)
	Slide 7: Iterating over a List: O(n)
	Slide 8
	Slide 9: Linux Hash Table
	Slide 10
	Slide 11: Linux Hash Table API
	Slide 12
	Slide 13
	Slide 14: Linux Hash Table Examples
	Slide 15
	Slide 16
	Slide 17
	Slide 18: Binary Tree
	Slide 19: Binary Search Tree
	Slide 20: Balanced Binary Search Tree
	Slide 21: Tree Basics: Red-Black Tree
	Slide 22: Linux Red-Black Tree (or rbtree)
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Linux Red-Black Tree Example
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31: Kernel Debugging
	Slide 32: Kernel Development Cycle
	Slide 33: Kernel Debugging Techniques
	Slide 34: Print Debugging Message: printk()
	Slide 35
	Slide 36
	Slide 37: BUG_ON(), WARN_ON()
	Slide 38: Kernel Panic Message
	Slide 39: Analyze Kernel Panic Message
	Slide 40: QEMU
	Slide 41: GDB Server
	Slide 42: Debugging with QEMU/GDB
	Slide 43: Two Ways for Kernel Debugging
	Slide 44: Build Kernel for QEMU Debugging
	Slide 45
	Slide 46: Debootstrap Linux Distribution
	Slide 47: QEMU Options for Kernel Debugging
	Slide 48: Tips
	Slide 49
	Slide 50: Other Tools
	Slide 51: Further Readings
	Slide 52
	Slide 53: Radix Tree (or tries)
	Slide 54: Linux Radix Tree
	Slide 55: Linux Radix Tree API
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61: Linux Radix Tree Example
	Slide 62
	Slide 63
	Slide 64: XArray
	Slide 65: XArray API
	Slide 66
	Slide 67
	Slide 68: Linux bitmap
	Slide 69
	Slide 70
	Slide 71: Linux bitmap Example
	Slide 72

