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Improving Syscall Performance

• System call performance is critical in many applications

– Web server: select(), poll()

– Game engine: gettimeofday()

• Hardware: add a new fast system call instruction

– int 0x80 → syscall

• Software: vDSO (virtual dynamically linked shared object)

– A kernel mechanism for exporting a kernel space routines to user space applications

– No context switching overhead

– e.g., “gettimeofday()”

» the kernel allows the page containing the current time to be mapped read-only into user space

• Software: FlexSC: Exception-less system call, OSDI 2010

– Optimizing system call performance for large multi-core systems

– “FlexSC improves performance of Apache by up to 116%, MySQL by up to 40%, and 
BIND by up to 105% while requing no modifications to the applications
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Readings

• LWN: Anatomy of a system call: part 1 and part 2

• LWN: On vsyscalls and the vDSO

• Linux Inside: system calls

• Linux Performance Analysis: New Tools and Old Secrets

https://lwn.net/Articles/604287/
https://lwn.net/Articles/604515/
https://lwn.net/Articles/446528/
https://0xax.gitbooks.io/linux-insides/content/SysCall/
https://www.usenix.org/conference/lisa14/conference-program/presentation/gregg
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Today’s Agenda

• Data structures

• Kernel debugging
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Linux Linked List

• Starts from HEAD and terminates at HEAD

• When empty, HEAD is not NULL

– prev and next of HEAD  points to HEAD

– HEAD is a sentinel node

• Easy to insert a new element at the end of a list

• There is no exceptional case to handle NULL
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Manipulating a List: O(1)
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Iterating over a List: O(n)
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Backward iteration? → list_for_each_entry_reverse(pos, head, member)
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Linux Hash Table

• A simple fixed-size open chaining hash table

– The size of bucket array is fixed at initialization as a 2^N

– Each bucket has  a singly linked list to resolve hash collision

– Time Complexity: O(1)
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Linux Hash Table API
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Linux Hash Table Examples

• Transparent hugepages

– finds physically consecutive 4KB pages

– rempas consecutive 4KB pages to a 2MB page (huge page)

– saves TLB entries and improves memory access performance by reducing TLB miss

– maintains per-process memory structure, “struct mm_struct”
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Binary Tree

• Nodes have zero, one, or two children

• Root has no parent, other nodes have one
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Binary Search Tree

• Left children < parent

• Right children > parent

• Search and ordered traversal are efficient
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Balanced Binary Search Tree

• Depth of all leaves differs by at most one

• Puts a boundary on the worst-case operations
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Tree Basics: Red-Black Tree

• A type of self-balancing binary search tree

– Nodes: red or black

– Leaves: black, no data

• The following properties are maintained during tree modifications:

– The path from a node to one of its leaves contains the same number of black nodes as the 
shortest path to nay of its other leaves

• Fast search, insert, delete operations: O(log N)
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Linux Red-Black Tree (or rbtree)
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Linux Red-Black Tree Example

• Completely Fair Scheduling (CFS)

– Default task scheduler in Linux for a long time ...

– Each task has “vruntime”, which presents how much time a task has run

– CFS always picks a process with the smallest “vruntime” for fairness

– Per-task “vruntime” structure is maintained in a rbtree 
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Kernel Debugging

• tools, techniques, and tricks
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Kernel Development Cycle

• Write code → build kernel/modules → Deploy → Test and debug

• Debugging is the real bottleneck even for experienced kernel developers due to 
limitations in kernel debugging

• It is important to be familiar with kernel debugging techniques to save time
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Kernel Debugging Techniques

• Print debug message: printk()

• Assert your code: BUG_ON(c), WARN_ON(c)

• Analyze kernel panic message

• Debug with QEMU/gdb
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Print Debugging Message: printk()

• Similar to printf() in C library

• Need to specify a log level (the default level is KERN_WARNING or KERN_ERR)
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• Prints out only messages whose log level is higher than the current

• The kernel message buffer is a fixed-size circular buffer.

• If the buffer fills up, it wraps around and you can lose messages 

• Increasing the buffer size would help a bit

– e.g., add “log_buf_len=1M” to kernel boot parameter (2^N)
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• Support additional specifiers

• Reference: How to get printk format specifiers right

https://github.com/torvalds/linux/blob/master/Documentation/core-api/printk-formats.rst
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BUG_ON(), WARN_ON()

• Similar to assert(c) in userspace

• BUG_ON(c)

– if c is false, kernel panics with its call stack

• WARN_ON(c)

– if c is false, kernel prints out its call stack and keeps running
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Kernel Panic Message
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Analyze Kernel Panic Message

• Find where sd_remove() is, e.g., in linux/driver/scsi/sd.c

• Load its object file with gdb

• Use gdb to identify the offending code, “list *(function+offset)”



40
QEMU

• Full system emulator: emulates and entire virtual machine

– Using a software model for the CPU, memory, devices

– Emulation is slow ...

• Can be used in conjunction with hardware virtualization extensions to provide high 
performance virtualization

– KVM: in-kernel support for virtualization + extensions to QEMU
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GDB Server

• Originally used to debug a program executing on a remote machine

• for example, when GDB is not available on that remote machine

– e.g., low performance embedded systems
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Debugging with QEMU/GDB

• Linux kernel runs in a virtual machine (KVM or emulated on QEMU)

• Hardware devices are emulated with QEMU

• GDB server runs at QEMU, emulated VM, so it can fully control Linux kernel running 
on QEMU

• Powerful for debugging and code exploration ...
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Two Ways for Kernel Debugging

• Running minimal Linux dis

– Use a “debootstrap”-ed distribution

– Root file system is a directory in a host system

– Limited functional in userspace applications

• Running full Linux distro

– Use a QEMU disk image (qcow2, or raw disk)

– Root file system is on the disk image

– Able to run full userspace applications
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Build Kernel for QEMU Debugging

• Rebuild kernel with gdb script, 9p, and virtio enabled

• Following should be built-in not built as a kernel module
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Debootstrap Linux Distribution

• install-debian.sh
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QEMU Options for Kernel Debugging

• “-kernel vmlinux”, path to the vmlinux of the kernel to debug

• “-s”: enable the GDB server and open a port 1234

• “-S”: (optional) pause on the first kernel instruction waiting for a GDB client connection 
to continue

$ cd /path/to/linux-build

$ gdb vmlinux

(gdb) target remote :1234
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Tips

• Disable optimizations ...

• Terminate QEMU with “halt” to avoid corrupting the disk image

• Run QEMU with KVM,  “enable-kvm” (only for Linux host)
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Other Tools

• ftrace

• kprobes

• dump_stack()

• ...
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Further Readings

• Debugging by printing

• Kernel Debugging Tricks

• Kernel Debugging Tips

• Debugging kernel and modules via gdb

• gdb Cheatsheet

• Speed up your kernel development cycle with QEMU

• Migrate a VirtualBox Disk Image (.vdi) to a QEMU Image

http://elinux.org/Debugging_by_printing
https://wiki.ubuntu.com/Kernel/KernelDebuggingTricks
http://www.elinux.org/Kernel_Debugging_Tips
https://www.kernel.org/doc/html/v5.19/dev-tools/gdb-kernel-debugging.html
https://cs.brown.edu/courses/cs033/docs/guides/gdb.pdf
https://kernel-recipes.org/en/2015/talks/speed-up-your-kernel-development-cycle-with-qemu/
https://www.agix.com.au/migrate-a-virtualbox-disk-image-vdi-to-a-qemu-image-img/
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Radix Tree (or tries)

• The key at each node is compared chunk-of-bits by chunk-of-bits

• All descendents of a node have a common prefix

• Values are only associated with leaves

• See Wiki

  

   

   

  

  

   

  

      

  

    

  

  

   

 

 

 

  

 

https://en.wikipedia.org/wiki/Trie
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Linux Radix Tree

• Mapping between “unsigned long” and “void *”

• Each node has 64 slots

• Slots are indexed by a 6-bit portion of the key

• Source: LWN

• At leaves, a slot points to an address of data

• At non-leaf nodes, a slot points to another node in a lower layer

• Other metadata is also stored at each node: tags, parent pointer, offset in 
parent, etc.

• tags: specific bits can be set on items in the trees (0, 1, 2)

– e.g., set the status of memory pages, which are dirty or under writeback

https://lwn.net/Articles/175432/
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Linux Radix Tree API
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• When failure to insert an item into a radix tree can be a significant problem, use 
“radix_tree_preload”
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Linux Radix Tree Example

• The most important user is the page cache

– Every time, we look up a page in a file, we consult the radix tree to see if the page is 
already in the cache

– Use tags to maintain the status of the page, e.g.,

» PAGECACHE_TAG_DIRTY

» PAGECACHE_TAG_WRITEBACK
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XArray

• A nicer API wrapper for linux radix tree (merged to 4.19)

• An automatically resizing array of pointers indexed by an unsigned long

• Entries may have up to three tag bits (get/set/clear)

• You can iterate over entires

• You can extract a batch of entires

• Embeds a spinlock

• Loads are store-free using RCU

• Reference: XArray API reference 

https://www.kernel.org/doc/html/latest/core-api/xarray.html
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XArray API
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Linux bitmap

• A bit array that consumes one or more “unsigned long”

• Used in many places in the kernel

– a set of online/offline processors for ssytems which support hot-plug cpu 

– a set of allocated IRQs during initialization of the Linux kernel
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Linux bitmap Example

• Free inode/disk block management in ext2/3/4 file system
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