CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming
Lecture 6

Process Management

February 13, 2025
Huaicheng Li

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

Agenda

* Process

* Linux PCB: task_struct
* Process creation

* Threads

 Kernel thread API

Process

* A program currently executing in the system

* A process consists of
— CPU registers
— program code (i.e, text section)
— state of memory segments (data, stack, etc)
— kernel resources (open files, pending signals, etc)

— threads
* Virtualization of processor and memory

Process from User-space View
- pid_t fork(void)
— create a new process by duplicating the calling process
* int execv(const char *path, const char *arg, ...)
— replaces the current process image with a new process image
- pid_t wait(int *wstatus)
— wait for state changes in a child of the calling process
— the child terminated; the child was stopped or resumed by a signal

fork() Example

int main(void)
{
pid_t pid;
int wstatus, ret;
pid = fork(), /* create a child process */
switch(pid) {
case -1: /* fork error */
perroxr("fork");
return EXIT_FAILURE;

case 0: /* pid = @: new born child process */
sleep(1),;
printf("Noooooooo!\n");
exit(99);

default: /* pid = pid of child: parent process */
printf ("I am your father!: your pid is %d\n", pid);
break;

}
/* A parent wait until the child terminates */

ret = waitpid(pid, &wstatus, 0);
if(ret == -1)
return EXIT_FAILURE;
printf("Child exit status: %d\n", WEXITSTATUS(wstatus));

Process Descriptor: task struct

/* 1inux/include/1linux/sched.h */
struct task_struct {
struct thread_info thread_info; /#* thread information */

volatile long __state; /* task status: TASK RUNNING, etc */
void *stack; /* stack of this task */

int prio; /* task priority */

struct sched_entity se; /* information for processor scheduler */
cpumask_t cpus_mask; /* bitmask of CPUs allowed to execute */
struct list_head tasks; /* a global task list */

struct mm_struct *mm,; /* memory mapping of this task */

struct task_struct *parent; /* parent task */

struct list_head children; /* a 1ist of child tasks */

struct list_head sibling; /* siblings of the same parent */

struct files_struct *files; /* open file information */

struct signal_struct *signal; /* signal handlers */

/E L0 *

/* NOTE: In Linux kernel, process and task are interchangably used. */
}, /¥ TODO: Let's check ‘pstree’ output. */

More about task struct

» task_struct is dynamically allocated at heap b/c of potential exploit when overflowing
the kernel stack

- For efficient access to current task_struct, kernel maintains per-CPU variable, named
“current_task”

— Use “current” to get “current_task”

/* 1linux/arch/x86/include/asm/current.h */
DECLARE_PER_CPU(struct task struct *, current_task);
static __always_inline struct task_struct *get_current(void)

{

return this_cpu_read_stable(current_task);

}

#define current get_current() /* TODO: Let's check how ‘current’ is used. */

PID: pid t

* Maximum is 32768 (int)
» Can be increased to 4 million
* Wraps around when max reached

Process Status: task->_state
« TASK_RUNNING

— A task is runnable (running or in a per-CPU scheduler run queue)

— A task could be in user- or kernel- space

TASK_INTRRUPTIBLE

— Process is sleeping waiting for some condition

— Switched to TASK_RUNNING when the waiting condition becomes true or a signal is
received

TASK_UNINTERRUPTIBLE

— Same as TASK_INTERRUPTIBLE, but doesn’t wake up on signal
_ TASK_TRACED

— Traced by another process (e.g.,, GDB)
_ TASK_STOPPED

— Not running nor waiting, result of the reception of some signals (e.g.,, SIGSTOP) to pause
the process

Task is
created

Event occurs,
Task wakes up

Task is scheduled to run

*

Task is preempted

TASK INTERRUPTIBLE

TASK _UNINTERRUPTIBLE

(waiting)

exits

Task sleeps
for an event

10

Producer-Consumer Example

* Producer

— generate an event and wake up a consumer
- Consumer

— check if there is an event

— if so, process all pending events in the list

— otherwise, sleep until the producer wakes the consumer up

11

Sleeping in the Kernel

Producer task:

901 spin_lock(&list_lock);

P02 1ist_add_tail(&list_head, new_event); /* append an event to the list */
003 spin_unlock(&list_lock);

004 wake_up_process(consumer_task); /* and wake up the consumer task */

Consumer task:

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

set_current_state(TASK_INTERRUPTIBLE); /* set status to TASK _INTERUPTIBLE */
spin_lock(&list_lock);

if(list_empty(&list_head)) { /* 1f there is no item in the 1ist */
spin_unlock(&list_lock);
schedule(); /* sleep until the producer task wakes this */

spin_lock(&list_lock); /* this task is waken up by the producer */

}
set_current_state(TASK_RUNNING); /* change status to TASK_RUNNING */

list_for_each(pos, list_head) {
list_del(&pos)
/* process an item */
VA V4

}

spin_unlock(&list_lock);

12

Process Context

» The kernel can execute in a process context or interrupt context

— "current” is meaningful only when the kernel executes in a process context such as
executing a system call

— Interrupt has its own context

13

Process Family Tree

- “init” process is the root of all processes
— Launched by the kernel as the last step of the boot process

— Reads the system “initscripts” and executes more programs, such as daemons, eventually
completing the booting process

— |ts PID is 1

— Its task_struct is a global variable, named “init_task™ (linux/init/init_task.c)

14

21:15
init—

$ pstree
—apache2
—collectl

—Cxon

—dbus -daemon

—6* [getty]

—irqgbalance

—1xcfs 6*[{1xcfs}]

—mdadm

—memcached 5*[{memcached}]
—mosh-server—bash——tmux: client
—mpssd——10* [{mpssd}]

—netserver
—nullmailer-send——smtp
—rpc.idmapd

—rpc.mountd

—rpc.statd

—rpcbind
—rsyslogd—-3*[{rsyslogd}]
—sshd——sshd——sshd——bash—pstree
—systemd-logind

—systemd-udevd

—tmux: server——bash——vim——bash

2* [apache2—26* [{apache2}</mark>

15

16

Process Family Tree

» “fork” based process creation
— parent task: current->parent
— children tasks: current->children
— sibling under the parent: current->siblings
— list of all tasks in the system: current->tasks
— macros for easy exploration:

» next_task(t), for_each_process(t)

* Check out the implementation!

17

Process Creation

* Linux does not implement creating tasks from nothing (spawn or CreateProcess)
- fork() and exec()

— fork() creates a child, a copy of the parent process
» Only PID, PPID and some resources/stats differ

— exec() loads a new executable into a process address space

+ Q: How does Linux efficiently crate a copy of the parent process?

18

Copy-on-Write (CoW)

« On fork(), Linux duplicates the parent page tables and creates a new process
descriptor
— Change page table access bits to read-only

— When a page is accessed for write operations, that page is copied and the corresponding
page table entry is changed to read-write

- fork() is fast by delaying or altogether prevent copying of data
« fork() saves memory by sharing read-only pages among descendants

19

Forking

- fork() is implemented by the “clone()” system call
* kernel_clone() calls copy_process() and starts the new task
* copy_process()

— dup_task_struct(), which duplicates kernel stack, task_struct, and thread_info
— Check that we do not overflow the process number limit
— Various members of the task_struct are cleared
— Calls sched_fork() to set the child state set to TASK_NEW
— Copies parent information such as files, signal handlers, etc.
— Gets a new PID using alloc(pid)
— Returns a pointer to the new child task_struct
* Finally, wake_up_new_task()
— The new child task becomes TASK_RUNNING

20

Thread

* Threads are concurrent flows of execution belong to the same process sharing the
address space

Execution Address
flow space
|
Time \‘ *
A B) C D
\J
e -@ QO@
1 process, 1 process,
1 thread 3 threads

Thread

* There is no concept of a thread in Linux kernel
— No scheduling for threads

* Linux implements all threads as standard processes

— A thread is just another process sharing some information with other processes so each
thread has its own “task_struct”

— Create through clone() system call with specific flags indicating sharing
— clone(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, 0);

22

Kernel Thread >

« Use to perform background operations in the kernel

Very similar to sue space threads

— They are schedulable entities (lie regular processes)

However, they do not have their own addr space

— task_struct->mm is NULL

— why?
Kernel threads are all forked from the “kthreadd” thread (PID 2)
Use cases (ps —ppid 2)

— Work queues (kworker)

— Load balancing among CPUs (migration)

Kernel Thread

* To create a kernel thread, use “kthread_create()”

* When created through kthread_create(), the thread is not in a runnable state
* Need to call wake_up_process() or use kthread_run()

» Other threads can asks a kernel thread to stop using kthread_stop()

— A kernel thread should check kthread_should _stop() to decide to continue or stop

24

/**
* kthread create - create a kthread on the current node
* @threadfn: the function to run in the thread
* @data: data pointer for @threadfn()

* @namefmt: printf-style format string for the thread name

* @...: arguments for @namefmt.
*

* This macro will create a kthread on the current node, leaving it in
* the stopped state.
*/

#define kthread_create(threadfn, data, namefmt, arg...)

/**

* wake_up_process - Wake up a specific process
* @p: The process to be woken up.
*
* Attempt to wake up the nominated process and move it to the set of runnable
* processes.
*
* Return: 1 if the process was woken up, @ if it was already running.
*/
int wake_up_process(struct task_struct *p);

25

/**
* kthread_run - create and wake a thread.
* @threadfn: the function to run until signal_pending(current).

* @data: data ptr for @threadfn.

* @namefmt: printf-style name for the thread.
*

* Description: Convenient wrapper for kthread_create() followed by
* wake_up_process(). Returns the kthread or ERR_PTR(-ENOMEM) .
*/

#define kthread_run(threadfn, data, namefmt, ...)

/**

* kthread_stop - stop a thread created by kthread create().
* @k: thread created by kthread create().
*
* Sets kthread_should_stop() for @k to return true, wakes it, and
* waits for it to exit. If threadfn() may call do_exit() itself,
* the caller must ensure task_struct can't go away.
*/
int kthread_stop(struct task_struct *k);

26

Kernel Thread Example

- Ext4 file system uses a kernel thread to finish file system initialization in the background

/* 1linux/fs/extd4/super.c */
static int ext4_run_lazyinit_thread(void)
{
ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
extd4_li info, "extdlazyinit"),
/* ... */
}

static int ext4_lazyinit_thread(void *arg)
{
while (true) {
if (kthread_should_stop()) {
goto exit_thread;

}
/* L0

27

Example

static void ext4_destroy_lazyinit_thread(void)

{
/* ... */
kthread_stop(ext4_lazyinit_task) ;
}

static void __exit ext4_exit_fs(void)
{

ext4_destroy_lazyinit_thread() ;
/* .. */
}

module_exit(ext4 _exit_fs)

28

. . 29
Process Termination

* Termination on invoking the exit() system call
— Can be implicitly inserted by the compiler on return from main()
— sys_exit() calls do_exit()
» do_exit() (linux/kernel/exit.c)
— Cals exit_signals() which set the PF_EXITTInG flag in the task_struct

— Set the exit code in the exit_code field of the task_struct, which will be retrieved by the
parent

— Calls exit_mm() to release the mm_struct of the task
— Calls exit_sem(), if the process is queued waiting for a semaphore, dequeue here

— Calls exit_files() and exit_fs() to decrement the reference counter of file descriptors and
filesystem data, respectively. If a refenrece counter becomes zero, that object is no longer
in use by any process, and it is destroyed.

Calls exit_notify()
— Sends signals to parent
— Re-parent any of tis children to another thread in the thread group or the init process
— Set exit_state in task_struct to EXIT_ZOMBIE

Calls do_task_dead()
— Set the state to TASK_DEAD

— Calls schedule() to switch to a new process. Because process is now not schedulable,
do_exit() never returns.

At this point, what is left is task_structuy, thread_info, and kernel stack
This is required to provide information to the parent
— pid_t wait(int *wstatus)

After the parent retrieves the information, the remaining memory held by the process
is freed

Cleanup implemented in release_task() called from wait()

— Remove the task from the task list and release remaining resources

30

Zombie Process

* What happens if a parent task exits before its child?
* A child must be re-parented
- exit_notify() calls forget_original_parent(), that calls find_new_reaper()

— Returns the task_struct of another task in the thread group if it exists, other init

— Then, all the children of the currently dying task are re-parented to the reaper

31

Further Readings

« Kernel Korner — Sleeping in the Kernel

« Exploiting Stack Overflows in the Linux Kernel

32

https://www.linuxjournal.com/article/8144
https://jon.oberheide.org/blog/2010/11/29/exploiting-stack-overflows-in-the-linux-kernel/

Next Lecture

* Process scheduling!

33

34

35

36

	Slide 1: CS 5264/4224; ECE 5414/4414 (Advanced) Linux Kernel Programming Lecture 6 Process Management
	Slide 2: Agenda
	Slide 3: Process
	Slide 4: Process from User-space View
	Slide 5: fork() Example
	Slide 6: Process Descriptor: task_struct
	Slide 7: More about task_struct
	Slide 8: PID: pid_t
	Slide 9: Process Status: task->_state
	Slide 10
	Slide 11: Producer-Consumer Example
	Slide 12: Sleeping in the Kernel
	Slide 13: Process Context
	Slide 14: Process Family Tree
	Slide 15
	Slide 16
	Slide 17: Process Family Tree
	Slide 18: Process Creation
	Slide 19: Copy-on-Write (CoW)
	Slide 20: Forking
	Slide 21: Thread
	Slide 22: Thread
	Slide 23: Kernel Thread
	Slide 24: Kernel Thread
	Slide 25
	Slide 26
	Slide 27: Kernel Thread Example
	Slide 28: Example
	Slide 29: Process Termination
	Slide 30
	Slide 31: Zombie Process
	Slide 32: Further Readings
	Slide 33: Next Lecture
	Slide 34
	Slide 35
	Slide 36

