
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 6

Process Management

February 13, 2025

Huaicheng Li

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

2
Agenda

• Process

• Linux PCB: task_struct

• Process creation

• Threads

• Kernel thread API

3
Process

• A program currently executing in the system

• A process consists of

– CPU registers

– program code (i.e., text section)

– state of memory segments (data, stack, etc)

– kernel resources (open files, pending signals, etc)

– threads

• Virtualization of processor and memory

4
Process from User-space View

• pid_t fork(void)

– create a new process by duplicating the calling process

• int execv(const char *path, const char *arg, ...)

– replaces the current process image with a new process image

• pid_t wait(int *wstatus)

– wait for state changes in a child of the calling process

– the child terminated; the child was stopped or resumed by a signal

5
fork() Example

6
Process Descriptor: task_struct

7
More about task_struct

• task_struct is dynamically allocated at heap b/c of potential exploit when overflowing
the kernel stack

• For efficient access to current task_struct, kernel maintains per-CPU variable, named
“current_task”

– Use “current” to get “current_task”

8
PID: pid_t

• Maximum is 32768 (int)

• Can be increased to 4 million

• Wraps around when max reached

9
Process Status: task->_state

• TASK_RUNNING

– A task is runnable (running or in a per-CPU scheduler run queue)

– A task could be in user- or kernel- space

• TASK_INTRRUPTIBLE

– Process is sleeping waiting for some condition

– Switched to TASK_RUNNING when the waiting condition becomes true or a signal is
received

• TASK_UNINTERRUPTIBLE

– Same as TASK_INTERRUPTIBLE, but doesn’t wake up on signal

• __TASK_TRACED

– Traced by another process (e.g., GDB)

• __TASK_STOPPED

– Not running nor waiting, result of the reception of some signals (e.g., SIGSTOP) to pause
the process

10

11
Producer-Consumer Example

• Producer

– generate an event and wake up a consumer

• Consumer

– check if there is an event

– if so, process all pending events in the list

– otherwise, sleep until the producer wakes the consumer up

12
Sleeping in the Kernel

13
Process Context

• The kernel can execute in a process context or interrupt context

– ”current” is meaningful only when the kernel executes in a process context such as
executing a system call

– Interrupt has its own context

14
Process Family Tree

• “init” process is the root of all processes

– Launched by the kernel as the last step of the boot process

– Reads the system “initscripts” and executes more programs, such as daemons, eventually
completing the booting process

– Its PID is 1

– Its task_struct is a global variable, named “init_task” (linux/init/init_task.c)

15

16

17
Process Family Tree

• “fork” based process creation

– parent task: current->parent

– children tasks: current->children

– sibling under the parent: current->siblings

– list of all tasks in the system: current->tasks

– macros for easy exploration:

» next_task(t), for_each_process(t)

• Check out the implementation!

18
Process Creation

• Linux does not implement creating tasks from nothing (spawn or CreateProcess)

• fork() and exec()

– fork() creates a child, a copy of the parent process

» Only PID, PPID and some resources/stats differ

– exec() loads a new executable into a process address space

• Q: How does Linux efficiently crate a copy of the parent process?

19
Copy-on-Write (CoW)

• On fork(), Linux duplicates the parent page tables and creates a new process
descriptor

– Change page table access bits to read-only

– When a page is accessed for write operations, that page is copied and the corresponding
page table entry is changed to read-write

• fork() is fast by delaying or altogether prevent copying of data

• fork() saves memory by sharing read-only pages among descendants

20
Forking

• fork() is implemented by the “clone()” system call

• kernel_clone() calls copy_process() and starts the new task

• copy_process()

– dup_task_struct(), which duplicates kernel stack, task_struct, and thread_info

– Check that we do not overflow the process number limit

– Various members of the task_struct are cleared

– Calls sched_fork() to set the child state set to TASK_NEW

– Copies parent information such as files, signal handlers, etc.

– Gets a new PID using alloc(pid)

– Returns a pointer to the new child task_struct

• Finally, wake_up_new_task()

– The new child task becomes TASK_RUNNING

21
Thread

• Threads are concurrent flows of execution belong to the same process sharing the
address space

22
Thread

• There is no concept of a thread in Linux kernel

– No scheduling for threads

• Linux implements all threads as standard processes

– A thread is just another process sharing some information with other processes so each
thread has its own “task_struct”

– Create through clone() system call with specific flags indicating sharing

– clone(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, 0);

23
Kernel Thread

• Use to perform background operations in the kernel

• Very similar to sue space threads

– They are schedulable entities (lie regular processes)

• However, they do not have their own addr space

– task_struct->mm is NULL

– why?

• Kernel threads are all forked from the “kthreadd” thread (PID 2)

• Use cases (ps –ppid 2)

– Work queues (kworker)

– Load balancing among CPUs (migration)

– ...

24
Kernel Thread

• To create a kernel thread, use “kthread_create()”

• When created through kthread_create(), the thread is not in a runnable state

• Need to call wake_up_process() or use kthread_run()

• Other threads can asks a kernel thread to stop using kthread_stop()

– A kernel thread should check kthread_should _stop() to decide to continue or stop

25

26

27
Kernel Thread Example

• Ext4 file system uses a kernel thread to finish file system initialization in the background

28
Example

29
Process Termination

• Termination on invoking the exit() system call

– Can be implicitly inserted by the compiler on return from main()

– sys_exit() calls do_exit()

• do_exit() (linux/kernel/exit.c)

– Cals exit_signals() which set the PF_EXITTInG flag in the task_struct

– Set the exit code in the exit_code field of the task_struct, which will be retrieved by the
parent

– Calls exit_mm() to release the mm_struct of the task

– Calls exit_sem(), if the process is queued waiting for a semaphore, dequeue here

– Calls exit_files() and exit_fs() to decrement the reference counter of file descriptors and
filesystem data, respectively. If a refenrece counter becomes zero, that object is no longer
in use by any process, and it is destroyed.

30

• Calls exit_notify()

– Sends signals to parent

– Re-parent any of tis children to another thread in the thread group or the init process

– Set exit_state in task_struct to EXIT_ZOMBIE

• Calls do_task_dead()

– Set the state to TASK_DEAD

– Calls schedule() to switch to a new process. Because process is now not schedulable,
do_exit() never returns.

• At this point, what is left is task_structu, thread_info, and kernel stack

• This is required to provide information to the parent

– pid_t wait(int *wstatus)

• After the parent retrieves the information, the remaining memory held by the process
is freed

• Cleanup implemented in release_task() called from wait()

– Remove the task from the task list and release remaining resources

31
Zombie Process

• What happens if a parent task exits before its child?

• A child must be re-parented

• exit_notify() calls forget_original_parent(), that calls find_new_reaper()

– Returns the task_struct of another task in the thread group if it exists, other init

– Then, all the children of the currently dying task are re-parented to the reaper

32
Further Readings

• Kernel Korner – Sleeping in the Kernel

• Exploiting Stack Overflows in the Linux Kernel

https://www.linuxjournal.com/article/8144
https://jon.oberheide.org/blog/2010/11/29/exploiting-stack-overflows-in-the-linux-kernel/

33
Next Lecture

• Process scheduling!

34

35

36

	Slide 1: CS 5264/4224; ECE 5414/4414 (Advanced) Linux Kernel Programming Lecture 6 Process Management
	Slide 2: Agenda
	Slide 3: Process
	Slide 4: Process from User-space View
	Slide 5: fork() Example
	Slide 6: Process Descriptor: task_struct
	Slide 7: More about task_struct
	Slide 8: PID: pid_t
	Slide 9: Process Status: task->_state
	Slide 10
	Slide 11: Producer-Consumer Example
	Slide 12: Sleeping in the Kernel
	Slide 13: Process Context
	Slide 14: Process Family Tree
	Slide 15
	Slide 16
	Slide 17: Process Family Tree
	Slide 18: Process Creation
	Slide 19: Copy-on-Write (CoW)
	Slide 20: Forking
	Slide 21: Thread
	Slide 22: Thread
	Slide 23: Kernel Thread
	Slide 24: Kernel Thread
	Slide 25
	Slide 26
	Slide 27: Kernel Thread Example
	Slide 28: Example
	Slide 29: Process Termination
	Slide 30
	Slide 31: Zombie Process
	Slide 32: Further Readings
	Slide 33: Next Lecture
	Slide 34
	Slide 35
	Slide 36

