CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming
Lecture 7/

Process Scheduling

February 18, 2025
Huaicheng Li

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.



Agenda

* Process

* Linux PCB: task_struct
* Process creation

* Threads

 Kernel thread API



Forking

- fork() is implemented by the “clone()” system call
* kernel_clone() calls copy_process() and starts the new task
* copy_process()

— dup_task_struct(), which duplicates kernel stack, task_struct, and thread_info
— Check that we do not overflow the process number limit
— Various members of the task_struct are cleared
— Calls sched_fork() to set the child state set to TASK_NEW
— Copies parent information such as files, signal handlers, etc.
— Gets a new PID using alloc(pid)
— Returns a pointer to the new child task_struct
* Finally, wake_up_new_task()
— The new child task becomes TASK_RUNNING



Thread

* Threads are concurrent flows of execution belong to the same process sharing the
address space

Execution Address
flow space
|
Time \‘ *
A B) C D
\J
e -@  QO@
1 process, 1 process,
1 thread 3 threads



Thread

* There is no concept of a thread in Linux kernel
— No scheduling for threads

* Linux implements all threads as standard processes

— A thread is just another process sharing some information with other processes so each
thread has its own “task_struct”

— Create through clone() system call with specific flags indicating sharing
— clone(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, 0);



Kernel Thread

« Use to perform background operations in the kernel

Very similar to sue space threads

— They are schedulable entities (lie regular processes)

However, they do not have their own addr space

— task_struct->mm is NULL

— why?
Kernel threads are all forked from the “kthreadd” thread (PID 2)
Use cases (ps —ppid 2)

— Work queues (kworker)

— Load balancing among CPUs (migration)



Kernel Thread

* To create a kernel thread, use “kthread_create()”

* When created through kthread_create(), the thread is not in a runnable state
* Need to call wake_up_process() or use kthread_run()

» Other threads can asks a kernel thread to stop using kthread_stop()

— A kernel thread should check kthread_should _stop() to decide to continue or stop



/**
* kthread create - create a kthread on the current node
* @threadfn: the function to run in the thread
* @data: data pointer for @threadfn()

* @namefmt: printf-style format string for the thread name

* @...: arguments for @namefmt.
*

* This macro will create a kthread on the current node, leaving it in
* the stopped state.
*/

#define kthread_create(threadfn, data, namefmt, arg...)

/**

* wake_up_process - Wake up a specific process
* @p: The process to be woken up.
*
* Attempt to wake up the nominated process and move it to the set of runnable
* processes.
*
* Return: 1 if the process was woken up, @ if it was already running.
*/
int wake_up_process(struct task_struct *p);



/**
* kthread_run - create and wake a thread.
* @threadfn: the function to run until signal_pending(current).

* @data: data ptr for @threadfn.

* @namefmt: printf-style name for the thread.
*

* Description: Convenient wrapper for kthread_create() followed by
* wake_up_process(). Returns the kthread or ERR_PTR(-ENOMEM) .
*/

#define kthread_run(threadfn, data, namefmt, ...)

/**

* kthread_stop - stop a thread created by kthread create().
* @k: thread created by kthread create().
*
* Sets kthread_should_stop() for @k to return true, wakes it, and
* waits for it to exit. If threadfn() may call do_exit() itself,
* the caller must ensure task_struct can't go away.
*/
int kthread_stop(struct task_struct *k);



Kernel Thread Example

- Ext4 file system uses a kernel thread to finish file system initialization in the background

/* 1linux/fs/extd4/super.c */
static int ext4_run_lazyinit_thread(void)
{
ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
extd4_li info, "extdlazyinit"),
/* ... */
}

static int ext4_lazyinit_thread(void *arg)
{
while (true) {
if (kthread_should_stop()) {
goto exit_thread;

}
/* L0

10



Example

static void ext4_destroy_lazyinit_thread(void)

{
/* ... */
kthread_stop(ext4_lazyinit_task) ;
}

static void __exit ext4_exit_fs(void)
{

ext4_destroy_lazyinit_thread() ;
/* .. */
}

module_exit(ext4 _exit_fs)

11



. . 12
Process Termination

* Termination on invoking the exit() system call
— Can be implicitly inserted by the compiler on return from main()
— sys_exit() calls do_exit()
» do_exit() (linux/kernel/exit.c)
— Cals exit_signals() which set the PF_EXITTInG flag in the task_struct

— Set the exit code in the exit_code field of the task_struct, which will be retrieved by the
parent

— Calls exit_mm() to release the mm_struct of the task
— Calls exit_sem(), if the process is queued waiting for a semaphore, dequeue here

— Calls exit_files() and exit_fs() to decrement the reference counter of file descriptors and
filesystem data, respectively. If a refenrece counter becomes zero, that object is no longer
in use by any process, and it is destroyed.



Calls exit_notify()
— Sends signals to parent
— Re-parent any of tis children to another thread in the thread group or the init process
— Set exit_state in task_struct to EXIT_ZOMBIE

Calls do_task_dead()
— Set the state to TASK_DEAD

— Calls schedule() to switch to a new process. Because process is now not schedulable,
do_exit() never returns.

At this point, what is left is task_structuy, thread_info, and kernel stack
This is required to provide information to the parent
— pid_t wait(int *wstatus)

After the parent retrieves the information, the remaining memory held by the process
is freed

Cleanup implemented in release_task() called from wait()

— Remove the task from the task list and release remaining resources

13



Zombie Process

* What happens if a parent task exits before its child?
* A child must be re-parented
- exit_notify() calls forget_original_parent(), that calls find_new_reaper()

— Returns the task_struct of another task in the thread group if it exists, other init

— Then, all the children of the currently dying task are re-parented to the reaper

14



Further Readings

« Kernel Korner — Sleeping in the Kernel

« Exploiting Stack Overflows in the Linux Kernel

15


https://www.linuxjournal.com/article/8144
https://jon.oberheide.org/blog/2010/11/29/exploiting-stack-overflows-in-the-linux-kernel/

Next Lecture

* Process scheduling!

16



Processor Scheduler

» Decides which process runs next, when, and for how long
* Responsible for making the best use of processor (CPU)

— E.g, Do not waste CPU cycles for waiting process
— E.g, Give higher priority to higher-priority processes

— kg, Do not starve low-priority processes

17



Multitasking

- Simultaneously interleave execution of more than one process
» Single core

— The processor scheduler gives illusion of multiple processes running concurrently

« Multi-core

— The processor scheduler enables true parallelism

* Types of multitasking
— Cooperative multitasking: A process continues running until it yields CPU

— Preemptive multitasking:

» The OS can interrupt the execution of a process (i.e., preemption) after the process exhausts
its timeslice, which is decided by process priority

18



19

Process #100 Process #300

long count = 0O;
void foo(void) { void baz(void) {

while(1) { while(1) {
count++; printf(“hi”);
} }

} }

Operating system: scheduler

CPUO

How does the preemptive scheduler take control of the infinite loop?



/O vs. CPU-bound Tasks

* Scheduling policy: a set of rules determining what runs and when
* [/O-bound processes
— Spend most of their time waiting for 1/O: disk, network, keyboard, mouse, etc.
— Runs for only short duration
— Response time is important (i.e, low-latency)
+ CPU-bound processes
— Heavy use of CPU for computations: scientific computations

— Caches stay hot when they run for a long time

20



Linux Process Priority
* Priority-based scheduling

— Rank processes based on their worth and need for processor time
— Processes with higher priorities run before those with a lower priority
* Priorities in Linux
— Nice value: [-20, 19], default: O, high values means lower priority
— Real-time priority: [0, 99], higher values means higher priority
» Real-time processes always executes before standard (nice) processes

— pS ax —eo pid,ni,rtprio,cmd

User space view: [0 99][-20 +20]

Real-time Non-real-time
Kernel view: [0 139]




Scheduling Policy: timeslice

* How much time a process should execute before being preempted
* Trade-offs on setting the right timeslice

— Too long = poor interactive performance

— Too short = high context switch overhead

22



Scheduling Policy: Example
- Two tasks in the system

— Text editor: /O-bound, latency sensitive (interactive)
— Video encoding: CPU-bound, background job
* Scheduling goal
— Text editor: when ready to run, need to preempt the video encoder
— Video encoder: run as long as possible for better CPU cache usage
* Example policy
— Prioritize text editor
— blc ..

23



Linux CFS timeslice

« Linux CFS does not use an absolute timeslice

— The timeslice a process receives is a function of the load of the system (ie, a proportion of
the CPU)

— In addition, the timeslice is weighted by the process priority
— When a process P becomes runnable, P will preempt the currently running process C if
» P consumes a smaller proportion of the CPU than C
* CFS guarantees the text editor a specific proportion of CPU time
— CFS keeps track of the actual CPU time used by each program

- eg, text editor : video encoder = 50% : 50%

— The text editor mostly sleeps for user inputs and video encoder keeps running until
preempted

— When the text editor wakes up
» CFS sees that text editor actually uses less CPU time than the video encoder

» Thus, the text editor preempts the video encoder

24



Time >
Theoretically:

Text editor Video encoder

In practice:

A A A A A
Keystroke Text editor waiting for 1/0O

 Good interactive performance
» Good background, CPU-bound performance

25



Linux CFS Design

« Completely Fair Scheduler (CFS)
— More later about EEVDF, successor of CFS
— An evolution of rotating staircase deadline scheduler (RSDL)

— Each process of the same priority receives the same amount of CPU time
» For n parallel tasks on the CPU, each process should be given 1/n CPU share

— CFS runs a process for some time, and repeated schedule other tasks

— No default timeslice, CFS calculates how long a process should run according to the E of
runnable processes

» The dynamic timeslice is weighted by the process priority (nice)
» timeslice = weight of a task / total weight of runnable tasks
— To calculate the actual timeslice, CFS sets a targets latency
» Targeted latency: period during which all runnable processes should be scheduled at least once
» Minimum granularity: floor at Tms (default)

26



« Example: processes with the same priority

TL = 20ms
-
A: 10ms B: 10ms
(Anice = Bnice

 Example: processes with the different priority

TL =20ms
- .
A:15ms  [B:5m

(Anice = 0 ’ Bnice = 5)

TL = 20ms

-
A B C D

nice = nice)

TL = 20ms
-

A: 15ms B: 5ms

(Anice = 10 ’ Bnice = 15)

27



Scheduler Class Design -

* The Linux scheduler is modular and provides a pluggable interface for scheduling
algorithms

— Enables different scheduling algorithms to co-exist, scheduling their own types of processes

Scheduler class is a scheduling algorithm

— Each scheduler class has a priority
—eg, SCHED_FIFO, SCHED_RR, SCHED_BATCH/OTHER, SCHED_DEADLINE

The base scheduler code iterates over each scheduler in priority order

— linux/kernel/sched/core.c: scheduler_tick(), schedule()

Time-sharing scheduling: SCHED_BATCH
— SCHED NORMAL in kernel code
— CFS, linux/kernel/sched/fair.c
Real-time scheduling
— SCHED_HFQO: first in first out scheduling
— SCHED_RR: round-robin scheduling
— SCHED_DEADLINE: sporadic task model deadline scheduling



Scheduler Class Implementation

« sched_class: an abstract class for all scheduler classes

/* linux/kernel/sched/sched.h */
struct sched_class {

/* Called when a task enters a runnable state */
void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
/* Called when a task becomes unrunnable */
void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
/* Yield the processor (dequeue then enqueue back immediately) */
void (*yield_task) (struct rq *rq);
/* Preempt the current task with a newly woken task if needed */
void (*check_preempt_curr) (struct rq *rq, struct task_struct *p, int flags);
/* Choose a next task to run */
struct task_struct * (*pick_next_task) (struct rq *rq,
struct task_struct *prev,
struct rq_flags *rf);
/* Called periodically (e.g., 10 msec) by a system timer tick handler */
void (*task_tick) (struct rq *rq, struct task_struct *p, int queued);
/* Update the current task's runtime statistics */
void (*update_curr) (struct rq *rq),

29



» Each scheduler class implements its own functions

/* 1inux/kernel/sched/fair.c */
DEFINE_SCHED_CLASS(fair) = {
/* const struct sched class fair sched class = { */

.enqueue_task = enqueue_task_fair,
.dequeue_task = dequeue_task_fair,
.yield_task = yield_task_fair,
.check_preempt_curr = check_preempt_wakeup,
.pick_next_task = pick_next_task_fair,
.task_tick = task_tick_fair,
.update_curr = update_curr_fair, /* ... */

}i
/* scheduler tick hitting a task of our scheduling class: */
static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
{
struct cfs_rq *cfs_xq;
struct sched_entity *se = &curr->se;
for_each_sched_entity(se) ({
cfs_rq = cfs_xrg_of(se);
entity_tick(cfs_rq, se, queued);

30



 task struct

/* 1inux/include/l1inux/sched.h */
struct task _struct {

/* ... */

const struct sched_class *sched_class; /* sched class of this task */
struct sched_entity se, /* for time-sharing scheduling */

struct sched_rt_entity rt; /* for real-time scheduling */

/* ... */

}

struct sched_entity ({
/* For load-balancing: */
struct load_weight 1load,

struct rb_node run_node;

struct list_head group_node;
unsigned int on_xq;

ue4 exec_start;

ué4 sum_exec_runtime;

u64d vruntime; /* how much time a process

31



* The base scheduler code triggers scheduling operations in two cases
— when processing a timer interrupt (schedule_tick())

— when the kernel calls schedule()

32



/* linux/kernel/sched/core.c */
/* This function gets called by the timer code, with HZ frequency. */
void scheduler_tick(void)
{
int cpu = smp_processor_id();
struct rq *rq = cpu_rq(cpu),
struct task_struct *curr = rqg->curr;
struct rq_flags xf;

/* call task_tick handler for the current process */

sched_clock_tick();

rq_lock(rq, &xf);

update_rq_clock(xq);

curr->sched_class->task_tick(rq, curxr, 0), /* e.qg., task tick fair in CFS */
cpu_load_update_active(rq),

calc_global_load_tick(rq);

rq_unlock(rq, &rf);

/* load balancing among CPUs */
rq->idle_balance = idle_cpu(cpu);
trigger_load_balance(rq);
rq_last_tick_reset(xq),

33



/* linux/kernel/sched/core.c */
/* __schedule() is the main scheduler function. */
static void __sched notrace __schedule(bool preempt)
{

struct task_struct *prev, *next;

struct rq_flags rf;

struct rq *rq;

int cpu;

cpu = smp_processor_id();
rq = cpu_xq(cpu);
prev = rq->curr,

/* pick up the highest-prio task */
next = pick_next_task(rq, prev, &rf);

if (likely(prev != next)) {
/* switch to the new MM and the new thread's register state */
rg->Ccurr = next,
rq = context_switch(rq, prev, next, &rf);

VA

34



/* 1linux/kernel/sched/core.c */
/* Pick up the highest-prio task: */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
const struct sched_class *class;
struct task_struct *p;

/* ... %/
again:
for_each_class(class) {
/* In CFS, pick_next_task fair() will be called */
p = class->pick_next_task(rq, prev, rf);

if (p) {
if (unlikely(p == RETRY_TASK))
goto again;
return p;
}

}

/* The idle class should always have a runnable task: */
BUG() ;

35



Time Accounting in CFS

« virtual runtime: how much CPU time a process has used

/* 1linux/include/l1inux/sched.h */
struct task_struct {

/* .. */

const struct sched_class *sched_class; /* sched class of this task */
struct sched_entity se, /* for time-sharing scheduling */

struct sched_rt_entity rt; /* for real-time scheduling */

/* .0 */

}

struct sched_entity {
/* For load-balancing: */
struct load_weight 1load,

struct rb_node run_node;

struct list_head group_node;
unsigned int on_xq;

ue4 exec_start;

u64 sum_exec_runtime;

u4 vruntime; /* how much time a process



 Upon every timer interrupt, CFS accounts for the task’s execution time

/* 1linux/kernel/sched/fair.c */
/* scheduler tick() calls task tick fair() for CFS.

* task_tick_fair() calls update_curr() for time accounting. */
static void update_curr(struct cfs_rq *cfs_xq)

{
struct sched_entity *curr = cfs_rq->curr;

ué4 now = rqg_clock_task(rq_of(cfs_xq)),;
ue4 delta_exec;

if (unlikely(!curr))
return;

delta_exec = now - curr->exec_start; /* Step 1. calc exec duration */
if (unlikely((s64)delta_exec <- 0))
return;

curr->exec_start = now;
/* continue in a next slide ... */

37



static void update_curr(struct cfs_rq *cfs_xq)

{

/* continue from the previous slide ... */

schedstat_set(curr->statistics.exec_max,
max (delta_exec, curr->statistics.exec_max));

curr->sum_exec_runtime += delta_exec;
schedstat_add(cfs_rqg->exec_clock, delta_exec);

/* update vruntime with delta_exec and nice value */
curr->vruntime += calc_delta_fair(delta_exec, cuxx); /* CODE */
update_min_vruntime(cfs_xq),

if (entity_is_task(curr)) {
struct task_struct *curtask = task of(curr);

trace_sched stat _runtime(curtask, delta_exec, curr->vrxuntime) ;
cpuacct_charge(curtask, delta_exec);
account_group_exec_runtime(curtask, delta_exec);

38



Process Selection in CFS

- CFS maintains a rbtree of tasks indexed by vruntime
- Always pick a task with the smallest vruntime, the left-most node

/* linux/kernel/sched/fair.c */
struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq) /* CODE */
{

struct rb_node *left = cfs_rq->rb_leftmost;

if (!left)
return NULL;

return rb_entry(left, struct sched_entity, run_node);

39



Add a Task to Runqueue

* When a task is woken up or migrated, it's added to a runqueue

/* linux/kernel/sched/fair.c */
void enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
bool renorm = ! (flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
bool curr = cfs_rq->curr == se;

/* Update run-time statistics */
update_curr(cfs_xq);

update_load_avg(se, UPDATE_TG);
enqueue_entity_load_avg(cfs_rq, se);
update_cfs_shares(se);
account_entity_enqueue(cfs_rq, se);
VA 4

/* Add this to the rbtree */
if (!curr)
__enqueue_entity(cfs_rq, se);

40



/* linux/kernel/sched/fair.c */
static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
struct rb_node **1ink = &cfs_rq->tasks_timeline.rb_node;
struct rb_node *parent = NULL;
struct sched_entity *entry;
int leftmost = 1;
/* Find the right place in the rbtree: */
while (*1ink) {
parent = *1link;
entry = rb_entry(parent, struct sched_entity, run_node);
if (entity_before(se, entry)) {
link = &parent->rb_left,;

} else {
link = &parent->rb_right;
leftmost = 0;

}

}

/* Maintain a cache of leftmost tree entries (it is frequently used): */
if (leftmost)

cfs_rqg->rb_leftmost = &se->run_node;
rb_link_node(&se->run_node, parent, 1link);

41



Remove a Task from Runqueue
* When a task goes to sleep or is migrated, it is removed from a runqueue

/* linux/kernel/sched/fair.c */
void dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{

/* Update run-time statistics of the 'current'. */

update_curr(cfs_rq);

update_load_avg(se, UPDATE_TG);

dequeue_entity_load_avg(cfs_rq, se);

update_stats_dequeue(cfs_rq, se, flags);

clear_buddies(cfs_rq, se);

/* Remove this to the rbtree */

if (se != cfs_rqg->curr)
__dequeue_entity(cfs_rq, se);

se->on_xq = 0;

account_entity_dequeue(cfs_rq, se);

static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)

{
if (cfs_rq->rb_leftmost == &se->run_node) ({

struct rb_node *next_node;

next_node = rb_next(&se->run_node) ;
cfs_rq->rb_leftmost = next_node;

}

rb_erase(&se->run_node, &cfs_rq->tasks_timeline);

42



Entry Point: schedule()

/* linux/kernel/sched/core.c */
/* __schedule() is the main scheduler function. */
static void __sched notrace __schedule(bool preempt)
{

struct task_struct *prev, *next;

struct rq_flags rf;

struct rq *rq;

int cpu,

Cpu = smp_processor_id();
rq = cpu_rq(cpu);
prev = rq->CuUurr;

/* pick up the highest-prio task */
next = pick_next_task(rq, prev, &rf);

if (likely(prev != next)) {
/* switch to the new MM and the new thread's register state */
rq->curr = next;
rq = context_switch(rq, prev, next, &rf),;

VA 4

43



/* linux/kernel/sched/core.c */
/* Pick up the highest-prio task: */
static inline struct task_struct *
pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
const struct sched_class *class;
struct task_struct *p;

/* ... %/
again:
for_each_class(class) {
/* In CFS, pick next_task_fair() will be called.
* pick_next_task_fair() eventually calls _ _pick first_entity() */
p = class->pick_next_task(rq, prev, xf);
if (p) {
if (unlikely(p == RETRY_TASK))
goto again;

return p;
}
}
/* The idle class should always have a runnable task: */
BUG() ;

44



Sleep and Wake-up

* Reasons for a task to sleep
— waiting for |/O, blocking on a mutex; etc.
« Steps to sleep
— Mark a task sleeping
— Put the task into a waitqueue
— Dequeue the task from the rbtree
— The task calls schedule() to select a new process to run

« Waking up a process is the reverse

- Two states associated with sleeping
— TASK_INTERRUPTIBLE: wake up the sleeping task upon signal
— TASK_UNINTERRUPTIBLE: defer signal delivery until wake up

45



Waitqueue: Sleeping

» List of processes waiting for an event to occur (similar to concept of condition
variable)

/* linux/include/linux/wait.h */
struct wait_queue_entry {

unsigned int flags;
void *private;
wait_queue_func_t func;
struct list_head entry;

},

struct wait_queue_head {
spinlock_t lock;
struct list_head head;

3,

typedef struct wait_queue_head wait_queue_head_t;

#define DEFINE_WAIT (name)

void add_wait_queue(struct wait_queue_head *wq_head,

struct wait_queue_entry *wqg_entry);

void prepare_to_wait(struct wait_queue_head *wqg_head,
struct wait_queue_entry *wqg_entry, int state);

void finish_wait(struct wait_queue_head *wq_head,
struct wait_queue_entry *wq_entry);



DEFINE_WAIT(wait); /* Initialize a wait queue entry */

/* 'q' is the wait queue that we wish to sleep on */
add_wait_queue(q, &wait),; /* Add itself to a wait queue */
while (!condition) { /* event we are waiting for */
/* Change process status to TASK_INTERRUPTIBLE */
prepare_to_wait(&q, &wait, TASK_INTERRUPTIBLE);/* prevent the lost wake-up */
/* Since the state is TASK_INTERRUPTIBLE, a signal can wake up the task.
* If there is a pending signal, handle signals */
if(signal_pending(current)) {
/* This is a spurious wake up, not caused
* by the oocurance of the waiting event */
/* Handle signal */
}
/* Go to sleep */
schedule();
/* Now, the task is woken up.
* Check condition if the event occurs */

}

/* Set the process status to TASK_RUNNING
* and remove itself from the wait queue */
finish_wait(&q, &wait);

a7



- Oruse one of wait_event*() macros

/* linux/include/l1inux/wait.h */

/**

wait_event_interruptible - sleep until a condition gets true
@wq: the waitqueue to wait on

@condition: a C expression for the event to wait for

The process is put to sleep (TASK_INTERRUPTIBLE) until the
@condition evaluates to true or a signal is received.
The @condition is checked each time the waitqueue @wq is woken up.

* % % % ¥ % F

*/
#define wait_event_interruptible(wq, condition)

({
int __ret = 0;
might_sleep(),;
if (!(condition))
__ret = __wait_event_interruptible(wq, condition);
ret;

P e L e e

})

48



Wake up

Waking up is taken care of by wake_up()

By default, wake up all the processes on a waitqueue

Exclusive tasks are added using prepare _to wait_exclusive()

#define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)

/* __wake_up() calls _ _wake_up_common() */

static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
int nr_exclusive, int wake_flags, void *key)
{

wait_queue_t *curr, *next,;
list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
unsigned flags = curr->flags,;
if (curr->func(curr, mode, wake_flags, key) && /* wake-up function */

(flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
break;

49



A wait queue entry contains a pointer to a wake-up function

/* linux/include/linux/wait.h */

typedef struct __wait_queue wait_queue_t;
typedef int (*wait_queue_func_t) (wait_queue_t *wait, unsigned mode,
int flags, void *key);
int default_wake_function(wait_queue_t *wait, unsigned mode,
int flags, void *key);
struct wait_queue_entry {

unsigned int flags;
void *private;
wait_queue_func_t func;
struct list_head entry;

50



	Slide 1: CS 5264/4224; ECE 5414/4414 (Advanced) Linux Kernel Programming Lecture 7  Process Scheduling
	Slide 2: Agenda
	Slide 3: Forking 
	Slide 4: Thread
	Slide 5: Thread
	Slide 6: Kernel Thread
	Slide 7: Kernel Thread
	Slide 8
	Slide 9
	Slide 10: Kernel Thread Example
	Slide 11: Example
	Slide 12: Process Termination
	Slide 13
	Slide 14: Zombie Process
	Slide 15: Further Readings
	Slide 16: Next Lecture
	Slide 17: Processor Scheduler
	Slide 18: Multitasking
	Slide 19
	Slide 20: I/O vs. CPU-bound Tasks
	Slide 21: Linux Process Priority
	Slide 22: Scheduling Policy: timeslice
	Slide 23: Scheduling Policy: Example
	Slide 24: Linux CFS timeslice
	Slide 25
	Slide 26: Linux CFS Design
	Slide 27
	Slide 28: Scheduler Class Design
	Slide 29: Scheduler Class Implementation
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Time Accounting in CFS
	Slide 37
	Slide 38
	Slide 39: Process Selection in CFS
	Slide 40: Add a Task to Runqueue
	Slide 41
	Slide 42: Remove a Task from Runqueue
	Slide 43: Entry Point: schedule()
	Slide 44
	Slide 45: Sleep and Wake-up
	Slide 46: Waitqueue: Sleeping
	Slide 47
	Slide 48
	Slide 49: Wake up
	Slide 50

