
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 7

Process Scheduling

February 18, 2025

Huaicheng Li

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

2
Agenda

• Process

• Linux PCB: task_struct

• Process creation

• Threads

• Kernel thread API

3
Forking

• fork() is implemented by the “clone()” system call

• kernel_clone() calls copy_process() and starts the new task

• copy_process()

– dup_task_struct(), which duplicates kernel stack, task_struct, and thread_info

– Check that we do not overflow the process number limit

– Various members of the task_struct are cleared

– Calls sched_fork() to set the child state set to TASK_NEW

– Copies parent information such as files, signal handlers, etc.

– Gets a new PID using alloc(pid)

– Returns a pointer to the new child task_struct

• Finally, wake_up_new_task()

– The new child task becomes TASK_RUNNING

4
Thread

• Threads are concurrent flows of execution belong to the same process sharing the
address space

5
Thread

• There is no concept of a thread in Linux kernel

– No scheduling for threads

• Linux implements all threads as standard processes

– A thread is just another process sharing some information with other processes so each
thread has its own “task_struct”

– Create through clone() system call with specific flags indicating sharing

– clone(CLONE_VM | CLONE_FS | CLONE_FILES | CLONE_SIGHAND, 0);

6
Kernel Thread

• Use to perform background operations in the kernel

• Very similar to sue space threads

– They are schedulable entities (lie regular processes)

• However, they do not have their own addr space

– task_struct->mm is NULL

– why?

• Kernel threads are all forked from the “kthreadd” thread (PID 2)

• Use cases (ps –ppid 2)

– Work queues (kworker)

– Load balancing among CPUs (migration)

– ...

7
Kernel Thread

• To create a kernel thread, use “kthread_create()”

• When created through kthread_create(), the thread is not in a runnable state

• Need to call wake_up_process() or use kthread_run()

• Other threads can asks a kernel thread to stop using kthread_stop()

– A kernel thread should check kthread_should _stop() to decide to continue or stop

8

9

10
Kernel Thread Example

• Ext4 file system uses a kernel thread to finish file system initialization in the background

11
Example

12
Process Termination

• Termination on invoking the exit() system call

– Can be implicitly inserted by the compiler on return from main()

– sys_exit() calls do_exit()

• do_exit() (linux/kernel/exit.c)

– Cals exit_signals() which set the PF_EXITTInG flag in the task_struct

– Set the exit code in the exit_code field of the task_struct, which will be retrieved by the
parent

– Calls exit_mm() to release the mm_struct of the task

– Calls exit_sem(), if the process is queued waiting for a semaphore, dequeue here

– Calls exit_files() and exit_fs() to decrement the reference counter of file descriptors and
filesystem data, respectively. If a refenrece counter becomes zero, that object is no longer
in use by any process, and it is destroyed.

13

• Calls exit_notify()

– Sends signals to parent

– Re-parent any of tis children to another thread in the thread group or the init process

– Set exit_state in task_struct to EXIT_ZOMBIE

• Calls do_task_dead()

– Set the state to TASK_DEAD

– Calls schedule() to switch to a new process. Because process is now not schedulable,
do_exit() never returns.

• At this point, what is left is task_structu, thread_info, and kernel stack

• This is required to provide information to the parent

– pid_t wait(int *wstatus)

• After the parent retrieves the information, the remaining memory held by the process
is freed

• Cleanup implemented in release_task() called from wait()

– Remove the task from the task list and release remaining resources

14
Zombie Process

• What happens if a parent task exits before its child?

• A child must be re-parented

• exit_notify() calls forget_original_parent(), that calls find_new_reaper()

– Returns the task_struct of another task in the thread group if it exists, other init

– Then, all the children of the currently dying task are re-parented to the reaper

15
Further Readings

• Kernel Korner – Sleeping in the Kernel

• Exploiting Stack Overflows in the Linux Kernel

https://www.linuxjournal.com/article/8144
https://jon.oberheide.org/blog/2010/11/29/exploiting-stack-overflows-in-the-linux-kernel/

16
Next Lecture

• Process scheduling!

17
Processor Scheduler

• Decides which process runs next, when, and for how long

• Responsible for making the best use of processor (CPU)

– E.g., Do not waste CPU cycles for waiting process

– E.g., Give higher priority to higher-priority processes

– E.g., Do not starve low-priority processes

18
Multitasking

• Simultaneously interleave execution of more than one process

• Single core

– The processor scheduler gives illusion of multiple processes running concurrently

• Multi-core

– The processor scheduler enables true parallelism

• Types of multitasking

– Cooperative multitasking: A process continues running until it yields CPU

– Preemptive multitasking:

» The OS can interrupt the execution of a process (i.e., preemption) after the process exhausts
its timeslice, which is decided by process priority

19

How does the preemptive scheduler take control of the infinite loop?

20
I/O vs. CPU-bound Tasks

• Scheduling policy: a set of rules determining what runs and when

• I/O-bound processes

– Spend most of their time waiting for I/O: disk, network, keyboard, mouse, etc.

– Runs for only short duration

– Response time is important (i.e., low-latency)

• CPU-bound processes

– Heavy use of CPU for computations: scientific computations

– Caches stay hot when they run for a long time

21
Linux Process Priority

• Priority-based scheduling

– Rank processes based on their worth and need for processor time

– Processes with higher priorities run before those with a lower priority

• Priorities in Linux

– Nice value: [-20, 19], default: 0, high values means lower priority

– Real-time priority: [0, 99], higher values means higher priority

» Real-time processes always executes before standard (nice) processes

– ps ax –eo pid,ni,rtprio,cmd

22
Scheduling Policy: timeslice

• How much time a process should execute before being preempted

• Trade-offs on setting the right timeslice

– Too long → poor interactive performance

– Too short → high context switch overhead

23
Scheduling Policy: Example

• Two tasks in the system

– Text editor: I/O-bound, latency sensitive (interactive)

– Video encoding: CPU-bound, background job

• Scheduling goal

– Text editor: when ready to run, need to preempt the video encoder

– Video encoder: run as long as possible for better CPU cache usage

• Example policy

– Prioritize text editor

– b/c ...

24
Linux CFS timeslice

• Linux CFS does not use an absolute timeslice

– The timeslice a process receives is a function of the load of the system (ie, a proportion of
the CPU)

– In addition, the timeslice is weighted by the process priority

– When a process P becomes runnable, P will preempt the currently running process C if

» P consumes a smaller proportion of the CPU than C

• CFS guarantees the text editor a specific proportion of CPU time

– CFS keeps track of the actual CPU time used by each program

• e.g., text editor : video encoder = 50% : 50%

– The text editor mostly sleeps for user inputs and video encoder keeps running until
preempted

– When the text editor wakes up

» CFS sees that text editor actually uses less CPU time than the video encoder

» Thus, the text editor preempts the video encoder

25

• Good interactive performance

• Good background, CPU-bound performance

26
Linux CFS Design

• Completely Fair Scheduler (CFS)

– More later about EEVDF, successor of CFS

– An evolution of rotating staircase deadline scheduler (RSDL)

– Each process of the same priority receives the same amount of CPU time

» For n parallel tasks on the CPU, each process should be given 1/n CPU share

– CFS runs a process for some time, and repeated schedule other tasks

– No default timeslice, CFS calculates how long a process should run according to the E of
runnable processes

» The dynamic timeslice is weighted by the process priority (nice)

» timeslice = weight of a task / total weight of runnable tasks

– To calculate the actual timeslice, CFS sets a targets latency

» Targeted latency: period during which all runnable processes should be scheduled at least once

» Minimum granularity: floor at 1ms (default)

27

• Example: processes with the same priority

• Example: processes with the different priority

28
Scheduler Class Design

• The Linux scheduler is modular and provides a pluggable interface for scheduling
algorithms

– Enables different scheduling algorithms to co-exist, scheduling their own types of processes

• Scheduler class is a scheduling algorithm

– Each scheduler class has a priority

– e.g., SCHED_FIFO, SCHED_RR, SCHED_BATCH/OTHER, SCHED_DEADLINE

• The base scheduler code iterates over each scheduler in priority order

– linux/kernel/sched/core.c: scheduler_tick(), schedule()

• Time-sharing scheduling: SCHED_BATCH

– SCHED_NORMAL in kernel code

– CFS, linux/kernel/sched/fair.c

• Real-time scheduling

– SCHED_FIFO: first in first out scheduling

– SCHED_RR: round-robin scheduling

– SCHED_DEADLINE: sporadic task model deadline scheduling

29
Scheduler Class Implementation

• sched_class: an abstract class for all scheduler classes

30

• Each scheduler class implements its own functions

31

• task_struct

32

• The base scheduler code triggers scheduling operations in two cases

– when processing a timer interrupt (schedule_tick())

– when the kernel calls schedule()

33

34

35

36
Time Accounting in CFS

• virtual runtime: how much CPU time a process has used

37

• Upon every timer interrupt, CFS accounts for the task’s execution time

38

39
Process Selection in CFS

• CFS maintains a rbtree of tasks indexed by vruntime

• Always pick a task with the smallest vruntime, the left-most node

40
Add a Task to Runqueue

• When a task is woken up or migrated, it’s added to a runqueue

41

42
Remove a Task from Runqueue

• When a task goes to sleep or is migrated, it is removed from a runqueue

43
Entry Point: schedule()

44

45
Sleep and Wake-up

• Reasons for a task to sleep

– waiting for I/O, blocking on a mutex, etc.

• Steps to sleep

– Mark a task sleeping

– Put the task into a waitqueue

– Dequeue the task from the rbtree

– The task calls schedule() to select a new process to run

• Waking up a process is the reverse

• Two states associated with sleeping

– TASK_INTERRUPTIBLE: wake up the sleeping task upon signal

– TASK_UNINTERRUPTIBLE: defer signal delivery until wake up

46
Waitqueue: Sleeping

• List of processes waiting for an event to occur (similar to concept of condition
variable)

47

48

49
Wake up

50

	Slide 1: CS 5264/4224; ECE 5414/4414 (Advanced) Linux Kernel Programming Lecture 7 Process Scheduling
	Slide 2: Agenda
	Slide 3: Forking
	Slide 4: Thread
	Slide 5: Thread
	Slide 6: Kernel Thread
	Slide 7: Kernel Thread
	Slide 8
	Slide 9
	Slide 10: Kernel Thread Example
	Slide 11: Example
	Slide 12: Process Termination
	Slide 13
	Slide 14: Zombie Process
	Slide 15: Further Readings
	Slide 16: Next Lecture
	Slide 17: Processor Scheduler
	Slide 18: Multitasking
	Slide 19
	Slide 20: I/O vs. CPU-bound Tasks
	Slide 21: Linux Process Priority
	Slide 22: Scheduling Policy: timeslice
	Slide 23: Scheduling Policy: Example
	Slide 24: Linux CFS timeslice
	Slide 25
	Slide 26: Linux CFS Design
	Slide 27
	Slide 28: Scheduler Class Design
	Slide 29: Scheduler Class Implementation
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Time Accounting in CFS
	Slide 37
	Slide 38
	Slide 39: Process Selection in CFS
	Slide 40: Add a Task to Runqueue
	Slide 41
	Slide 42: Remove a Task from Runqueue
	Slide 43: Entry Point: schedule()
	Slide 44
	Slide 45: Sleep and Wake-up
	Slide 46: Waitqueue: Sleeping
	Slide 47
	Slide 48
	Slide 49: Wake up
	Slide 50

