
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 8

Process Scheduling II

February 20, 2025
Huaicheng Li

Acknowledgement: Credits to Dr. Changwoo Min for the original LKP lecture slides.

2
Recap: The Many Facets of Process Scheduling
• Which task to run, when, and how long

– Moreover, how to implement such policies ...
• Goal #1: Fairness

– priorities (nice) à weighted fairness: A (3), B (1) à A (75% CPU time), B (25% CPU
time)

» high priority tasks get more CPU share à
» without starving low priority tasks
» avoiding priority inversion

– Implementation via virtual runtime (vruntime) in CFS
• Goal #2: Performance (low overhead)

– e.g., frequencies of context switches à length of timeslice is critical (static vs dynamic)
– ...

For Task (Ti), weight (wi):

3
CFS Key Design Choices

4
The CFS
• It uses a rbtree to organize all the runnable processes based on vruntime

– Leftmost node in the tree is therefore the task to schedule next.
– O(log N), but it can be cached, thus O(1) to figure out what to schedule
– Non-runnable processes will be taken out of the rbtree (dequeue)

» e.g., blocked due to I/Os (TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE)
» Insertion, deletion à rebalancing the rbtree

• Timeslice based on process niceness: [-20, 19]
– Keep track of past CPU time usage (when does this happen?)
– weighted time share
– guarantees each task will run at least once to
 avoid starvation
– I/O vs CPU bound
– low vs. high-priority scheduling

largersmaller

Tas
k t

o s
che

du
le

5
CFS Virtual Runtime (vruntime)
• Charge each task a runtime proportional to wbase and inversely proportional to its

weight wi (vruntime)
• e.g., wbase = 100
• Tasks are scheduled in order of increasing vruntime

• vruntime vs. physical time

6
Let’s Understand How CFS Achieves the Goals
• CPU-bound tasks use lots of CPU à will eventually be deprioritized by CFS than

tasks spending a lot of time on I/O
– Thus, response to interactive-tasks (e.g., text editor) is fast

• vruntime of high priority task decays faster ... thus, it get more chance to run

7
More about CFS
• Group scheduling

– Being fair to who? each process, or a group of processes
– Within each group, the scheduler can treat each threads fairly

• Load balancing for multi-core
– What if the runqueue of one core is empty while another core is busy with too many

tasks?
– Allow a core to ”steal” tasks from other cores
– Be careful to not violate fairness guarantees!

» a low priority task on a less-busy core can get more CPU time than a high-priority task on a
busy core, priority inversion!

8
CFS is not Perfect

• Task migrations should be minimized ...
– for cache reuse
– staying close to data in memory (for NUMA machines)

• Energy efficiency / Power efficiency
• Various heuristics, parameters to fine-tune for best-case workload performance
• A Decade of Wasted Cores

– The Linux Scheduler: a Decade of Wasted Cores
• Let’s look at interactive applications again

– CFS can sometimes be unfair
– In general, interactive tasks can be responded to pretty quickly, but it might not ensure

quickly-enough without sacrificing fairness
– Need to further improve responsiveness

BFS: https://en.wikipedia.org/wiki/Brain_Fuck_Scheduler

https://dl.acm.org/doi/10.1145/2901318.2901326

9
A Decade of Wasted Cores
• 2016 research paper
• Expose significant bugs in Linux multicore scheduling such that threads would wait

to run when cores are sitting idle, leading to 13-24% performance degradation
(138x for corner cases)

– Moving a thread for load balancing doesn’t always work well (or simply, is it worth
migrating the thread across cores or simply let it wait to be executed on the original core?)

» How long to wait?
» Balancing the load and also maintain fairness based on priorities
» Idle core à it’s okay to trigger immediate load balancing
» Where to migrate?

– #1: Group imbalance bug à average
– #2: scheduling group construction: if the groups are two hops aparts, the load balancing

thread might not steal them
– #3: overload on wakeup: pinned thread, sleep and then wake up, will be put back to the

original core
– #4: core re-adding, an important function was no longer invoked ...

10
EEVDF: Earliest Eligible Virtual Deadline First
• Lag: difference between the ideal runtime and the actual runtime of a task
• Eligibility: a task is eligible to run if its lag >= 0
• Virtual deadline: vruntime + requested vruntime

EEVDF paper (1995): here

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=805acf7726282721504c8f00575d91ebfd750564

11
Scheduler Class Implementation
• sched_class: an abstract class for all scheduler classes

12

• Each scheduler class implements its own functions

13

• task_struct

14

• The base scheduler code triggers scheduling operations in two cases
– when processing a timer interrupt (schedule_tick())
– when the kernel calls schedule()

15

16

17

18
Time Accounting in CFS
• virtual runtime: how much CPU time a process has used

19

• Upon every timer interrupt, CFS accounts for the task’s execution time

20

21
Process Selection in CFS
• CFS maintains a rbtree of tasks indexed by vruntime
• Always pick a task with the smallest vruntime, the left-most node

22
Add a Task to Runqueue
• When a task is woken up or migrated, it’s added to a runqueue

23

24
Remove a Task from Runqueue
• When a task goes to sleep or is migrated, it is removed from a runqueue

25
Entry Point: schedule()

26

27
Sleep and Wake-up
• Reasons for a task to sleep

– waiting for I/O, blocking on a mutex, etc.
• Steps to sleep

– Mark a task sleeping
– Put the task into a waitqueue
– Dequeue the task from the rbtree
– The task calls schedule() to select a new process to run

• Waking up a process is the reverse
• Two states associated with sleeping

– TASK_INTERRUPTIBLE: wake up the sleeping task upon signal
– TASK_UNINTERRUPTIBLE: defer signal delivery until wake up

28
Waitqueue: Sleeping
• List of processes waiting for an event to occur (similar to concept of condition

variable)

29

30

31
Wake up

32

