CS 5264/4224; ECE 5414/4414

(Advanced) Linux Kernel Programming
Lecture 9

Process Scheduling Il
February 25, 2025

Huaicheng Li
https://people.cs.vt.edu/huaicheng/lkp-sp25/

https://people.cs.vt.edu/huaicheng/lkp-sp25/

EEVDF: Earliest Eligible Virtual Deadline First

* Lag: difference between the ideal runtime and the actual runtime of a task
* Eligibility: a task is eligible to run if its lag >= 0
* Virtual deadline: vruntime + requested vruntime

lagr(t1) = Vavg(t1) — Vr(t1) =2 0

Whase
Wy

Dp(t1) = Vr(t1) + Atr -

EEVDF paper (1995): here

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=805acf7726282721504c8f00575d91ebfd750564

Scheduling related system calls

sched_getscheduler , sched_setscheduler

nice

sched_getparam, sched_setparam
sched_get_priority_max, sched_get_priority_min
sched_getaffinity, sched_setaffinity

sched yield

Linux Scheduler: Not One Size Fits All ...

* Fairness: everyone should get some CPU time

Optimization: make optimal use of system resources, minimize critical sections

Low overhead: should run for as short as possible

Generalizable: Should work on every architecture, for every workload

— For endusers: gaming, for hyperscalers, run a few internal workloads

Drawbacks
— Experimentation is difficult: need to recompile + reboot + rewarm caches
— Generalizable scheduler
— Often leaves some performance on the table for some workloads / architectures
— Impossible to make everyone happy all of the time
— Difficult to get new features upstreamed
— Can't regress the scheduler
— High bar for contributions (understandably)

— Results in lots of out of tree schedulers, vendor hooks, etc

The Need for More Scheduling Policies

* In-kernel scheduler design targets generality

— Balance specific performance requirements of many applications

* Tailoring scheduling policies can substantially improve performance for specific
workloads

— (tail) latency, throughput, energy efficiency, security, etc.

— e.g., workloads with a mix of short and long requests

— multi-tenant setups

— resource interferences (low-latency apps + background best-effort apps)

— cache side channel attacks = mitigation: core isolation policies

Developing New Scheduling Policies in Linux Kernel is Hard

* Need to deal with ever-changing hardware landscape
— Increasing core counts
— multi-core, NUMA
— heterogeneous systems: big.LITTLE ARM, Intel SRF performance/efficiency cores

— support for emerging compute devices: DPUs, domain-specific accelerators (GPUs, TPUs)

* Hard to develop, maintain, deploy, and test new implementations
— Focusing on large-scale deployment, e.g., datacenter scale (millions of servers in the fleet)
— Comply with complex kernel architecture
— Requires extensive testing to avoid crashing the entire system
— Disruptive upgrade require reboots, leading to downtime
— C and assembly, hard to debug, complex synchronization, preemption, interrupts, etc.

— Linux rarely adopts new scheduling policies = O(months) requirements from IT
companies

Scheduler Design, Implementation, and Deployment

* agile userspace development

ease of deployment

while still enabling fast scheduling for performance

flexibility: per-CPU or centralized scheduling model

Principles
— scheduling mechanism remains in the kernel
— while policy resides in userspace

— Q: what abstractions and interfaces should we use?
» Ideally, no applications code changes ...
» Compatible API/ABI
» Can co-exist with existing in-kernel schedulers, e.g.,, CFS / EEVDF
» Fast event communication between user/kernel space

»

ghOSt: Fast & Flexbile User-Space Delegation of Linux Scheduling

* SOSP 2021 research paper from Google, here
* Design goals
— Policies should be easy to implement and test
— scheduling expressiveness and efficiency
— enabling scheduling decisions beyond the per-CPU model

— supporting multiple concurrent policies
— non-disruptive updates and fault isolation

https://cs.stanford.edu/~jhumphri/documents/ghost.pdf

ghOSt Design

* Kernel side is implemented as a scheduling class (e.g., similar to SCHED_NORM)
The scheduling class provide a rich API to define arbitrary scheduling policies

The agents are the in-userspace scheduling policies

The kernel shares thread status information via messages and status words

The agents informs the kernel to make scheduling decisions via
transactions/syscalls

|
| Workload
l [
, Optional scheduling hints :
!
'Thread/CPU Messages v
Kernel | ges I ghOSt agents
' Status words >
ghOSt | Transactions Q
scheduling class | [; CPU scheduling
- Syscalls . .
< decisions

Agents can be implemented in any programming languages, debugging via standard
tools

For fault tolerance and isolation, if agents crash, the systems will fall back to the
default scheduler, e.g., EEVDF

No reboots
Flexible scheduling policy model choices, per-CPU or global

10

* Kernel-to-agent communication: Messages

— Why not mmap task_struct to userspace?

— Why not expose thread state va sysfs/proc files, e.g., /proc/pid/...!

* Agent-to-kernel communication:

— Agents send scheduling decisions to the kernel by committing transactions

— syscall-based scheduling decision overhead: a few microseconds

Messages Syscalls
THREAD CREATED AGENT_INIT()

THREAD_BLOCKED

START_GHOST()

THREAD_PREEMPTED

TXN_CREATE()

THREAD_YIELD

TXNS_COMMIT()

THREAD_DEAD

TXNS_RECALL()

THREAD_WAKEUP

CREATE_QUEUE()

THREAD_AFFINITY

DESTROY_QUEUE()

TIMER_TICK

ASSOCIATE_QUEUE()

CONFIG_QUEUE_WAKEUP()

1 void Agent::PerCpuSchedule() {

2 DrainMessageQueue(); // Read messages from queue
3 Thread *next = runqueue_.Dequeue();

4 if (next == nullptr) return; // Runqueue empty.

5 // Schedule thread:

6 Transaction *txn = TXN_CREATE (next->tid, my_cpu);
7 TXNS_COMMIT ({txn});

8 if (txn->status != TXN_COMMITTED) ({

9

// Txn failed. Move thread to end of runqueue.

10 runqueue_.Enqueue (next);
11 return;

12 }

13 // The schedule has succeeded for ‘next‘.

14 }

11

Per-CPU and Centralized Scheduler

* Fine-grained policy management: per-cpu or centralized
* Centralized scheduler

— one global agent with a single queue

(. . .
[Agent Agent Agent) Inactive Agent _ Global agent __ Inactive agent
0 1 N RS N+ 7 N+2 M
Message Schedule
queues: \ \ \ thread %
0 L 1 N Vi G \

Threads: 56 /

[cruo [| cput }[CPUN |’)

\
1
\
!
\
1
\
1
\
1
\
]
1 1
\2 ¥

L[CPUN+1 | [cPuN+2 | [cPuMm]J

Enclave O running per-CPU scheduling on CPUs O — N

Enclave 1running centralized scheduling on CPUs N+1 — M

ghOSt Evaluation

1,500

=
S
S
o

500

99% Latency (us)

(a) Tail latency for dispersive loads.

—=—

Shinjuku

—6e— ghOSt-Shinjuku
—a4— CFS-Shinjuku

RocksDB Throughput (1K req/s)

1,500
/5]
S
> 1,000
-
3
S 500
INN
(@)
(@)

(b) RocksDB co-located with a batch app.

0 100 200 300
RocksDB Throughput (1K req/s)

ghOSt development kicks SOSP paper published
off
2019 2020 2021 2022
Architecture shift
heavily towards BPF;
more advanced

Initial experiments with
internal workloads

Source: here

policy development.

sched_ext collaboration
with Meta
2023 2024

ghOSt deployed for
specific workloads
such as Search.
Starting to move
policies to
sched_ext.

14

https://lpc.events/event/18/contributions/1687/attachments/1434/3063/LPC%202024_%20Google%20+%20pluggable%20scheduling.pdf

Linux sched ext: BPF-extensible Scheduler Class
* Berkeley Packet Filter (BPF)

— A recently revived techniques that has attracted a lot of attention

— Extensively used for system observability by offloading userspace code to run safely in
kernel space

— eBPF, the BPF verifier ensures that your custom scheduler has neither a memory bug nor
an infinite loop

— Safe fall back to default CFS/EEVDF schedulers
» Using BPF for pluggable scheduling
— A new extensible scheduling class, SCHED_EXT (>5SCHED_IDLE, <SCHED_NORMAL)

— Allows you to write and run customized schedulers optimized for target workloads

[1] Extensible Scheduler Class, https://docs.kernel.org/scheduler/sched-ext.ntml
[2] The extensible scheduler class, https://lwn.net/Articles/922405/
[3] sched_ext schedulers and tools, https://github.com/sched-ext/scx

15

https://docs.kernel.org/scheduler/sched-ext.html
https://lwn.net/Articles/922405/
https://github.com/sched-ext/scx

BPF: A Safe Way to Run Code in Kernel

* Kernel feature that allows custom code to run safely in
the kernel

 Started in the early days for custom packet filtering
* Now much much larger and richer ecosystems

* Write C code, compile it to BPF bytecode, userspace can
load 1t into the kernel

https://en.wikipedia.org/wiki/EBPF

A eBPF

16

17
sched ext

 Write schedulers in BPF

— implement a set of callbacks for handling: task wakeup, enqueue/dequeue, state change,
load balancing, cgroup integrations, etc.

* Compile it

* Load it onto the system, letting BPF and core sched_ext infrastructure do all of the
heavy lifting to enable it

» Offload complicated logic to user space.

* Use of floating points

* Use standard debugging tools

* BPF makes it easy to share data between the kernel and user space

How to Use sched ext

» Kernel needs to be compiled to support sched_exit
— Enable the following configuration options in .config
— Disable CONFG_DEBUG_INFO_REDUCED and CONFIG_DEBUG_INFO_SPLIT first
— Compile and boot the sched_ext enabled kernel

— sched_ext is used only when the BPF scheduler is loaded and running.

» If a task explicitly sets its scheduling policy to SCHED_EXT, it will be treated as
SCHED_NORMAL and scheduled by CFS until the BPF scheduler is loaded.

CONFIG_BPF=y
CONFIG_SCHED_CLASS_EXT=y
CONFIG_BPF_SYSCALL=y
CONFIG_BPF_JIT=y
CONFIG_DEBUG_INFO_BTF=y
CONFIG_BPF_JIT_ALWAYS_ON=y
CONFIG_BPF_JIT DEFAULT_ON=y
CONFIG_PAHOLE_HAS_SPLIT BTF=y
CONFIG_PAHOLE_HAS_BTF_TAG=y

18

19

* Tools under tools/sched_ext in Linux kernel source
— Where the example userspace schedulers reside
— “make CC=clang LLVM=1| —"
— Run the scheduler
» cd tools/sched_ext/build/bin

» sudo ./scx_simple
— Despite being simple, scx_simple can even outperform CFS
— sysfs interface for sched_ext status checking

» sudo cat /sys/kernel/debug/sched/ext

local=2 global=0 $> sudo cat /sys/kernel/debug/sched/ext
local=885 global=5 2l : simple
local=895 global=12 .

enabled

switching_all
local=906 global=20 switched_all

enable_state : enabled
nr_rejected : 0

sched-ext Architecture and Workflow

scx callbacks | t
(enqueue, dispatch) libbpf-rs

scx_rustland_core

scx_rustland_core (frontend)
(backend)

User-space scheduler

Kernel BPF User space

|. sched_ext callback intercepts tasks that want to run

2. Tasks are added to a BPF_MAP_TYPE RINGBUF

3. BPF component schedules a user-space task (scheduler)

4. User-space scheduler consumes tasks from the ringbuf and assigns a CPU and time slice
to each one of them

5.Tasks are added to a BPF_ MAP_TYPE USER_RINGBUF

6. BPF component consumes tasks from the user ringbuf and dispatches

sched ext Architecture and Interface

	User-space part of
	your scheduler
	(e.g., main.xs)

L e —r
\\// ANAN
\\// AAAN ¢== Interface
\\// ANAN

L el

| Your BPF scheduler |
(e.g., main.bpf.c) |

L Jenfenfenfenfonfunfenfosfusfofosfunfusjosfusfosjofusfosjesfusgejesputy J
AAAN - \\// <== Interface
ANNAN \\//

AAAN ¢zzzzz==== Interface

) e e o e o o e e)

el
ANAN
AAAN &== Interface
ANAN
e =

| Core kernel scheduler |
| (kernel/sched/core.c) |

Source: https://blogs.igalia.com/changwoo/sched-ext-scheduler-architecture-and-interfaces-part-2/

: BPF scheduler <=> user-space counter part

: BPF scheduler => sched_ext framework

: sched_ext framework => BPF scheduler

: core kernel scheduler => scheduler class

21

e Interface |: core kernel scheduler =»

scheduler class (struct sched_class)

* Interface 2: sched ext framework =

The sched_ext framework provides
the common implementation for BPF
schedulers.

BPF scheduler

sched_ext_ops.init(), .exit()
Init_task(), .exit_task()

runnable() , .running(), .stopping()
select_cpu(), .enqueue()
dispatch()

tick()

User-space part of

[[
|| your scheduler ||
[[

(e.g., main.rs)

Your BPF scheduler |
| (e.g., main.bpf.c) [

ANAN \\//

Sched_ext framework ||

(kernel/sched/ext.c) ||

AAAN ¢== Interface
ANAN

Core kernel scheduler |
(kernel/sched/core.c) |

22

: BPF scheduler <=> user-space counter part

: BPF scheduler => sched_ext framework

: sched _ext framework => BPF scheduler

: core kernel scheduler => scheduler class

* Interface 3: BPF scheduler = sched_ext framework
— BPF scheduler need to talk to sched ext to take a certain action
— via BPF helper function or DSQ (dispatch queue)

— DSQ: core consturct between BPF scheduler and sched _ext

» a queue hosting runnable tasks (ordered in FIFO or virtual time, vtime)
» sched_ext also maintains internal DSQs: global DSQ, and per-CPU DSQ (both are FIFO)
» BPF scheduler can create DSQs (FIFO or vtime) to manage tasks by itself
* scx_bpf_create_dsq(), and initialized during sched_ext_ops.init()
» A task can be enqueued in FIFO order (scx_bpf_dispatch()) or vtime order
(scx_bpf_dispatch_vtime()), during sched_ext_ops.enqueue()
» Consuming tasks by moving task from a custom DSQ and move it to internal DSQ:
scx_bpf_consume() or scx_bpf_consume_task() as part of sched_ext_ops.dispatch()
» helper utilities
* scx_bpf_dsqg_nr_queued()
* scx_bpf_destroy_dsq()
* scx_bpf_select_cpu(), scx_bpf_kick_cpu(): select CPU, wakeup CPU

23

* Interface 4: BPF scheduler and user-space counterpart
— Any user-space program (C, Rust) + libbpf AP

24

sched ext

» sched_ext defines struct sched_ext_ops in kernel/sched/ext.c which specifies a list
of hook functions callbacks that need to be realized by the specific scheduler
iInstance

— sched_ext_ops.init()

— sched_ext_ops.exit()

— scx_bpf_switch_all()

— scx_bpf_create_dsq(SHARED_DSQ, -1)
— enable()

— task_struct->scx { slice, .dsg_vtime }

— enqueue()
» local queue (SCX_DSQ_LOCAL), staging area waiting for exec, per-CPU local DSQ
» scx_bpf_dispatch() // take time slice as input (e.g., 20ms)
» scx_bpf_dispatch_vtime()

— stopping()

25

sched ext Scheduling Policy
* Dispatch queue: basic building block of scheduling policies

— A CPU always executes a task from its local DSQ

— A task can be moved from non-local DSQ to the target CPU’s local DSQ

— When looking for next task to run, if local DSQ Is not empty, pick first task there
— Otherwise, the CPU tries to move a task from the global DSQ

— If that doesn’t yield a runnable task either, ext_ops.dispatch() is invoked() to wait for
population of the local DSQ

* Scheduling cycle
— If a task is waking up, ext_ops.select_cpu() to wake up the selected CPU
— scx_bpf.dsq_insert()
» ext_ops.enqueue(): immediately insert the task into either the global or local DSQ

— When a CPU is ready to schedule, follow the above scheduling policy

26

27

Local DSQs: per-CPU runqueue

Local DSQ 0 Local DSQ 1 Local DSQ ... Local DSQ N

Source: https://www.socallinuxexpo.org/sites/default/files/presentations/Sched?620Ext7%620-2%205Cal E%6202 | x.pdf

Global Queue

Dispatch(Task 1) Dispatch(Task ...)
Dispatch(Task 0) Dispatch(Task N)
Task 0
- 7 -

Global DSQ

scheduler core

| !

enqueue pick_task

! |

sched ext core

| T

enqueue dispatch

BPF maps

$

b

—

BPF scheduler's userspace

B

argc, ct argv

°
scx_simple i
2 opt

3 ecode
simple_ops

select_cpu) simple_select_cpu
enqueue) simple_enqueue
dispatch) simple_dispatch
running) simple_running
stopping) simple_stopping
enable) simple_enable

libbpf_print_fn
sigint_handler
sigint_handler

simple_ops, scx_simple

1

!
init) simple_init
simple_exit

argc, argv

opt

name

skel->rodata->fifo_sched

* scx_simple.c

— opens and load the BPF scheduler
(scx_simple_open() and
scx_simple_load())

skel, simple_ops, scx_simple, uei

- enable BPF SCthUler link skel, simple_ops, scx_simple

exit_req skel, uei

* scx_simple.bpf.c

skel, stats

link
ecode skel, uei
skel

ecode

31

Example Schedulers

Checkout:

Simple

scx_centrl

scx_flatcg: a flattened cgroup hierarchy scheduler.
— hierarchical weight-based cgroup CPU control

scxX_hest:

— make scheduling decisions which encourage work to run on cores that are expected to
have high frequency

— optimize workloads that CPU utilization somewhat low, and which can benefit from
running on a subset of cores on the host so as to keep the frequencies high on those
cores

SCX_palr, scx_preyv, scx_userland ...
Rustland: https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rustland

— prioritizes interactive workloads over CPU-intensive workloads
— See the demo

https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rustland

Is sched _ext to replace CFS/EEVDF!
* Thoughts?

32

