
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 9

Process Scheduling III

February 25, 2025
Huaicheng Li

https://people.cs.vt.edu/huaicheng/lkp-sp25/

https://people.cs.vt.edu/huaicheng/lkp-sp25/

2
EEVDF: Earliest Eligible Virtual Deadline First
• Lag: difference between the ideal runtime and the actual runtime of a task
• Eligibility: a task is eligible to run if its lag >= 0
• Virtual deadline: vruntime + requested vruntime

EEVDF paper (1995): here

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=805acf7726282721504c8f00575d91ebfd750564

3

4
Linux Scheduler: Not One Size Fits All ...
• Fairness: everyone should get some CPU time
• Optimization: make optimal use of system resources, minimize critical sections
• Low overhead: should run for as short as possible
• Generalizable: Should work on every architecture, for every workload

– For endusers: gaming, for hyperscalers, run a few internal workloads
• Drawbacks

– Experimentation is difficult: need to recompile + reboot + rewarm caches
– Generalizable scheduler
– Often leaves some performance on the table for some workloads / architectures
– Impossible to make everyone happy all of the time
– Difficult to get new features upstreamed
– Can’t regress the scheduler
– High bar for contributions (understandably)
– Results in lots of out of tree schedulers, vendor hooks, etc

5
The Need for More Scheduling Policies
• In-kernel scheduler design targets generality

– Balance specific performance requirements of many applications
• Tailoring scheduling policies can substantially improve performance for specific

workloads
– (tail) latency, throughput, energy efficiency, security, etc.
– e.g., workloads with a mix of short and long requests
– multi-tenant setups
– resource interferences (low-latency apps + background best-effort apps)
– cache side channel attacks à mitigation: core isolation policies

6
Developing New Scheduling Policies in Linux Kernel is Hard
• Need to deal with ever-changing hardware landscape

– increasing core counts
– multi-core, NUMA
– heterogeneous systems: big.LITTLE ARM, Intel SRF performance/efficiency cores
– support for emerging compute devices: DPUs, domain-specific accelerators (GPUs, TPUs)

• Hard to develop, maintain, deploy, and test new implementations
– Focusing on large-scale deployment, e.g., datacenter scale (millions of servers in the fleet)
– Comply with complex kernel architecture
– Requires extensive testing to avoid crashing the entire system
– Disruptive upgrade require reboots, leading to downtime
– C and assembly, hard to debug, complex synchronization, preemption, interrupts, etc.
– Linux rarely adopts new scheduling policies à O(months) requirements from IT

companies

7
Scheduler Design, Implementation, and Deployment
• agile userspace development
• ease of deployment
• while still enabling fast scheduling for performance
• flexibility: per-CPU or centralized scheduling model
• Principles

– scheduling mechanism remains in the kernel
– while policy resides in userspace
– Q: what abstractions and interfaces should we use?

» Ideally, no applications code changes ...

» Compatible API/ABI

» Can co-exist with existing in-kernel schedulers, e.g., CFS / EEVDF

» Fast event communication between user/kernel space

» ...

8
ghOSt: Fast & Flexbile User-Space Delegation of Linux Scheduling
• SOSP 2021 research paper from Google, here
• Design goals

– Policies should be easy to implement and test
– scheduling expressiveness and efficiency
– enabling scheduling decisions beyond the per-CPU model
– supporting multiple concurrent policies
– non-disruptive updates and fault isolation

https://cs.stanford.edu/~jhumphri/documents/ghost.pdf

9
ghOSt Design
• Kernel side is implemented as a scheduling class (e.g., similar to SCHED_NORM)
• The scheduling class provide a rich API to define arbitrary scheduling policies
• The agents are the in-userspace scheduling policies
• The kernel shares thread status information via messages and status words
• The agents informs the kernel to make scheduling decisions via

transactions/syscalls

10

• Agents can be implemented in any programming languages, debugging via standard
tools

• For fault tolerance and isolation, if agents crash, the systems will fall back to the
default scheduler, e.g., EEVDF

• No reboots
• Flexible scheduling policy model choices, per-CPU or global

11

• Kernel-to-agent communication: Messages
– Why not mmap task_struct to userspace?
– Why not expose thread state va sysfs/proc files, e.g., /proc/pid/...?

• Agent-to-kernel communication:
– Agents send scheduling decisions to the kernel by committing transactions
– syscall-based scheduling decision overhead: a few microseconds

12
Per-CPU and Centralized Scheduler
• Fine-grained policy management: per-cpu or centralized
• Centralized scheduler

– one global agent with a single queue

13
ghOSt Evaluation

14

Source: here

https://lpc.events/event/18/contributions/1687/attachments/1434/3063/LPC%202024_%20Google%20+%20pluggable%20scheduling.pdf

15
Linux sched_ext: BPF-extensible Scheduler Class
• Berkeley Packet Filter (BPF)

– A recently revived techniques that has attracted a lot of attention
– Extensively used for system observability by offloading userspace code to run safely in

kernel space
– eBPF , the BPF verifier ensures that your custom scheduler has neither a memory bug nor

an infinite loop
– Safe fall back to default CFS/EEVDF schedulers

• Using BPF for pluggable scheduling
– A new extensible scheduling class, SCHED_EXT (>SCHED_IDLE, <SCHED_NORMAL)
– Allows you to write and run customized schedulers optimized for target workloads

[1] Extensible Scheduler Class, https://docs.kernel.org/scheduler/sched-ext.html
[2] The extensible scheduler class, https://lwn.net/Articles/922405/
[3] sched_ext schedulers and tools, https://github.com/sched-ext/scx

https://docs.kernel.org/scheduler/sched-ext.html
https://lwn.net/Articles/922405/
https://github.com/sched-ext/scx

16
BPF: A Safe Way to Run Code in Kernel
• Kernel feature that allows custom code to run safely in

the kernel
• Started in the early days for custom packet filtering
• Now much much larger and richer ecosystems
• Write C code, compile it to BPF bytecode, userspace can

load it into the kernel

https://en.wikipedia.org/wiki/EBPF

17
sched_ext
• Write schedulers in BPF

– implement a set of callbacks for handling: task wakeup, enqueue/dequeue, state change,
load balancing, cgroup integrations, etc.

• Compile it
• Load it onto the system, letting BPF and core sched_ext infrastructure do all of the

heavy lifting to enable it

• Offload complicated logic to user space.
• Use of floating points
• Use standard debugging tools
• BPF makes it easy to share data between the kernel and user space

18
How to Use sched_ext
• Kernel needs to be compiled to support sched_exit

– Enable the following configuration options in .config
– Disable CONFIG_DEBUG_INFO_REDUCED and CONFIG_DEBUG_INFO_SPLIT first
– Compile and boot the sched_ext enabled kernel
– sched_ext is used only when the BPF scheduler is loaded and running.

» If a task explicitly sets its scheduling policy to SCHED_EXT, it will be treated as
SCHED_NORMAL and scheduled by CFS until the BPF scheduler is loaded.

19

• Tools under tools/sched_ext in Linux kernel source
– Where the example userspace schedulers reside
– “make CC=clang LLVM=1 –j”
– Run the scheduler

» cd tools/sched_ext/build/bin
» sudo ./scx_simple

– Despite being simple, scx_simple can even outperform CFS
– sysfs interface for sched_ext status checking

» sudo cat /sys/kernel/debug/sched/ext

20
sched-ext Architecture and Workflow

1. sched_ext callback intercepts tasks that want to run
2. Tasks are added to a BPF_MAP_TYPE_RINGBUF
3. BPF component schedules a user-space task (scheduler)
4. User-space scheduler consumes tasks from the ringbuf and assigns a CPU and time slice
to each one of them
5. Tasks are added to a BPF_MAP_TYPE_USER_RINGBUF
6. BPF component consumes tasks from the user ringbuf and dispatches

21
sched_ext Architecture and Interface

Source: https://blogs.igalia.com/changwoo/sched-ext-scheduler-architecture-and-interfaces-part-2/

22

• Interface 1: core kernel scheduler è
scheduler class (struct sched_class)

– The sched_ext framework provides
the common implementation for BPF
schedulers.

• Interface 2: sched_ext framework à
BPF scheduler

– sched_ext_ops.init(), .exit()
– .init_task(), .exit_task()
– .runnable() , .running(), .stopping()
– .select_cpu(), .enqueue()
– .dispatch()
– .tick()

23

• Interface 3: BPF scheduler à sched_ext framework
– BPF scheduler need to talk to sched_ext to take a certain action
– via BPF helper function or DSQ (dispatch queue)
– DSQ: core consturct between BPF scheduler and sched_ext

» a queue hosting runnable tasks (ordered in FIFO or virtual time, vtime)
» sched_ext also maintains internal DSQs: global DSQ, and per-CPU DSQ (both are FIFO)
» BPF scheduler can create DSQs (FIFO or vtime) to manage tasks by itself

• scx_bpf_create_dsq(), and initialized during sched_ext_ops.init()
» A task can be enqueued in FIFO order (scx_bpf_dispatch()) or vtime order

(scx_bpf_dispatch_vtime()), during sched_ext_ops.enqueue()
» Consuming tasks by moving task from a custom DSQ and move it to internal DSQ:

scx_bpf_consume() or scx_bpf_consume_task() as part of sched_ext_ops.dispatch()
» helper utilities

• scx_bpf_dsq_nr_queued()
• scx_bpf_destroy_dsq()
• scx_bpf_select_cpu(), scx_bpf_kick_cpu(): select CPU, wakeup CPU

24

• Interface 4: BPF scheduler and user-space counterpart
– Any user-space program (C, Rust) + libbpf API

25
sched_ext
• sched_ext defines struct sched_ext_ops in kernel/sched/ext.c which specifies a list

of hook functions callbacks that need to be realized by the specific scheduler
instance

– sched_ext_ops.init()
– sched_ext_ops.exit()
– scx_bpf_switch_all()
– scx_bpf_create_dsq(SHARED_DSQ, -1)
– enable()
– task_struct->scx { .slice, .dsq_vtime }
– enqueue()

» local queue (SCX_DSQ_LOCAL), staging area waiting for exec, per-CPU local DSQ
» scx_bpf_dispatch() // take time slice as input (e.g., 20ms)
» scx_bpf_dispatch_vtime()

– stopping()

26
sched_ext Scheduling Policy
• Dispatch queue: basic building block of scheduling policies

– A CPU always executes a task from its local DSQ
– A task can be moved from non-local DSQ to the target CPU’s local DSQ
– When looking for next task to run, if local DSQ is not empty, pick first task there
– Otherwise, the CPU tries to move a task from the global DSQ
– If that doesn’t yield a runnable task either, ext_ops.dispatch() is invoked() to wait for

population of the local DSQ
• Scheduling cycle

– If a task is waking up, ext_ops.select_cpu() to wake up the selected CPU
– scx_bpf.dsq_insert()

» ext_ops.enqueue(): immediately insert the task into either the global or local DSQ
– When a CPU is ready to schedule, follow the above scheduling policy

27
Local DSQs: per-CPU runqueue

Source: https://www.socallinuxexpo.org/sites/default/files/presentations/Sched%20Ext%20-%20SCaLE%2021x.pdf

28
Global Queue

29

30
scx_simple

• scx_simple.c
– opens and load the BPF scheduler

(scx_simple_open() and
scx_simple_load())

– enable BPF scheduler
• scx_simple.bpf.c

31
Example Schedulers
• Checkout:
• Simple
• scx_centrl
• scx_flatcg: a flattened cgroup hierarchy scheduler.

– hierarchical weight-based cgroup CPU control
• scx_nest:

– make scheduling decisions which encourage work to run on cores that are expected to
have high frequency

– optimize workloads that CPU utilization somewhat low, and which can benefit from
running on a subset of cores on the host so as to keep the frequencies high on those
cores

• scx_pair, scx_prev, scx_userland ...
• Rustland: https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rustland

– prioritizes interactive workloads over CPU-intensive workloads
– See the demo

https://github.com/sched-ext/scx/tree/main/scheds/rust/scx_rustland

32
Is sched_ext to replace CFS/EEVDF?
• Thoughts?

