
CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming

Lecture 1

Introduction to Linux Kernel

January 21st, 2025

Huaicheng Li

Slides courtesy of Prof. John Kubiatowicz, CS 162 @ UCB

2
Getting to Know Each Other!

• Who am I?

– PhD (UChicago, ‘15-’20)

– Postdoc (CMU, ‘20-’22)

– Assistant Professor (VT, Fall ‘22)

– https://people.cs.vt.edu/huaicheng

– Office: 4109 Gilbert Place (GP)

– huaicheng@cs.vt.edu; huaicheng@vt.edu

• What do I do?

– Research

– Teaching: mentoring and classes

• Interests: Operating Systems, Storage, Memory, Architecture

https://people.cs.vt.edu/huaicheng
mailto:huaicheng@cs.vt.edu
mailto:huaicheng@vt.edu

3
What is the Linux Kernel

• One of the operating system kernels

– e.g., Windows, FreeBSD, MacOS, etc.

• What does an OS do for you?

– Abstract the hardware for convenience and portability

– Multiplex the hardware among multiple applications

– Isolate applications to contain bugs

– Allow sharing among applications

– ...

4
View: Layered Organization

• User: applications (e.g., vim, gcc)

• Kernel: file systems, process, etc.

• Hardware: CPU, memory, network, disk, GPU, etc.

Providing interface between layers

5
View: Core Services

• Processes

• Memory management

• Files (systems)

• Security

• Networking

• among many others: users, IPC, time, various drivers, etc.

Providing abstractions for applications

6
Example: System Calls

• Interface: applications talk to an OS via system calls

• Abstraction: process and file descriptors

fd = open("out", 1);

write(fd, "hello\n”);

pid = fork();

7
Why is Linux Kernel Interesting?

• OS design deals with conflicting goals and trade-offs

– Efficient yet portable

– Powerful yet simple

– Isolated yet interactable

– General yet performant

• Open problems: multi-core and security

• How does a state-of-the-art OS deal with above issues?

– Hack the Linux kernel!

8

• Extremely large software project

– more than 25 million lines of code

– 7,500 lines of code are added every day!

Linux Kernel Statistics

Source: https://github.com/udoprog/kernelstats

9
Why is Linux Kernel Interesting?

• Very fast development cycles

– release about every 70 days

– 13,000 patches / release

– 273 companies / release (or 1,600 developers / release)

• One of the most well-written/designed/maintained C code

• More here

– Linux Foundation Kernel Report 2017

– Linux Foundation Annual Report 2021

https://www.linuxfoundation.org/resources/publications/linux-kernel-history-report-2020
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/2021_LF_Annual_Report_010222%20(1).pdf

10
Linux Rules the World

• 85.1% of smartphones and tables run Linux (Android)

– iOS: 14.9%

• 98% of top 1 million web servers run Linux

• 99% of super computers run Linux

• SpaceX: From Earth to orbit with Linux and SpaceX

• Ref: Usage share of OS

https://www.zdnet.com/article/from-earth-to-orbit-with-linux-and-spacex/
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems

11
Useful for Job Search

• Contributions from unpaid developers had been in slow decline

– 14.6% (2012) → 13.6% (2013) → 11.8% (2014) → 7.7% (2015)

• Why?

"There are many possible reasons for this decline, but,

arguably, the most plausible of those is quite simple: Kernel

developers are in short supply, so anybody who

demonstrates an ability to get code into the mainline tends

not to have trouble finding job offers."

Source: Linux Foundation Kernel Report 2017

https://www.linuxfoundation.org/resources/publications/linux-kernel-history-report-2020

12
Who Should Take This Course?

• Anyone wants to work on the above problems

• Anyone cares about what’s going on under the hood

• Anyone has to build high-performance systems

• Anyone needs to diagnose bugs or security problems

13
Goals of This Course (LKP)

• Understand core subsystems of the Linux kernel in depth

• Design, implement, and modify Linux kernel code and modules for these subsystems

• Test, debug, and evaluate the performance of systems software in kernel or user
space, using debugging, monitoring and tracing tools

14
Prerequisite

• Undergraduate and graduate students

– C programming (strict)

– Linux command line (strict)

– Computer architecture and operating system (recommended)

• Undergraduate students

– ECE 3574 (Applied Software Design) or CS 3114 (Data Structures)

– CS 3214 (Computer Systems)

15
Textbooks

• Robert Love, Linux Kernel Development (3rd edition), Addison-Wesley

16
Many Other Useful Resources

• Understanding the Linux Kernel, O'Reilly Media

• Professional Linux Kernel Architecture, Wrox

• Linux Device Drivers, O’Reilly Media

• Understanding Linux Network Internals, O’Reilly Media

• Operating Systems: Three Easy Pieces

• Intel 64 and IA-32 Architectures Software Developer Manuals

https://www.amazon.com/Understanding-Linux-Kernel-Third-Daniel/dp/0596005652/ref=sr_1_1?ie=UTF8&qid=1503115638&sr=8-1&keywords=understanding+the+linux+kernel
https://www.amazon.com/Professional-Kernel-Architecture-Wolfgang-Mauerer/dp/0470343435/ref=sr_1_1?s=books&ie=UTF8&qid=1503115724&sr=1-1&keywords=professional+linux+kernel+architecture
https://www.amazon.com/Linux-Device-Drivers-Jonathan-Corbet/dp/0596005903/ref=sr_1_1?s=books&ie=UTF8&qid=1503115700&sr=1-1&keywords=linux+device+drivers+4th+edition
https://www.amazon.com/Understanding-Linux-Network-Internals-Networking/dp/0596002556/ref=pd_sim_14_5?_encoding=UTF8&pd_rd_i=0596002556&pd_rd_r=6GRT95JPFRQ93MKPG68Y&pd_rd_w=C8KKE&pd_rd_wg=ctumP&psc=1&refRID=6GRT95JPFRQ93MKPG68Y
http://pages.cs.wisc.edu/~remzi/OSTEP/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

17
Logistics

• Lectures: TR 3:30-4:45pm, WMS 120

– Regular lectures + Paper discussion + Guest lectures (TBD)

– Instructor office hour: Fridays 11-12am, GP 4109, or by appointment

– No recordings

– Attendance is mandatory

– Ask questions

• TA: Ezekiel Cochran, ecochran@vt.edu

– Office hours: TBA (ex, projects, lectures)

• Course

– Website: https://people.cs.vt.edu/huaicheng/lkp-sp25/

» schedule, homework/project instructions, pointers to materials, etc.

• Canvas:

– Will publish it soon, mainly used for hosting quiz, exercises, notes, slides, projects, etc.

• Ed Discussion: https://edstem.org/us/join/eVsySF

– Announcements, Q/As, etc, social, ...

mailto:ecochran@vt.edu
https://people.cs.vt.edu/huaicheng/lkp-sp25/
https://edstem.org/us/join/eVsySF

18
Grading

• Participation (5%)

• Exercise (6%)

– 2% x 3 exercises

• Paper reading (15%)

– 3% x 5 papers

• Projects (64%)

– 2 small projects: 4% + 10%

– 1 medium project: 20%

– 1 final project: 30%

• Final exam (10%)

• Bonus (5%)

19
Projects

• Small projects

– p1: Add new system calls

– p2: Kernel module – data structure handling

• Medium project

– p3: TBD (kernel programming project), e.g., mm or fs

• Final project

– p4 for 4xxx: TBD (kernel programming project)

– p4 for 5xxx: TBD (semester long research project)

20
Today’s Agenda

• The history of Linux

• Linux open source model and community

• High level overview of the Linux kernel

21
History of UNIX

Source: https://en.wikipedia.org/wiki/History_of_Unix

22
The Birth of Linux

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix
Subject: What would you like to see most in minix?
Summary: small poll for my new operating system
Message-ID: <1991Aug25.205708.9541@klaava.Helsinki.FI>
Date: 25 Aug 91 20:57:08 GMT
Organization: University of Helsinki

Hello everybody out there using minix –

I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu)
for 386(486) AT clones. This has been brewing since april, and is starting to get ready.
I'd like any feedback on things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons) among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work. This implies that
I'll get something practical within a few months, and Id like to know what features most
people would want. Any suggestions are welcome, but I won't promise I'll implement them

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes – it's free of any minix code, and it has a multi-threaded fs. It is NOT protable
(uses 386 task switching etc), and it probably never will support anything other than
AT-harddisks, as that's all I have :-(.

mailto:torvalds@kruuna.helsinki.fi

23
Linux History

• 1991: First apparition, author: Linus Torvalds

• 1992: GPL License, first Linux distributions

• 1994: v1.0 - Single CPU for i386, then ported to Alpha, Sparc, MIPS

• 1996: v2.0 - Symmetric multiprocessing (SMP) support

• 1999: v2.2 - Big Kernel Lock removed

• 2001: v2.4 - USB, RAID, Bluetooth, etc.

• 2003: v2.6 - Physical Address Expansion (PAE), new architectures, etc.

• 2011: v3.0 - Incremental release of v2.6

• 2015: v4.0

• 2022: v6.0

• 2024: v6.13 (released a few days ago)

24
Linux Open Source Model

• Linux is licensed under GPLv2

• Source code is freely available at https://www.kernel.org/

• Ref: td;lr Legal, GPLv2

“You may copy, distribute and modify the software as long as you track

changes/dates in source files. Any modifications to or software

including (via compiler) GPL-licensed code must also be made

available under the GPL along with build & install instructions.”

https://www.tldrlegal.com/license/gnu-general-public-license-v2
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

25
Benefit of Open Source Model

• “Given enough eyeballs, all bugs are shallow”

• “Given a large enough beta-test and co-developer base, almost every problem will be
characterized quickly and the fix obvious to someone.”

• Linus's Law

– The Cathedral & the Bazaar by Eric S. Raymond

– Security, stability, quality, speed of innovation, education, research, etc

https://books.google.com/books?id=F6qgFtLwpJgC&pg=PA30

26
Linux Kernel Release Cycles

• (major).(minor).(stable) → E.g., 5.19.3

• Prepatch or "RC" kernel release → for testing before the mainline release

• Mainline release → maintained by Linus with all new features

• Stable release → additional bug fixes after the mainline kernel release

• Long term support (LTS) for a subset of releases → e.g., 5.15.62

27
Overview of an OS

28
User Space vs. Kernel Space

• A CPU is executing in either of user space or in kernel space

• Only the kernel is allowed to perform privileged operations such as controlling CPU
and IO devices

– E.g., protection ring in x86 architecture

– ring 3: user-space application

– ring 0: operating system kernel

• An user-space application talks to the kernel space through system call interface

– open(), read(), write(), close()

29

30
Linux is a Monolithic Kernel

• A traditional design: all of the OS runs in kernel, privileged mode

– share the same address space

• Kernel interface ~= system call interface

• Good: easy for subsystems to cooperate

– one cache shared by file system and virtual memory

• Bad: interactions are complex leads to bugs, no isolation within kernel

31
Alternative: Microkernel Design

• Many OS services run as ordinary user programs

– e.g., file system in a file server

• Kernel implements minimal mechanism to run services in user space

– IPC, virtual memory, threads

• Kernel interface != system call interface

– applications talk to servers via IPCs

• Good: more isolation

• Bad: IPCs may be slow

32
Debate

• Tanenbaum-Torvalds debate

• Most real-world kernels are mixed: Linux, OS X, Windows

– e.g., X Window Systems

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/X_Window_System

33
Kernel and Course Map

34

35

36

37

38

39

40

41

• Schedule: https://people.cs.vt.edu/huaicheng/lkp-sp25/schedule/

https://people.cs.vt.edu/huaicheng/lkp-sp25/schedule/

42
Setup Dev Environment

• VirtualBox / VMWare Workstation / QEMU to run Linux VM

– Recommended settings

» disk >= 64GB, DRAM >= 4GB, #CPU >=4

– Porting forwarding:

» protocol: TCP, host IP: 127.0.0.1

» host port: 2222, guest port: 22

– VM/host file transmission: scp, folder sharing, etc.

• Guest OS

– Ubuntu server 24.04, or any other Linux distros

» openssh-server

» ssh –p2222 $username@localhost

43
Next Step

• Demos on setting up the virtual machine env

• Bring your laptop

• Ex0 will be released on Wednesday

• Productive tools:

– vim, ssh, scp, tmux, git, and more

– Check the missing semester of your cs education,

• Linux source code:

– git clone https://github.com/torvalds/linux.git

• Next Lecture,

– building and exploring Linux kernel source code

https://github.com/torvalds/linux.git

	Slide 1: CS 5264/4224; ECE 5414/4414 (Advanced) Linux Kernel Programming Lecture 1 Introduction to Linux Kernel
	Slide 2: Getting to Know Each Other!
	Slide 3: What is the Linux Kernel
	Slide 4: View: Layered Organization
	Slide 5: View: Core Services
	Slide 6: Example: System Calls
	Slide 7: Why is Linux Kernel Interesting?
	Slide 8: Linux Kernel Statistics
	Slide 9: Why is Linux Kernel Interesting?
	Slide 10: Linux Rules the World
	Slide 11: Useful for Job Search
	Slide 12: Who Should Take This Course?
	Slide 13: Goals of This Course (LKP)
	Slide 14: Prerequisite
	Slide 15: Textbooks
	Slide 16: Many Other Useful Resources
	Slide 17: Logistics
	Slide 18: Grading
	Slide 19: Projects
	Slide 20: Today’s Agenda
	Slide 21: History of UNIX
	Slide 22: The Birth of Linux
	Slide 23: Linux History
	Slide 24: Linux Open Source Model
	Slide 25: Benefit of Open Source Model
	Slide 26: Linux Kernel Release Cycles
	Slide 27: Overview of an OS
	Slide 28: User Space vs. Kernel Space
	Slide 29
	Slide 30: Linux is a Monolithic Kernel
	Slide 31: Alternative: Microkernel Design
	Slide 32: Debate
	Slide 33: Kernel and Course Map
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Setup Dev Environment
	Slide 43: Next Step

