CS 5264/4224; ECE 5414/4414
(Advanced) Linux Kernel Programming
Lecture 1

Introduction to Linux Kernel

January 21%t, 2025
Huaicheng Li

Slides courtesy of Prof. John Kubiatowicz, CS 162 @ UCB

Getting to Know Each Other!

* Who am I

— PhD (UChicago, “15-"20)

— Postdoc (CMU, 20-"22)

— Assistant Professor (VT, Fall 22)

— https://people.cs.vt.edu/huaicheng

— Office: 4109 Gilbert Place (GP)

— huaicheng@cs.vt.edu; huaicheng@vt.edu
« What do | do!

— Research

— Teaching: mentoring and classes

* Interests: Operating Systems, Storage, Memory, Architecture

https://people.cs.vt.edu/huaicheng
mailto:huaicheng@cs.vt.edu
mailto:huaicheng@vt.edu

What is the Linux Kernel

* One of the operating system kernels
— e.g, Windows, FreeBSD, MacO5, etc.
* What does an OS do for you!

— Abstract the hardware for convenience and portability
— Multiplex the hardware among multiple applications
— Isolate applications to contain bugs

— Allow sharing among applications

View: Layered Organization

« User: applications (e.g., vim, gcc)
 Kernel: file systems, process, etc.

« Hardware: CPU, memory, network, disk, GPU, etc.

Providing interface between layers

View: Core Services

* Processes

* Memory management

* Hles (sysems)

« Security

* Networking

e among many others users, IPC, time, various drivers, etc.

Providing abstractions for applications

Example: System Calls

- Interface: applications talk to an OS via system calls

» Abstraction: process and file descriptors

fd = open("out”, 1);
write(fd, "hello\n”);
pid = fork();

Why is Linux Kernel Interesting?

 OS design deals with conflicting goals and trade-offs
— Efficient yet portable
— Powerful yet simple
— Isolated yet interactable
— General yet performant
« Open problems: multi-core and security
« How does a state-of-the-art OS deal with above issues?

— Hack the Linux kernel!

Lines of code in the Linux kernel
Generated using https://github.com/udoprog/kernelstats

Linux Kernel Statistics

» Extremely large software project
— more than 25 million lines of code
— 7,500 lines of code are added every day!

Source: https://github.com/udoprog/kernelstats

444

Why is Linux Kernel Interesting?

« Very fast development cycles

— release about every 70 days

— 13,000 patches / release

— 273 companies / release (or 1,600 developers / release)
* One of the most well-written/designed/maintained C code
» More here

— Linux Foundation Kernel Report 2017/

— Linux Foundation Annual Report 2021

https://www.linuxfoundation.org/resources/publications/linux-kernel-history-report-2020
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/2021_LF_Annual_Report_010222%20(1).pdf

Linux Rules the World

+ 85.1% of smartphones and tables run Linux (Android)
—i0S: 14.9%

« 98% of top 1 million web servers run Linux

« 99% of super computers run Linux

 SpaceX: From Earth to orbit with Linux and SpaceX

« Ref: Usage share of OS

10

https://www.zdnet.com/article/from-earth-to-orbit-with-linux-and-spacex/
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems

Useful for Job Search

 Contributions from unpad developers had been in dow decline
— 146% (2012) — 13.6% (2013) — 11.8% (2014) — 7.7% (2015)
« Why?

"There are many possble reasons for this dedling, but,
arguably, the mog plaugble of those is quite smple: Kernel
developers are in short supply, so anybody who
demonstrates an ability to get code into the manline tends
not to have trouble finding job offers.”

Source: Linux Foundation Kernel Report 2017

11

https://www.linuxfoundation.org/resources/publications/linux-kernel-history-report-2020

Who Should Take This Course?

« Anyone wants to work on the above problems
« Anyone cares about what's going on under the hood
* Anyone has to build high-performance systems

« Anyone needs to diagnose bugs or security problems

12

Goals of This Course (LKP)

Understand core subsystems of the Linux kernel in depth
Design, implement, and modify Linux kernel code and modules for these subsystems

» Test, debug, and evaluate the performance of systems software in kernel or user
space, using debugging, monitoring and tracing tools

13

Prerequisite

 Undergraduate and graduate students
— C programming (strict)
— Linux command line (strict)

— Computer architecture and operating system (recommended)
» Undergraduate students

— ECE 3574 (Applied Software Design) or CS 3114 (Data Structures)
— CS 3214 (Computer Systems)

14

Textbooks
* Robert Love, Linux Kernel Development (37 edition), Addison-VWesley

VAV
Robert Love Third Edition

Linux Kernel
Development

A thorough guide to the design and
implementation of the Linux kernel

15

Many Other Useful Resources
« Understanding the Linux Kernel, O'Reilly Media

* Professional Linux Kernel Architecture, VWWrox

« Linux Device Drivers, O'Reilly Media

« Understanding Linux Network Internals, O’Reilly Media

« Operating Systems: Three Easy Pieces

* Intel 64 and |A-32 Architectures Software Developer Manuals

16

https://www.amazon.com/Understanding-Linux-Kernel-Third-Daniel/dp/0596005652/ref=sr_1_1?ie=UTF8&qid=1503115638&sr=8-1&keywords=understanding+the+linux+kernel
https://www.amazon.com/Professional-Kernel-Architecture-Wolfgang-Mauerer/dp/0470343435/ref=sr_1_1?s=books&ie=UTF8&qid=1503115724&sr=1-1&keywords=professional+linux+kernel+architecture
https://www.amazon.com/Linux-Device-Drivers-Jonathan-Corbet/dp/0596005903/ref=sr_1_1?s=books&ie=UTF8&qid=1503115700&sr=1-1&keywords=linux+device+drivers+4th+edition
https://www.amazon.com/Understanding-Linux-Network-Internals-Networking/dp/0596002556/ref=pd_sim_14_5?_encoding=UTF8&pd_rd_i=0596002556&pd_rd_r=6GRT95JPFRQ93MKPG68Y&pd_rd_w=C8KKE&pd_rd_wg=ctumP&psc=1&refRID=6GRT95JPFRQ93MKPG68Y
http://pages.cs.wisc.edu/~remzi/OSTEP/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Logistics
* Lectures: TR 3:30-4:45pm, WMS 120

— Regular lectures + Paper discussion + Guest lectures (TBD)
— Instructor office hour: Fridays 11-12am, GP 4109, or by appointment
— No recordings
— Attendance is mandatory
— Ask questions
TA: Ezekiel Cochran, ecochran@vt.edu
— Office hours: TBA (ex, projects, lectures)

« Course
— Website: https://people.cs.vt.edu/huaicheng/lkp-sp25/

» schedule, homework/project instructions, pointers to materials, etc.

Canvas:

— Will publish it soon, mainly used for hosting quiz, exercises, notes, slides, projects, etc.

Ed Discussion: https://edstem.org/us/join/eVsySF

— Announcements, Q/As, etc, social, ...

17

mailto:ecochran@vt.edu
https://people.cs.vt.edu/huaicheng/lkp-sp25/
https://edstem.org/us/join/eVsySF

Grading

» Participation (5%)

* Exercise (6%)
— 2% x 3 exercises

» Paper reading (15%)
— 3% X 5 papers

* Projects (64%)
— 2 small projects: 4% + 10%
— 1 medium project: 20%
— 1 final project: 30%

* Final exam (10%)

« Bonus (5%)

Projects

« Small projects

— p1: Add new system calls

— p2: Kernel module — data structure handling
» Medium project

— p3: TBD (kernel programming project), e.g., mm or fs
* Final project

— p4 for 4xxx: TBD (kernel programming project)

— p4 for Sxxx: TBD (semester long research project)

19

Today’s Agenda
* The history of Linux

» Linux open source model and community

- High level overview of the Linux kernel

20

History of UNIX

1969

1971 t0 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

Unix-like systems

1985
1986

1987
1988
1989
1990
1991

1992

1993
1994
1995
1996
1997

1998

1999
2000
2001 to 2002
2003

2004
2005 to 2007
2008 to 2009

2010
2011 t0 2018

2019 to 2023

Source: https://en.wikipedia.org/wiki/History of Unix

- Open source

- Mixed/shared source

- Closed source

1969

1971 to 1973

1974 to 1975

1978

1979

1980

1981

1982

1983

1984

1985
1986

1987
1988
1989
1990
1991

1992

1993
1994
1995
1996
1997
1998
1999
2000
2001 to 2002
2003

2004
2005 to 2007
2008 to 2009

2010
2011 to 2018

2019 to 2023

21

22

The Birth of Linux

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system

Message-ID: <1991Aug25.205708.9541@klaava.Helsinki.FI>
Date: 25 Aug 91 20:57:08 GMT

Organization: University of Helsinki

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu)
for 386(486) AT clones. This has been brewing since april, and is starting to get ready.

I'd like any feedback on things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons) among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work. This implies that
I'll get something practical within a few months, and Id like to know what features most

people would want. Any suggestions are welcome, but I won't promise I'll implement them ©

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a multi-threaded fs. It is NOT protable
(uses 386 task switching etc), and it probably never will support anything other than
AT-harddisks, as that's all I have :-(.

mailto:torvalds@kruuna.helsinki.fi

Linux History

* 1991: First apparition, author: Linus Torvalds

« 1992: GPL License, first Linux distributions

« 1994: v1.0 - Single CPU for i386, then ported to Alpha, Sparc, MIPS
« 1996: v2.0 - Symmetric multiprocessing (SMP) support

« 1999:v2.2 - Big Kernel Lock removed

-« 2001: v2.4 - USB, RAID, Bluetooth, etc.

« 2003: v2.6 - Physical Address Expansion (PAE), new architectures, etc.
« 2011:v3.0 - Incremental release of v2.6

« 2015:v4.0

« 2022:v6.0

« 2024: v6.13 (released a few days ago)

23

Linux Open Source Model

 Linux islicensed under GPLV2
« Source code isfreely avallable at https//www kernel.org

o Ref: tdir Legd, GPLV2

“You may copy, distribute and modify the software as long as you track
changes/dates in source files. Any modifications to or software
Including (via compiler) GPL-licensed code must also be made
available under the GPL along with build & install instructions.”

24

https://www.tldrlegal.com/license/gnu-general-public-license-v2
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

Benefit of Open Source Model

 “Given enough eyeballs, all bugs are shallow”

+ “Given a large enough beta-test and co-developer base, almost every problem will be
characterized quickly and the fix obvious to someone.”

* Linus's Law
— The Cathedral & the Bazaar by Eric S. Raymond

— Security, stability, quality, speed of innovation, education, research, etc

25

https://books.google.com/books?id=F6qgFtLwpJgC&pg=PA30

Linux Kernel Release Cycles
* (major).(minor).(stable) — E.g, 5.19.3

Prepatch or "RC" kernel release — for testing before the mainline release

Mainline release — maintained by Linus with all new features

Stable release — additional bug fixes after the mainline kernel release

Long term support (LTS) for a subset of releases — e.g,, 5.15.62

v4.12 v4.13-rcl v4.13-rc2 v4.13
Merge Window Pre-release stabilization period
- - >

2 weeks ~2 months

26

Overview of an OS

Application 1

Application 2

Application 3

> user-space

System Call Interface

!

'

'

Kernel Subsystems

Device Drivers

i
' >kernel-space
|

hardware

27

User Space vs. Kernel Space

« A CPU is executing in either of user space or in kernel space

* Only the kernel is allowed to perform privileged operations such as controlling CPU
and 1O devices

— E.g, protection ring in x86 architecture
— ring 3: user-space application
— ring O: operating system kernel
* An user-space application talks to the kernel space through system call interface

— open(), read(), write(), close()

28

Example:

simplified path in the
kernel for reading data
into a file on disk

myfile.readlines ()

System call: read ()

System call processing

Virtual File System

File System

Block layer

HDD driver

sys_read|()
vis_read()
ext2_ readpage()
submit bio ()

29

Linux is @ Monolithic Kernel

* A traditional design: all of the OS runs in kernel, privileged mode

— share the same address space
 Kernel interface ~= system call interface
« Good: easy for subsystems to cooperate
— one cache shared by file system and virtual memory

- Bad: interactions are complex leads to bugs, no isolation within kernel

30

Alternative: Microkernel Design .

« Many OS services run as ordinary user programs

— eg, file system in a file server

Kernel implements minimal mechanism to run services in user space

— IPC, virtual memory, threads

Kernel interface = system call interface

— applications talk to servers via IPCs

Good: more isolation

Bad: IPCs may be slow

Debate

* [Tanenbaum-Torvalds debate

* Most real-world kernels are mixed: Linux, OS X, Windows
—eg, X Window Systems

32

https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/X_Window_System

Kernel and Course Map

User space
Kernel
space
Processing
Memory
Management
Hardware CPU Main Memory

33

User space
Kernel System Call Interface
space
- Human
Processing Interface
& Storage ||Networking
Memory Various
Devices
Management
Interrupt
Management Devices drivers
Hardware CPU Main Memory Kl\élg.us;;:. HDD/ SSD mfemrfgtrzlé

34

User space
Kernel System Call Interface
space
Processing
Human
Interface
& Storage ||Networking
Memory Various
Devices
Management
Interrupt
Management Devices drivers
Hardware CPU Main Memory thgluse?é_ HDD | SSD mfet‘#:g;

35

User space

Kernel
space

System Call Interface

Processing

Interrupts Mgt.

Work

Softirg|[Tasklet L

ue UESl

Interrupt handling

Memory
Management

Human
Interface
&
Various
Devices

Storage

Networking

Devices drivers

Hardware

CPU

Main Memory

Mouse,
Kbd., etc.

HDD |/ SSD

Network
Interface

36

User space

Kernel System Call Interface
space
Processing Memory
Management
Human
Interface
& Storage ||Networking
Various
Devices

Interrupts Mgt.

Work
Softirg||Tasklet Iqu eues|

Devices drivers

Interrupt handling

Network
Interface

Mouse,

Kbd., et | HPP1SSD

Hardware CPU Main Memory

User space
Kernel System Call Interface
space
Processing Memory Storage ||Networking
Management Virtual File —
interface | |L_SYStem
& TCPIUDP
Various | ||File System
Devices l
Interrupts Mgt. Blocklayer || 1| Ethernet
Work
sotgeskie e, [Char. | [_Block] [Network |
Interrupt handling Devices drivers
. Mouse, Network
Hardware CPU Main Memory Kbd., etc. HDD / SSD Interface

38

User space
Kernel System Call Interface
space _

Data Processing Memory Storage ||Networking
structures Management e Virtual File Sockets
Synchro- Interface System

nization & TCP/UDP
Various | ||File System
Devices il
Interrupts Mgt. Block layer Ethernet
Work
Softirq||Tasklet L
Interrupt handling Devices drivers
. Mouse, Network
Hardware CPU Main Memory Kbd., etc. HDD [SSD Interface

39

User space | Kernel debugging Development tools Static code exploration || Performance eval.

Kernel System Call Interface
space
Data Processing " Memory Storage | |Networking
structures anagement Human Virtual File Sockets
L Interface System
nization & TCPIUDP
Various | || File System
Debugging Devices il
Interrupts Mgt. Block layer Ethernet
Tracing
Work
Softirg|[Tasklet L
oot ueues| [Char. | [Block] [Network]
Evaluation Interrupt handling Devices drivers
: Mouse, Network
Hardware CPU il zale Kbd., etc. Arbizsn Interface

« Schedule: https://people.cs.vt.edu/huaicheng/lkp-sp25/schedule/

41

https://people.cs.vt.edu/huaicheng/lkp-sp25/schedule/

Setup Dev Environment
« VirtualBox / VMWare Workstation / QEMU to run Linux VM

— Recommended settings

» disk >= 64GB, DRAM >= 4GB, #CPU >=4
— Porting forwarding:

» protocol: TCP, host IP: 127.0.0.1

» host port: 2222, guest port: 22

— VM/host file transmission: scp, folder sharing, etc.

« Guest OS

— Ubuntu server 24.04, or any other Linux distros
» openssh-server
» ssh —p2222 $username@localhost

42

Next Sep

Demos on setting up the virtual machine env
Bring your laptop
ExO will be released on VWednesday
Productive tools:

— vim, ssh, scp, tmux, git, and more

— Check the missing semester of your cs education,
Linux source code;

— git clone https://github.com/torvalds/linux.qit

Next Lecture,
— building and exploring Linux kernel source code

https://github.com/torvalds/linux.git

	Slide 1: CS 5264/4224; ECE 5414/4414 (Advanced) Linux Kernel Programming Lecture 1 Introduction to Linux Kernel
	Slide 2: Getting to Know Each Other!
	Slide 3: What is the Linux Kernel
	Slide 4: View: Layered Organization
	Slide 5: View: Core Services
	Slide 6: Example: System Calls
	Slide 7: Why is Linux Kernel Interesting?
	Slide 8: Linux Kernel Statistics
	Slide 9: Why is Linux Kernel Interesting?
	Slide 10: Linux Rules the World
	Slide 11: Useful for Job Search
	Slide 12: Who Should Take This Course?
	Slide 13: Goals of This Course (LKP)
	Slide 14: Prerequisite
	Slide 15: Textbooks
	Slide 16: Many Other Useful Resources
	Slide 17: Logistics
	Slide 18: Grading
	Slide 19: Projects
	Slide 20: Today’s Agenda
	Slide 21: History of UNIX
	Slide 22: The Birth of Linux
	Slide 23: Linux History
	Slide 24: Linux Open Source Model
	Slide 25: Benefit of Open Source Model
	Slide 26: Linux Kernel Release Cycles
	Slide 27: Overview of an OS
	Slide 28: User Space vs. Kernel Space
	Slide 29
	Slide 30: Linux is a Monolithic Kernel
	Slide 31: Alternative: Microkernel Design
	Slide 32: Debate
	Slide 33: Kernel and Course Map
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Setup Dev Environment
	Slide 43: Next Step

