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Getting to Know Each Other!

* Who am I

— PhD (UChicago, “15-"20)

— Postdoc (CMU, 20-"22)

— Assistant Professor (VT, Fall 22)

— https://people.cs.vt.edu/huaicheng

— Office: 4109 Gilbert Place (GP)

— huaicheng@cs.vt.edu; huaicheng@vt.edu
« What do | do!

— Research

— Teaching: mentoring and classes

* Interests: Operating Systems, Storage, Memory, Architecture


https://people.cs.vt.edu/huaicheng
mailto:huaicheng@cs.vt.edu
mailto:huaicheng@vt.edu

What is the Linux Kernel

* One of the operating system kernels
— e.g, Windows, FreeBSD, MacO5, etc.
* What does an OS do for you!

— Abstract the hardware for convenience and portability
— Multiplex the hardware among multiple applications
— Isolate applications to contain bugs

— Allow sharing among applications



View: Layered Organization

« User: applications (e.g., vim, gcc)
 Kernel: file systems, process, etc.

« Hardware: CPU, memory, network, disk, GPU, etc.

Providing interface between layers ....



View: Core Services

* Processes

* Memory management

* Hles (sysems)

« Security

* Networking

e among many others users, IPC, time, various drivers, etc.

Providing abstractions for applications



Example: System Calls

- Interface: applications talk to an OS via system calls

» Abstraction: process and file descriptors

fd = open("out”, 1);
write(fd, "hello\n”);
pid = fork();



Why is Linux Kernel Interesting?

 OS design deals with conflicting goals and trade-offs
— Efficient yet portable
— Powerful yet simple
— Isolated yet interactable
— General yet performant
« Open problems: multi-core and security
« How does a state-of-the-art OS deal with above issues?

— Hack the Linux kernel!



Lines of code in the Linux kernel
Generated using https://github.com/udoprog/kernelstats

Linux Kernel Statistics

» Extremely large software project
— more than 25 million lines of code
— 7,500 lines of code are added every day!

Source: https://github.com/udoprog/kernelstats
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Why is Linux Kernel Interesting?

« Very fast development cycles

— release about every 70 days

— 13,000 patches / release

— 273 companies / release (or 1,600 developers / release)
* One of the most well-written/designed/maintained C code
» More here

— Linux Foundation Kernel Report 2017/

— Linux Foundation Annual Report 2021



https://www.linuxfoundation.org/resources/publications/linux-kernel-history-report-2020
https://8112310.fs1.hubspotusercontent-na1.net/hubfs/8112310/2021_LF_Annual_Report_010222%20(1).pdf

Linux Rules the World

+ 85.1% of smartphones and tables run Linux (Android)
—i0S: 14.9%

« 98% of top 1 million web servers run Linux

« 99% of super computers run Linux

 SpaceX: From Earth to orbit with Linux and SpaceX

« Ref: Usage share of OS
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https://www.zdnet.com/article/from-earth-to-orbit-with-linux-and-spacex/
https://en.wikipedia.org/wiki/Usage_share_of_operating_systems

Useful for Job Search

 Contributions from unpad developers had been in dow decline
— 146% (2012) — 13.6% (2013) — 11.8% (2014) — 7.7% (2015)
« Why?

"There are many possble reasons for this dedling, but,
arguably, the mog plaugble of those is quite smple: Kernel
developers are in short supply, so anybody who
demonstrates an ability to get code into the manline tends
not to have trouble finding job offers.”

Source: Linux Foundation Kernel Report 2017
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https://www.linuxfoundation.org/resources/publications/linux-kernel-history-report-2020

Who Should Take This Course?

« Anyone wants to work on the above problems
« Anyone cares about what's going on under the hood
* Anyone has to build high-performance systems

« Anyone needs to diagnose bugs or security problems
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Goals of This Course (LKP)

Understand core subsystems of the Linux kernel in depth
Design, implement, and modify Linux kernel code and modules for these subsystems

» Test, debug, and evaluate the performance of systems software in kernel or user
space, using debugging, monitoring and tracing tools
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Prerequisite

 Undergraduate and graduate students
— C programming (strict)
— Linux command line (strict)

— Computer architecture and operating system (recommended)
» Undergraduate students

— ECE 3574 (Applied Software Design) or CS 3114 (Data Structures)
— CS 3214 (Computer Systems)
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Textbooks
* Robert Love, Linux Kernel Development (37 edition), Addison-VWesley

VAV
Robert Love Third Edition

Linux Kernel
Development

A thorough guide to the design and
implementation of the Linux kernel
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Many Other Useful Resources
« Understanding the Linux Kernel, O'Reilly Media

* Professional Linux Kernel Architecture, VWWrox

« Linux Device Drivers, O'Reilly Media

« Understanding Linux Network Internals, O’Reilly Media

« Operating Systems: Three Easy Pieces

* Intel 64 and |A-32 Architectures Software Developer Manuals
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https://www.amazon.com/Understanding-Linux-Kernel-Third-Daniel/dp/0596005652/ref=sr_1_1?ie=UTF8&qid=1503115638&sr=8-1&keywords=understanding+the+linux+kernel
https://www.amazon.com/Professional-Kernel-Architecture-Wolfgang-Mauerer/dp/0470343435/ref=sr_1_1?s=books&ie=UTF8&qid=1503115724&sr=1-1&keywords=professional+linux+kernel+architecture
https://www.amazon.com/Linux-Device-Drivers-Jonathan-Corbet/dp/0596005903/ref=sr_1_1?s=books&ie=UTF8&qid=1503115700&sr=1-1&keywords=linux+device+drivers+4th+edition
https://www.amazon.com/Understanding-Linux-Network-Internals-Networking/dp/0596002556/ref=pd_sim_14_5?_encoding=UTF8&pd_rd_i=0596002556&pd_rd_r=6GRT95JPFRQ93MKPG68Y&pd_rd_w=C8KKE&pd_rd_wg=ctumP&psc=1&refRID=6GRT95JPFRQ93MKPG68Y
http://pages.cs.wisc.edu/~remzi/OSTEP/
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Logistics
* Lectures: TR 3:30-4:45pm, WMS 120

— Regular lectures + Paper discussion + Guest lectures (TBD)
— Instructor office hour: Fridays 11-12am, GP 4109, or by appointment
— No recordings
— Attendance is mandatory
— Ask questions
TA: Ezekiel Cochran, ecochran@vt.edu
— Office hours: TBA (ex, projects, lectures)

« Course
— Website: https://people.cs.vt.edu/huaicheng/lkp-sp25/

» schedule, homework/project instructions, pointers to materials, etc.

Canvas:

— Will publish it soon, mainly used for hosting quiz, exercises, notes, slides, projects, etc.

Ed Discussion: https://edstem.org/us/join/eVsySF

— Announcements, Q/As, etc, social, ...
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mailto:ecochran@vt.edu
https://people.cs.vt.edu/huaicheng/lkp-sp25/
https://edstem.org/us/join/eVsySF

Grading

» Participation (5%)

* Exercise (6%)
— 2% x 3 exercises

» Paper reading (15%)
— 3% X 5 papers

* Projects (64%)
— 2 small projects: 4% + 10%
— 1 medium project: 20%
— 1 final project: 30%

* Final exam (10%)

« Bonus (5%)



Projects

« Small projects

— p1: Add new system calls

— p2: Kernel module — data structure handling
» Medium project

— p3: TBD (kernel programming project), e.g., mm or fs
* Final project

— p4 for 4xxx: TBD (kernel programming project)

— p4 for Sxxx: TBD (semester long research project)
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Today’s Agenda
* The history of Linux

» Linux open source model and community

- High level overview of the Linux kernel
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History of UNIX
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Source: https://en.wikipedia.org/wiki/History of Unix

- Open source

- Mixed/shared source

- Closed source
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The Birth of Linux

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)
Newsgroups: comp.os.minix

Subject: What would you like to see most in minix?

Summary: small poll for my new operating system

Message-ID: <1991Aug25.205708.9541@klaava.Helsinki.FI>
Date: 25 Aug 91 20:57:08 GMT

Organization: University of Helsinki

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be big and professional like gnu)
for 386(486) AT clones. This has been brewing since april, and is starting to get ready.

I'd like any feedback on things people like/dislike in minix, as my OS resembles it somewhat
(same physical layout of the file-system (due to practical reasons) among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to work. This implies that
I'll get something practical within a few months, and Id like to know what features most

people would want. Any suggestions are welcome, but I won't promise I'll implement them ©

Linus (torvalds@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a multi-threaded fs. It is NOT protable
(uses 386 task switching etc), and it probably never will support anything other than
AT-harddisks, as that's all I have :-(.


mailto:torvalds@kruuna.helsinki.fi

Linux History

* 1991: First apparition, author: Linus Torvalds

« 1992: GPL License, first Linux distributions

« 1994: v1.0 - Single CPU for i386, then ported to Alpha, Sparc, MIPS
« 1996: v2.0 - Symmetric multiprocessing (SMP) support

« 1999:v2.2 - Big Kernel Lock removed

-« 2001: v2.4 - USB, RAID, Bluetooth, etc.

« 2003: v2.6 - Physical Address Expansion (PAE), new architectures, etc.
« 2011:v3.0 - Incremental release of v2.6

« 2015:v4.0

« 2022:v6.0

« 2024: v6.13 (released a few days ago)
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Linux Open Source Model

 Linux islicensed under GPLV2
« Source code isfreely avallable at https//www kernel.org

o Ref: tdir Legd, GPLV2

“You may copy, distribute and modify the software as long as you track
changes/dates in source files. Any modifications to or software
Including (via compiler) GPL-licensed code must also be made
available under the GPL along with build & install instructions.”
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https://www.tldrlegal.com/license/gnu-general-public-license-v2
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html

Benefit of Open Source Model

 “Given enough eyeballs, all bugs are shallow”

+ “Given a large enough beta-test and co-developer base, almost every problem will be
characterized quickly and the fix obvious to someone.”

* Linus's Law
— The Cathedral & the Bazaar by Eric S. Raymond

— Security, stability, quality, speed of innovation, education, research, etc
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https://books.google.com/books?id=F6qgFtLwpJgC&pg=PA30

Linux Kernel Release Cycles
* (major).(minor).(stable) — E.g, 5.19.3

Prepatch or "RC" kernel release — for testing before the mainline release

Mainline release — maintained by Linus with all new features

Stable release — additional bug fixes after the mainline kernel release

Long term support (LTS) for a subset of releases — e.g,, 5.15.62

v4.12 v4.13-rcl v4.13-rc2 v4.13
Merge Window Pre-release stabilization period
- - >

2 weeks ~2 months
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Overview of an OS

Application 1

Application 2

Application 3

> user-space

System Call Interface

!

'

'

Kernel Subsystems

Device Drivers

i
' >kernel-space
|

hardware
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User Space vs. Kernel Space

« A CPU is executing in either of user space or in kernel space

* Only the kernel is allowed to perform privileged operations such as controlling CPU
and 1O devices

— E.g, protection ring in x86 architecture
— ring 3: user-space application
— ring O: operating system kernel
* An user-space application talks to the kernel space through system call interface

— open(), read(), write(), close()
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Example:

simplified path in the
kernel for reading data
into a file on disk

myfile.readlines ()

System call: read ()

System call processing

Virtual File System

File System

Block layer

HDD driver

sys_read|()
vis_read()
ext2_ readpage()
submit bio ()

29



Linux is @ Monolithic Kernel

* A traditional design: all of the OS runs in kernel, privileged mode

— share the same address space
 Kernel interface ~= system call interface
« Good: easy for subsystems to cooperate
— one cache shared by file system and virtual memory

- Bad: interactions are complex leads to bugs, no isolation within kernel
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Alternative: Microkernel Design .

« Many OS services run as ordinary user programs

— eg, file system in a file server

Kernel implements minimal mechanism to run services in user space

— IPC, virtual memory, threads

Kernel interface = system call interface

— applications talk to servers via IPCs

Good: more isolation

Bad: IPCs may be slow



Debate

* [Tanenbaum-Torvalds debate

* Most real-world kernels are mixed: Linux, OS X, Windows
—eg, X Window Systems
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https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/X_Window_System

Kernel and Course Map

User space
Kernel
space
Processing
Memory
Management
Hardware CPU Main Memory
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User space
Kernel System Call Interface
space
- Human
Processing Interface
& Storage ||Networking
Memory Various
Devices
Management
Interrupt
Management Devices drivers
Hardware CPU Main Memory Kl\élg.us;;:. HDD/ SSD mfemrfgtrzlé
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User space
Kernel System Call Interface
space
Processing
Human
Interface
& Storage ||Networking
Memory Various
Devices
Management
Interrupt
Management Devices drivers
Hardware CPU Main Memory thgluse?é_ HDD | SSD mfet‘#:g;

35



User space

Kernel
space

System Call Interface

Processing

Interrupts Mgt.

Work

Softirg|[Tasklet L

ue UESl

Interrupt handling

Memory
Management

Human
Interface
&
Various
Devices

Storage

Networking

Devices drivers

Hardware

CPU

Main Memory

Mouse,
Kbd., etc.

HDD |/ SSD

Network
Interface
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User space

Kernel System Call Interface
space
Processing Memory
Management
Human
Interface
& Storage ||Networking
Various
Devices

Interrupts Mgt.

Work
Softirg||Tasklet Iqu eues|

Devices drivers

Interrupt handling

Network
Interface

Mouse,

Kbd., et | HPP1SSD

Hardware CPU Main Memory




User space
Kernel System Call Interface
space
Processing Memory Storage ||Networking
Management Virtual File —
interface | |L_SYStem
& TCPIUDP
Various | ||File System
Devices l
Interrupts Mgt. Blocklayer || 1| Ethernet
Work
sotgeskie e, [Char. | [_Block ] [ Network |
Interrupt handling Devices drivers
. Mouse, Network
Hardware CPU Main Memory Kbd., etc. HDD / SSD Interface
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User space
Kernel System Call Interface
space _

Data Processing Memory Storage ||Networking
structures Management e Virtual File Sockets
Synchro- Interface System

nization & TCP/UDP
Various | ||File System
Devices il
Interrupts Mgt. Block layer Ethernet
Work
Softirq||Tasklet L
Interrupt handling Devices drivers
. Mouse, Network
Hardware CPU Main Memory Kbd., etc. HDD [ SSD Interface
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User space | Kernel debugging Development tools Static code exploration || Performance eval.

Kernel System Call Interface
space
Data Processing " Memory Storage | |Networking
structures anagement Human Virtual File Sockets
L Interface System
nization & TCPIUDP
Various | || File System
Debugging Devices il
Interrupts Mgt. Block layer Ethernet
Tracing
Work
Softirg|[Tasklet L
oot ueues| [Char. | [ Block ] [ Network ]
Evaluation Interrupt handling Devices drivers
: Mouse, Network
Hardware CPU il zale Kbd., etc. Arbizsn Interface




« Schedule: https://people.cs.vt.edu/huaicheng/lkp-sp25/schedule/
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https://people.cs.vt.edu/huaicheng/lkp-sp25/schedule/

Setup Dev Environment
« VirtualBox / VMWare Workstation / QEMU to run Linux VM

— Recommended settings

» disk >= 64GB, DRAM >= 4GB, #CPU >=4
— Porting forwarding:

» protocol: TCP, host IP: 127.0.0.1

» host port: 2222, guest port: 22

— VM/host file transmission: scp, folder sharing, etc.

« Guest OS

— Ubuntu server 24.04, or any other Linux distros
» openssh-server
» ssh —p2222 $username@localhost
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Next Sep

Demos on setting up the virtual machine env
Bring your laptop
ExO will be released on VWednesday
Productive tools:

— vim, ssh, scp, tmux, git, and more

— Check the missing semester of your cs education,
Linux source code;

— git clone https://github.com/torvalds/linux.qit

Next Lecture,
— building and exploring Linux kernel source code



https://github.com/torvalds/linux.git
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