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I. UAV/UGYV used and their motion/sensor models

Two UAVs were used in our simulation environment. One UAV will be carrying a ball
underneath as the target. The other UAV will try to track and catch the target. The UAVs used
were both Typhoon 4800, and the UAV model were provided to us in the simulation environment.
Motion model and sensor model were developed based on the UAVs used.

(b)

Fig. 1 (a) Target drone with a white ball, (b) Robot drone with two cameras

(@)



I1. Approximate motion/sensor models for RBE
I1.1 Motion model

In this project, both the robot and the target are moving and thus we did a series RBE for both
them. Motion models are built for both the robot and the target. For the robot, the control input of
the motion model is set by us and the motion model is used for the prediction step. The correction
step is then combined with the GPS and IMU. For the target, the control input of the motion model
is set as a random vector obeying a Gaussian distribution and the motion model is used for the
prediction step. The correction step is then combined with the two cameras.

Two types of motion model are developed, the dynamic motion model and the random walk
motion model. The dynamic motion model is relatively complicated and thus we did not apply it
in the project at this stage. The random walk model is selected in the project, due to its simplicity
and easy implementation.

A. Random walk model
A.1 Model of the target
The random walk motion model is given by
X =W, W, ~ N(0,Z)

X =(w)),

Y :(Wy)k
= (w),

where the vector x}, = [x£, vE, zL]T and it represents the spatial position of the Hexacopte at three

directions. The w; = [W,E,wyt,wzt]T and it represents the velocity of the Hexacopte at three

directions. Since the velocity input of the target is supposed to be unknown, they are treated as
random values obeying the Gaussian distribution.

The corresponding discrete motion model will be used for RBE and it is represented by
X, =X, +AtX,_,
=X, + Atw,_,

WL—l ~N(O, EIN)

where the covariance matrix is roughly selected based on the prediction values and the measured
values. The numbers will be introduced in the RBE part.

A.2 Model of the robot

For the robot, the velocity input is known, and its motion model is represented by



Xy =X, +AX,
= XL—l + At(VL_l + WL-1)
=X, +Atv,_ +Atw,
WI:—l - N(01E\r,v)

where the velocity input vy, = [v;, vy, vy ]Z and uncertainly caused by the wind speed stuff is

represented by wy = [w;,wyr, er]Z. The covariance matrix is roughly selected based on the
prediction values and the measured values. The numbers will be introduced in the RBE part.

B. Dynamics motion model
B.1 Dynamics model of the target

In this section, we built the motion model based on its dynamics first. Then, the terms related
with the 6 motor rotational speed inputs are treated as random values and thus the motion model
is used for prediction of the target.

There are two frames for the Hexacopter, the body frame and the earth frame, as shown in Fig.
X1. In the earth frame, the Hexacopter position is described by the vector & = [x,y, z]”. In the
body frame, the Hexacopter orientation, attitude and heading is described by n = [¢, 8, ¢]7. Inthe
body frame, the linear and rotational speeds of the Hexacopter are given by V = [u, v, w]" and

w=[pgqr]".

Fig. 2 Two frames of hexa-copter

The Newton second law can only be applied in the earth frame. Thus, we need transform the
body frame to the earth frame. The transformations are given by

§=R[V,1=Rjo (1)

where



cocy cosy —-s60 1 sgtd c¢té
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The ¢, s, tin Equation (1) are cos, sin, tan. RT = R{L.
By applying the Newton second law, the translational motion equation is given by
F& =mé )
where the upper right notation E is for the earth frame and B for the body frame.

Since it would be much more convenient to express the dynamics in the body fixed frame, with
the rotational matrix from Equation (1), we can rewrite Equation (2) in the body frame as

E
R, F® = mRL(%—\t/) 3)

By using the transport theorem, the derivative of V in the inertial frame can be transformed into

the body frame, as
B
FB = m[((jj_\t/j +co><VJ 4)

Hence, the final equation of linear motion can be expressed as
B
F° =m((jj—\:j +mo xV (5)

Similarly, we can get the equation of rotational motion, as
M® =Jo+oxJo (6)

The translation forces include the gravity, the air friction, and the thrust force, which is
produced by the aerodynamic forces. The rotational torques include the aerodynamic torque,
gyroscopic torque, and the torque induced by the air friction.

The total aerodynamic forces in the three linear directions are given by

0 0
F, = 0 =0 (7
—k (2 + Q2+ QL+ Q2+ QL +QF) F,

where ky is the propeller specific constant, and Q; is the rotational speed of propeller i.



The aerodynamic torques around xy,, yy,, Z,, axis are also expressed as

—EkTQf -1Q2 —Ekali +EkTQ§ +1Q2 +|EkTQ§
M
p
M, = ngQf—nggg—ngQﬂngQg =| M, (8)
k2 kg Q2 —k o +ko 02—k Q2 +k,02 | LM
where k, is the propeller specific torque constant.
The gravity force in the body frame is
0 so
F?=R_ | 0 |=mg| s¢ct 9)
mg cgch

The total gyroscopic torque is
q‘J p,zz (_Ql +Qz _Qs +Q4 _Qs +Qe) q‘] p,zzWG
MG = —pJ p,zz(_Ql+QZ_Q3+Q4_Q5+Q6) = —pJ p,zzWG (10)
0 0

where J, ,, is the rotational inertia around z axis.
The force and torque from the air friction are expressed as

F=-A.V

11
M. =-Az0 ()

where At and Ay are diagonal matrices with diagonal elements a; and ay respectively.

The rotational speed of the propeller motor can be easily controlled by the input voltage, shown
in the following equation.

Q:V‘”k_ IR (12)

v

where [ is the current, V;,, is the voltage input, and k,, is the speed constant.

Substitution of Equation (7) ~ (11) to Equation (5)(6) yields the final system model, as
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where M,,, M, M,. are in the nonlinear relation with Qiz.

Selecting the state vector of the target as xj, = [x,y,z,u,v,w, ®,0,¥,p,q,7]", the motion

model of the target can be expressed as
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Since we are not aware of the voltage input of the target, namely, we are not aware of the
rotational speed of the propellers, the terms related with the rotational speed are treated as noise.
Namely, F,, W, M, My, M,. are noises. Assuming the inputs are Gaussian distributed, they are

denoted as W'~N (05,4, Z5,5). From Equation (14), it can be seen that the noise and states are
coupled together, and also the states are in a nonlinear relation. Thus, the motion model is
expressed in the following way

X, = f(x,, W") (15)
The discrete motion model used for RBE is expressed as
Xpye = AUXF(X] 0 Wi ) + Xy (16)
with a covariance as

X SALE, AT +X (17)

Xp, Xhk1 ki

where
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B.2 Dynamics model of the robot

The only difference between the dynamics model of the robot and the target is that the motor
speeds of the 6 motors are known, and thus F,, W, M,, My, M, are known. Let the control inputs

as U" = [F,, W;, My, M, M,] and the wind-induced noised as W'~N (054, Z5,5). The motion
model of the robot then becomes
x;, =f(x;, U, W") (18)
The discrete motion model is thus
Xo = AT q Ul Wi, ) + X (19)

This can be used for the prediction of the robot.




I1. 1l Sensor model
A. Exact sensor model

In our set up, two cameras were used to form a stereo vision system to localize the target. GPS
was used to determine the location of the tracking UAV. The following equations describe the
sensor model used in our simulation environment

Gt _ Gt t Si G, t
Zp = "h*(xg, xp) + "vg
Gr _ GLT (AT Si G, T
Zk_ h(xk,xk)+ Ve

where h is the global state determined from the prediction step. That means we denote h as “xt
for the target and as x, for the tracking UAV, maintaining the reference in the global frame.
Variables v represent noise in the system.

B. Approximate motion model

Since the sensor model is relatively simple and does not result in high computational cost, we
used the exact model instead of an approximate one for RBE.



I11. RBE technique and detection techniques
I11.1 RBE technique

The recursive Bayesian technique that was used is the Extended Kalman filter. The selected
technique is chosen in our challenge for the following reasons. It provides a precise and fast
technique for nonlinear phenomena that follow the Gaussian distribution. That said we describe
why both nonlinear and Gaussian best describe this challenge.

First, the nonlinear characterization we give, is for the trajectory of the target drone which is
not a straight line moving at a constant velocity. More specifically, the target is performing an
eight shape path, moving at a maximum of 10 m/s. This means that its trajectory cannot be linearly
formulated in the global coordinate frame, which is why by using the EKF we linearize the model,
while maintaining a good estimation since the path is also simple. Moreover, it needs to be said
that as mentioned earlier in our models description, the motion model we use, is linear and thus
the simple Kalman filter could have been used for it. We decided however, to create the platform
in our code for future implementation of more complex trajectories if the testing moves to the
actual competition and thus we use the EKF.

Secondly, the Gaussian distribution is commonly used to model measurement and motion
model noise. We will use it to model the measurements and adjust the covariances and means
accordingly in our testing process.

Please not that each matrix is a 3x3 matrix and especially but not only, the x and P are diagonal
referring to the 3 dimensions.

A. EKF general formulation
Prediction step:
x(k + 11k) = f(x(k|k),u(k), k)
P(k + 1lk) = F(k)P(k|k)F (k)T + V (k)

df1 Ofn
[a—xl a_xl]

oxn T Oxp

0
F(k) =2~




Correction step:
£k +1lk+1) =2k + 1|k) + Rv
P(k+ 1|k + 1) = P(k + 1lk) — RH(k + 1)P(k + 1[k)
=y(k+1)—h(x(k+1lk),k+1)
R=P(k+1|k)H(k +1)TS?
S=Hk+1DPk+1kHKk+ DT +W(k+ 1)

[ahl ahn]
ah axl 69.61
H(k) = =] : o
x| xmsgeraiiy lah1 ath

0xy  0xy x=2(k+1|k)

B. EKF problem specific formulation
Prediction step:
X(k + 1|k) = x(k|k) + uDt
P(k+1lk) =1Pklk)IT +V (k)
F(k) = I, where 1 is the identity matrix

vl 0 O
V=10 v2 0
0 0 w3

Correction step:
2k+1k+1) =2k +1lk) + Rv
P(k+ 1|k +1) = P(k + 1|k) — RH(k + DP(k + 1|k)
v=y(k+1)—h(x(k+1lk),k+1)
R=Pk+1lk)ITS™?
S=IPk+1k)IT+W(k+1)

Since H(K) = I, the noise matrix is

wl 0 0
W=l0 w2 0
0 0 w3

The W and V matrices are defined for the robot and target separately and after testing they are
found to have a good estimate of:



02 0 O
Vrobot=| 0 2 0
0 0 2
01 O 0
Whobot=| 0 0.1 0
0 0 0.1
1 0 O
Vtarget: 0 1 0
0 0 1
30 O
Wtarget= 0 3 0
0 0 15

Also, the v = y(k + 1) — h(x(k + 1|k), k + 1) term needs further description and for the
robot is the diagonal matrix of the X,y,z position as measured from the GPS minus the
corresponding matrix of the state prediction step. For the target the v term is defined as the 3D
position as measured from the camera added with the GPS from the robot minus the prediction
step again.

x 0 0
Overall v is in the form of v= [0 y 0].
0 0 z

I11.11 Detection technique

At this point, we should start discussing about the detection technique that was used in the
process. Our code is using an opencv package to detect pixels of specific color in the image frame.
The image frame is similar for right and left camera but these two camera system are able to
provide us with a 3D position derivation module. The image color we choose to detect is that of
the hanging ball from the target drone.

Below is the detection process in steps including also the position derivation formulations:

- Step 1: The image is converted to black and white. White stands for white color, black stands
for anything else.

- Step 2: The horizontal pixel number of all white pixels is summed up and also the vertical pixel
number. The average is taken for both of them and the position of this centroid is derived, as
shown in Fig. 3




Fig. 3 Centroid in the grayscale

Step 3: The position of the centroids of both cameras are combined to derive the measured 3D
position of the target using the following derivations.

In Step 3, we used two cameras to detect and localize the target. For a single camera, it is
not easy to interpret the Z value (distance between the sensor and the target), thus two normal
cameras are employed. The camera parameters are shown in Table. 1.

Table. 1 Camera prarameters

Scaling factor A VA
Focal length f 1
Skew of pixels T 0
Aspect ratio n 1920:1080 (4:3)
Principal point [0, 0] [0.5, 0.5]

It is difficult to find {3z with only one camera. For this reason, another camera is utilized
to create a stereo vision. These two cameras are placed in parallel in fixed position and both
are facing forward. Figure 4 shows the camera setup.

Gy, N

5= o
p
Fig. 4 Stereo Vison Setup
S, represents the left camera; Sk represents the right camera; the target is represented by
the star symbol; ©}x; and S}x, are the X coordinates of the target relative to the two cameras
respectively, so the summation of ©}x; and xj, will be equal to the distance between the

cameras, P, which is predefined by us.

Sy, — Sy, = b
The distances 3z are assumed to be the same for both cameras.

Since ©}x;, — S3x; = P, we can determine the '}z coordinate relative to the sensor
platform,

{s} fxb

2= B, — Bixg

By, x z

{S},, —
YETF



s
Sy = { }J’L * 7

Step 4: In the calculation of the height of the object in the real world, we are also taking into
account the rotation of the robot drone when its moving. As it can be seen below, while moving,
the drone has an amount of inclination, as shown in Fig. 5. This inclination can be derived by
the IMU in real time and the formulations used to derive the actual height in the global frame
are also presented below.

Fig.5 Drone inclination while moving

In Fig. 6, the image frame is depicted in two different orientations. There are also two points
on each image vertical plane, which are the bisection of the line connecting the object and
centroid with each vertical plane. By defining as Vr the vertical distance of the point to the
inclined center and as Dist the corresponding distance in the other frame, we can derive

6, = tan~! (——)
= tan
2 focal
where focal is the focal length.

03 =061 — 0,

where 01 is the pitch angle

dist = focal *x tan(05)



Fig.6 Geometric Analysis



IV. Estimation program architecture in ROS

Fig. 7 and Fig. 8 depict how launch files are combined in the ROS environment to fulfill the
task from object detection to position estimation of robot and target.

BogeyO launch ‘ Used for setting up robot drone ‘

‘ Used for setting up target drone ‘

Bogeyl launch

‘ Used for preparing flying system ‘

Simulator launch

Color filter

‘ Used for converting left camera image to greyscale ‘
left camera

Camera filter

Hight camera ‘ Used for converting right camera image to greyscale ‘

Detection launch ‘ Completely custom built package to perform the EKF ‘

Fig. 7 System architecture

Right ‘ Used for getting position of centroid in right camera frame |

‘ Used for getting position of centroid in left camera frame ‘

Target xyz ‘ Combine the two centroids to get 3D position ‘

Detection launch

Robot ekf ‘ Used for performing RBE for the Robot ‘

Target ekf ‘ Used for performing RBE for the Target ‘

glouoe

Fig. 8 Detection architecture



V. Experimental Results

In order to validate the presented approach, various scenarios were simulated in Gazebo. Our
main goal was to approximate the MBZIRC challenge and check the robustness of both the code
and the method.

The steps necessary to do that were to determine the parameters that characterize the problem
and change the values of those parameters or give them a fixed value and then perform testing.
First parameter was the velocity of the target drone, second the velocity of the chasing drone and
then their corresponding flight height (z axis) and general trajectory.

The fixed parameters were the last two since we established a fixed height of 6 meters for the
target drone and 7 meters for the chasing drone. Keep in mind that we are chasing the ball that is
hanging from the target drone so the height for the first case is 4 meters. After that, we must also
add that the trajectory is a straight line in the y axis. Therefore, the parameter we set for every
different case is only the velocity in the x axis. As it will also be evident in the next graphs, y and
z displacements are also there since the drones have dynamics that create also these trajectories
but we do not define them somehow ourselves. These are built in by the autopilot of the drones.

Also, the errors are found by comparing the estimated values with the actual. The actual is in
each case given by the GPS measurements for target and robot.

In short, the following are defined for the axes shown in Fig. 9, since our input is only velocity
in the X axis.

Fig. 9 Defined axis frame in Gazebo

Table 2: Starting positions of the target and robot

Parameter set Target drone Chasing drone
Varying X X

Fixed Y=0m Y=0m

Fixed Z=4m Z=7m

The different scenarios are represented below. All scenarios have the same organization flow.



Scenario I: (opposite direction)

- Target is moving with 1 m/s velocity
- Robot is moving with -1 m/s velocity

The results of robot estimation in Scenario | is shown in Fig 10. The graphs on the left show
the predicted and corrected position in X, y, z axis. On the right we have the corrected and actual

position in the three axes again.
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Fig. 10 Robot estimation, Scenario |

The results of target estimation in Scenario | is shown in Fig 11. The graphs are in the same

structure as Fig. 10.
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Fig.11 Target Estimation, Scenario |

Fig.12 shows the measurements of the target positions in the three axes as seen in the sensor

frame.

Target in sensor frame
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Fig. 12 Target in sensor frame, Scenario |



Scenario I1: (only one is moving)

- Target not moving
- Robot is moving with -1 m/s velocity
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Fig. 13: Robot estimation, Scenario 11
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Scenario I11: (both moving in the same direction)
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Target predicted and c orrected position
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Scenario 1V: (both moving in the same direction)
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Scenario V: (both moving in the same direction)

- Target is moving with -1 m/s velocity
- Robot is moving with -3 m/s velocity
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For viewing the efficacy of the approach in the close distance, we are presenting also the
following graphs, taken from the IV scenario. By referring to the correction and actual error, we
mean the difference between the correction step and the actual. By referring to the measurement
and actual error, we are also referring to their difference. These are in absolute values.

It can be seen that at the steps before starting the kalman filter, these errors are the same. After
initiating the RBE and considering the moving target, there are differences. In some cases, the
error of the correction is smaller than the measurement which makes lots of sense.

Our conclusion is that the RBE approach we are using works efficiently and gives a small error
between real and corrected value, however more work needs to be done on the estimation of the
covariance in the multistage approach we are using.
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VII.

Conclusions and Future Work

In our work we discovered the following

Our motion and sensors model performed well in the EKF framework.

The two cameras system was able to adequately receive the 3D position for the target but
worked better in close distances.

The IMU and GPS provided us with precise localization and pitch angle measurements.
Measurements were varying a lot while being far mainly due to the stereo vision system.
Putting the Kalman filter to work when we are close produced good estimated results. We

were able to estimate a covariance small when the measurements are good and that proved
to work very efficiently.

Potential work in the future could include

Perform detection of object based also on shape.

Localize ourselves and target when we are really close to the target.

Introduce nonlinearities in the motion model.

Implement autonomous control for search and tracking based on observations.

Thank you for your attention!



