
TSUBASA: Climate Network Construction
on Historical and Real-Time Data

Yunlong Xu
∗

Jinshu Liu
∗

University of Rochester

yxu103@u.rochester.edu

jliu158@ur.rochester.edu

Fatemeh Nargesian

University of Rochester

fnargesian@rochester.edu

ABSTRACT
A climate network represents the global climate system by the inter-

actions of a set of anomaly time-series. Network science has been

applied to climate data to study the dynamics of a climate network.

The core task to enable network dynamics analysis on climate data

is the efficient computation and update of the correlation matrix

for user-defined time-windows on historical and real-time data. We

present TSUBASA, an algorithm for efficiently computing the exact

pair-wise time-series correlation based on Pearson’s correlation.

By pre-computing simple and low-overhead sketches, TSUBASA can

efficiently compute exact pairwise correlations on arbitrary time

windows at query time. For real-time data, TSUBASA proposes a

fast and incremental way of updating the correlation matrix. We

provide a detailed time and space complexity analysis of TSUBASA.
Our experiments show that with the same space overhead as a

DFT-based approximate solution, TSUBASA has a lower sketching
time and is on par with the approximate solution with respect to

query time. TSUBASA is at least one order of magnitude faster than

a baseline for both historical and real-time data.
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1 INTRODUCTION
To identify and analyze patterns in global climate, scientists and

climate risk analysts model climate data as complex networks –
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networks with non-trivial topological properties [2, 15, 18]. The

climate network architecture represents the global climate system

by a set of anomaly time-series (departure from the usual behav-

ior) of gridded climate data and their interactions [35]. A climate

data set includes remote and in-situ sensor measurements (e.g. sea

surface temperature and sea level pressure) covering a grid (e.g.

with a resolution of 2.5◦ × 2.5◦). Nodes in a climate network are

geographical locations, characterized by time-series and edges rep-

resent information flow between nodes. The edge weights indicate

a degree of correlation between the behaviors of time-series (e.g.

Pearson’s correlation).

Several studies have applied network science on climate data as-

suming dynamic networks that are changing with real-time data [5].

Climate networks have been shown to be powerful tools for gain-

ing insights on earthquakes [2], rainfalls [18], and global climate

events such as El Niño [15]. The common way for network dy-

namics analysis is to construct networks for each hypothesized

time-window and analyze them separately [13]. Figure 1 shows the

steps of constructing a climate network. Given a query window

provided by a user, a correlation matrix is constructed by comput-

ing the pairwise correlation of all time-series on the query window.

Pearson’s correlation is one of the most dominant measures for

studying the pairwise climatical correlation [11]. The correlation

matrix enables visualization [27], network dynamics analysis [5],

as well as tasks such as community detection [34]. To analyze the

topology of the network, a user-provided correlation threshold can

be applied on the matrix to find the significant edges between nodes

and obtain a boolean network matrix. From the mathematical per-

spective, the analytical computation of the evolution of a complex

system (or even not so complex such as Ordinary Differential Equa-

tion systems), depends on the robustness and correctness of the

initial weights in the complex network [15].

The core task in network construction is the problem of large-

scale all-pair time-series correlation calculation. The key challenges

of interactive network analysis include: 1) exact calculation of the

complete correlation matrix, 2) correlation calculation on time-

windows of arbitrary size, and 3) efficiency of network construction

and update for historic and real-time data to achieve interactivity.

The line of data management research that computes networks

on time-series (for example, for stock market data or climate data)

apply pruning techniques on the approximation of correlation mea-

sures. In particular, StatStream [39] and MASS [24] reduce the

correlation of time-series to the distance of their Discrete Fourier

Transform (DFT) coefficients and propose grid-based indexing [39]

and I/O-aware techniques [24] for performing threshold-based cor-

related time-series search. The accuracy of the network can be
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Figure 1: Climate Network Construction.

increased by considering a very large number of DFT coefficients

that are expensive to compute. Moreover, the existing work equally

subdivides time-series into basic windows and a query window size

is restricted to be an integral multiple of the basic window size,

which limits the usability of these algorithms.

In this paper, we present TSUBASA a framework for efficient

construction and update of the exact correlationmatrix for arbitrary

query windows on historical and real-time data. In this paper, we

make the following contributions.

• We present the mathematical tools for the exact calculation of

pairwise Pearson’s correlation of time-series using the basic

window model.

• TSUBASA relies on simple statistics of basic windows pre-computed

by doing one pass over the whole data. This provides a flexible

and highly responsive correlation calculation mechanism. Users

can obtain a correlation matrix given any query window without

computing the correlation statistics repeatedly.

• We propose an incremental solution for real-time update of the

correlation matrix and climate network. Relying on the easy-to-

compute statistics of basic windows means the correlations can

be updated quickly for frequently-updated time-series.

• We enable queries with arbitrary time-window size and start

and end point on both historic and real-time by relaxing the

restriction of the existing basic windowmodel on a querywindow

size being an integral multiple of basic window size.

2 BACKGROUND
2.1 Climate Network
We are given a collection L = {𝑥1, . . . , 𝑥𝑛} of geo-labeled time-

series, where 𝑥𝑖 denotes the time-stamped values of a climatic vari-

able collected at location 𝑖 . A time-series𝑥𝑖 is defined as [x𝑖
1
, . . . , x𝑖𝑚],

where x𝑖
𝑗
is the observed value at time 𝑗 . We assume all time-series

in L are synchronized, i.e. each time-series has a value available at

every periodic time interval, namely time resolution. Particularly,

if the time resolution is 𝛾 and the current timestamp is 𝑗 , every 𝑥𝑖

in L will have a value observed at time 𝑗 +𝛾 . If an 𝑥𝑖 has a missing

value at 𝑗 , a value is interpolated or if multiple values appear be-

tween 𝑗 and 𝑗 + 𝛾 , an aggregate value is assigned. Table 1 shows a

list of notations used throughout this paper.

To compute a correlation matrix, at query time, a user defines a

query time-window𝑤 = (𝑒, 𝑙). The query window is defined with

an end timestamp 𝑒 and a length 𝑙 that indicates a sub-sequence of

size 𝑙 in a time-series with a start timestamp 𝑒 − 𝑙 + 1 and an end

timestamp 𝑒 . For real-time data, the end timestamp can be the last

observed time, i.e. a user query on real-time data is𝑤 = (“𝑛𝑜𝑤”, 𝑙),
which means the network is constructed on the last 𝑙 observed data

points. We consider the data points within𝑤 for each time-series

𝑥 = [x1, . . . , x𝑘 ]. For example, [x𝑘−𝑚+1, . . . , x𝑚] is the sequence
we consider for 𝑥 on the query window 𝑤 = (𝑘,𝑚). When clear

from the context, we call the sequence of a time-series 𝑥 , for a given

query window simply query window or time-series 𝑥 . A correla-

tion matrix includes all pair-wise correlation of time-series on the

query window. To construct a climate network, the user provides

a correlation threshold 𝜃 for pruning meaningless links. The cli-

mate network of L for a given query time-window 𝑤 is a graph

N = (𝐺,𝑉 ), where a node in 𝐺 corresponds to a location 𝑖 and is

represented by time-series 𝑥𝑖 . An edge in 𝑉 between nodes 𝑖 and 𝑙

indicates that the correlation between time-series 𝑥𝑖 and 𝑥𝑙 is above

the threshold 𝜃 . In this paper, we focus on the most commonly used

correlation measure i.e. Pearson’s correlation coefficients. Given

query windows 𝑥 = [x1, . . . , x𝑚] and𝑦 = [y
1
, . . . , y𝑚], with means

𝑥 and 𝑦, the Pearson’s correlation of 𝑥 and 𝑦 is calculated as fol-

lows [30].

𝐶𝑜𝑟𝑟 (𝑥,𝑦) =
∑𝑚
𝑖=1
(x𝑖 − 𝑥) (y𝑖 − 𝑦)√︃∑𝑚

𝑖=1
(x𝑖 − 𝑥)2

√︃∑𝑚
𝑖=1
(y𝑖 − 𝑦)2

(1)

Existing techniques for fast all-pair correlation calculation on

large time-series approximate pairwise correlation by relying on

the Fourier transform [10, 24, 39]. The existing work divides time-

series into cooperative and uncooperative to perform correlation

approximation. Although our core goal is the exact calculation

and update of correlations, we also present an approximate way of

calculating correlation for generic time-series (§ 3.2). We start by

giving an overview of correlation approximation.

2.2 Correlation Approximation Solutions
Searching for time-series pairs with a correlation higher than a

threshold is pervasively done using the notion of basic windows [24,

39]. Time-series are processed in batches of size 𝐵, i.e. the stream

[x1, . . . , x𝑛] is equally divided into 𝑛/𝐵 basic windows, where the

𝑗-th basic window contains data [x( 𝑗−1)∗𝐵, . . . , x𝑗∗𝐵]. Similarly, a

query window is a sequence of basic windows. Later, we describe

how this assumption can be relaxed for the exact calculation. Ex-

isting techniques assume that a query window is divisible by the

size of a basic window and approximate the correlation using the

Discrete Fourier Transform (DFT) of basic windows. The DFT of

a time-series 𝑥 = [x1, . . . , x𝑘 ] is a sequence 𝑋 = [X1, . . . ,X𝑘 ] of
complex numbers:

X𝑓 =
1

√
𝑘

𝑘∑︁
𝑖=1

x𝑖𝑒
−𝑗2𝜋 𝑓 𝑖

𝑘 , 𝑓 = 1, . . . , 𝑘 and 𝑗 =
√
−1 (2)

Computing DFT coefficients has a time complexity of 𝑂 (𝑛2) in the

size of a basic window. For normalized time-series, DFT preserves

the Euclidean distance between two sequences, that is, 𝐷𝑖𝑠𝑡 (𝑥,𝑦) =
𝐷𝑖𝑠𝑡 (𝑋,𝑌 ). The approximation techniques consider the first few

DFT coefficients to capture the shape and properties of time-series.



It has been shown that the correlation of two time-series can be

reduced to the Euclidean distance of the DFT coefficients of their

normalized time-series [32, 39]. The normalization of a basic win-

dow 𝑥𝑖 = [x1, . . . , x𝐵] is 𝑥𝑖 = [ x1−𝑥𝑖
𝜎𝑖

, . . . ,
x𝐵−𝑥𝑖
𝜎𝑖
], where 𝑥𝑖 and 𝜎𝑖

are the mean and standard deviation of 𝑥𝑖 . The correlation of two

time-series can be obtained from the Euclidean distance 𝑑 (., .) of
their normalized series, that is, 𝑐𝑖 = 1 − 1

2
𝑑2 (𝑥𝑖 , 𝑦𝑖 ).

For more concise notation, we denote 𝑑𝑖 to be 𝑑 (𝑥𝑖 , 𝑦𝑖 ). Suppose
𝑋𝑖 and 𝑌𝑖 are the DFT of normalized basic windows 𝑥𝑖 and 𝑦𝑖 , and

𝐷𝑖𝑠𝑡𝑛 (𝑋𝑖 , 𝑌𝑖 ) is the Euclidean distance of the first 𝑛 DFT coefficients

in𝑋𝑖 and 𝑌𝑖 . Recall DFT preserves the distance between coefficients

and the original time-series. Therefore, 𝑑𝑖 ≃ 𝐷𝑖𝑠𝑡𝑛 (𝑋𝑖 , 𝑌𝑖 ). The
more coefficients are used (the higher 𝑛), the more accurate the

distance and correlation become. So far, we have a way of com-

puting the distance of basic windows. To compute the distance of

query windows, 𝐷𝑖𝑠𝑡𝑛 (𝑥,𝑦), the existing techniques assume that

the form and properties of time-series do not drastically change

over a query window, i.e. basic windows have similar statistics

(mean and standard deviation) to the query window [24, 39]. When

the statistics do not change, 𝐷𝑖𝑠𝑡𝑛 (𝑥,𝑦) is the average of the 𝑑𝑖 on
all basic windows of 𝑥 and 𝑦. In § 3.2, we relax this assumption

and consider time-series that change in form and properties over

a query window, i.e. the statistics of basic windows are not nec-

essarily similar to each other and the query window. Now, we

apply the equation above for computing 𝑐𝑖 on query windows, to

get 𝐶𝑜𝑟𝑟 (𝑥,𝑦) ≃ 1 − 1

2
𝐷𝑖𝑠𝑡𝑛 (𝑥,𝑦). Again the higher 𝑛 we use, the

better approximation of correlation we obtain.

Now, we describe how 𝐷𝑖𝑠𝑡𝑛 (𝑋,𝑌 ) is used to decide whether

𝐶𝑜𝑟𝑟 (𝑥,𝑦) ≥ 𝜃 . Zhu and Shasha show the relationship between

correlation and the distance based on 𝑛 DFT coefficients of 𝑋 and

𝑌 , that is, 𝐶𝑜𝑟𝑟 (𝑥,𝑦) ≥ 1 − 𝜖2 ⇒ 𝐷𝑖𝑠𝑡𝑛 (𝑋,𝑌 ) ≤ 𝜖 . When using

approximate techniques for network construction, to get the pairs

of time-series with 𝐶𝑜𝑟𝑟 (𝑥,𝑦) ≥ 𝜃 , we can compute 𝜖 =
√

1 − 𝜃 .
This allows us to prune pairs with condition 𝐷𝑖𝑠𝑡𝑛 (𝑋,𝑌 ) ≤

√
1 − 𝜃 .

This pruning incurs a superset of highly correlated time-series with

no false negatives. As we show in Figure 3a, the false-positives incur

spurious edges in the network and result in an inaccurate network.

These false-positive edges can only be filtered at the cost of exact

correlation calculation from the raw data. To avoid false-positives,

TSUBASA calculates exact correlations of time-series, even faster

than an approximation.

Note that, unlike TSUBASA, the existing techniques are not de-

signed to compute the complete and exact correlation matrix. More-

over, using the described technique for pruning pairs based on a

correlation threshold requires normalizing time-series and calculat-

ing DFT coefficients. When using DFT-based approximation, the

accuracy of the network increases as more DFT coefficients are

considered. Indeed, approximate techniques consider very few co-

efficients (two in the case of StatStream [39] for any basic window

size). However, when dealing with climate data sets, which are un-

cooperative time-series, the majority of coefficients are needed to

get near-accurate results (Figure 3a). Statstream proposes random

projection for uncooperative time-series that similar to DFT coeffi-

cient calculation approximates correlation and has high overhead.

To overcome modeling uncooperative time-series, Qiu et al. use

Fourier transform and neural network to embed time-series into a

Table 1: Table of Notations
Symbol Description

𝑥 a query window [x1, . . . , x𝑚] of stream x
x𝑖 data value at time 𝑖 in a query window 𝑥

𝑥 mean of 𝑥

𝑥 𝑗 the 𝑗-th basic window of 𝑥

𝑥 𝑗 mean of the 𝑗-th basic window of 𝑥

𝑥𝑖:𝑗 mean of basic windows 𝑥𝑖 , . . . , 𝑥 𝑗 of 𝑥

𝑛𝑠 number of basic windows in a query window

𝐵 number of data points in a basic window

𝜎𝑥 𝑗 standard deviation of the 𝑗-th basic window of 𝑥

𝑐 𝑗 correlation of 𝑥 and 𝑦 on the 𝑗-th basic window
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Figure 2: Architecture of TSUBASA.

low-dimensional Euclidean space [31]. The search is done using a

nearest neighbor search index in the embedding space.

3 NETWORK CONSTRUCTION
Before a deep dive into exact correlation calculation, we present

a high-level overview of TSUBASA’s end-to-end framework. Fig-

ure 2 illustrates the components of TSUBASA for constructing and
updating a climate network on historical and real-time data. The

(disk-based or in-memory) data storage contains a collection of fre-

quently updated time-series accessible through locations. During

the pre-processing, every time-series is divided into basic windows.

We sketch basic windows of time-series, in one pass, and store the

collected statistics. This can also be done at data ingestion time. At

query time, the statistics of the basic windows corresponding to

a given query window of all time-series are retrieved and all-pair

correlations are calculated without the need to access the raw data.

For real-time data, the system constructs the initial matrix and

network and ingests the real-time raw data in chunks of size 𝐵.

The sketching of the newly ingested basic window is done on the

fly and the correlations of time-series are updated incrementally

without computing the correlation from scratch.

3.1 Exact Pairwise Correlation
3.1.1 Historical Data. Our solution uses the basic window model

to calculate the exact correlation of times-series. Subdividing a series

into basic windows allows us to process data in smaller batches.

Existing works for correlation calculation assume a query window



Algorithm 1 Preprocessing

Input: streams L = {x1, . . . , x𝑛 }; basic window size 𝐵

Output: statistics 𝑆

1: 𝑛𝑠 ← Len(x1)/𝐵
2: 𝑆 ← {}
3: for 𝑥, 𝑦 ∈ L do
4: 𝑥 ← BasicWin(x, 𝐵) ; 𝑦 ← BasicWin(y, 𝐵)
5: for 𝑗 ∈ [1..𝑛𝑠 ] do
6: 𝑆𝑥 𝑗

← Stats(𝑥 𝑗 ) ; 𝑆𝑦 𝑗
← Stats(𝑦 𝑗 )

7: 𝑐 𝑗 ← Corr(𝑥 𝑗 , 𝑦 𝑗 )
8: 𝑥 𝑗 ← Normalize(𝑥 𝑗 , 𝑆𝑥 𝑗

) ; �̂� 𝑗 ← Normalize(𝑦 𝑗 , 𝑆𝑦 𝑗
)

9: �̂� 𝑗 ← DFT(𝑥 𝑗 ) ; 𝑌𝑗 ← DFT(�̂� 𝑗 )
10: 𝑑 𝑗 ← Distn (�̂� 𝑗 , 𝑌𝑗 )
11: // 8-10 are performed for approximation method
12: 𝑆 ←WriteStats(𝑆𝑥 𝑗

, 𝑆𝑦 𝑗
, 𝑐 𝑗 , 𝑑 𝑗 )

13: return 𝑆

Algorithm 2 Network-Construct-Histo

Input: streams L = {x1, . . . , x𝑛 }; statistics 𝑆 ; query 𝑤; basic window size

𝐵; threshold 𝜃

Output: graph (𝐺,𝑉 )
1: 𝐺 ← {1, . . . , 𝑛};𝑉 ← {}
2: 𝑏 ← GetBasicWins(𝑤) // basic window ids in 𝑤

3: for x ∈ L and y ∈ L do
4: 𝑆𝑥 ← ReadStats(𝑆,𝑏, 𝑥) ; 𝑆𝑦 ← ReadStats(𝑆,𝑏, 𝑦)
5: 𝑐 ← Corr(𝑆𝑥 , 𝑆𝑦 ) // use Lemma 1
6: if | 𝑐 |> 𝜃 then
7: 𝑉 .Add(𝑥, 𝑦, 𝑐)
8: return (𝐺,𝑉 )

to be a sequence of equal-length basic windows [24, 39]. This as-

sumption poses a limitation on the size and start/end point of a

query window. TSUBASA relaxes this assumption by considering

variable-length basic windows.

Lemma 1. Given query window 𝑥 = [x1, . . . , x𝑚] and 𝑦 =

[y
1
, . . . , y𝑚] and the sizes of basic windows B = [𝐵1, 𝐵2, . . . , 𝐵𝑛𝑠 ],

where 𝐵𝑖 is the size of the 𝑖-th basic window, and𝑚 =
∑𝑛𝑠
𝑖=1

𝐵𝑖 . The
exact Pearson’s correlation of 𝑥 and 𝑦 is:

𝐶𝑜𝑟𝑟 (𝑥,𝑦) =
∑𝑛𝑠

𝑗=1
𝐵 𝑗 (𝜎𝑥 𝑗

𝜎𝑦 𝑗
𝑐 𝑗 + 𝛿𝑥 𝑗

𝛿𝑦 𝑗
)√︃∑𝑛𝑠

𝑖=1
𝐵𝑖 (𝜎𝑥𝑖 2 + 𝛿2

𝑥𝑖 )
√︃∑𝑛𝑠

𝑖=1
𝐵𝑖 (𝜎𝑦𝑖 2 + 𝛿2

𝑦𝑖 )

𝛿𝑥𝑖 = 𝑥𝑖 −
∑𝑛𝑠
𝑘=1

𝑥𝑘

𝑛𝑠
, 𝛿𝑦𝑖 = 𝑦𝑖 −

∑𝑛𝑠
𝑘=1

𝑦𝑘

𝑛𝑠

where, 𝜎𝑥𝑖 (𝜎𝑦𝑖 ) is the standard deviation of basic window of 𝑥𝑖 (𝑦𝑖 ),
𝑐𝑖 is the correlation of basic windows 𝑥𝑖 and 𝑦𝑖 , 𝑥𝑖 (𝑦𝑖 ) is the mean of
basic window 𝑥𝑖 (𝑦𝑖 ).

Proof. This lemma has been provided as a possible general

extension provided by Dunlap [12], without proof. We provide a

proof here. Let Ω 𝑗 be the size of the tail of a time-series with 𝐵1 to

𝐵 𝑗 basic windows of arbitrary size.

Ω 𝑗 =

𝑗∑︁
𝑘=1

𝐵𝑘 ; Ω0 = 0

𝐶𝑜𝑟𝑟 (𝑥,𝑦) = 1

𝑇

𝑛𝑠∑︁
𝑗=1

Ω 𝑗∑︁
𝑖=Ω 𝑗−1+1

( x𝑖 − 𝑥
𝜎𝑥
).(

y𝑖 − 𝑦
𝜎𝑦
)

=
1

𝑇

𝑛𝑠∑︁
𝑗=1

Ω 𝑗∑︁
𝑖=Ω 𝑗−1+1

𝜎𝑥 𝑗
x𝑗,𝑖 + 𝛿𝑥 𝑗

𝜎𝑥
.
𝜎𝑦 𝑗

y𝑗,𝑖 + 𝛿𝑦 𝑗

𝜎𝑦

=
1

𝑇

∑𝑛𝑠
𝑗=1

𝐵 𝑗 (𝜎𝑥 𝑗
𝜎𝑦 𝑗

𝑐 𝑗 + 𝛿𝑥 𝑗
𝛿𝑦 𝑗
)

𝜎𝑥𝜎𝑦

=

∑𝑛𝑠
𝑗=1

𝐵 𝑗 (𝜎𝑥 𝑗
𝜎𝑦 𝑗

𝑐 𝑗 + 𝛿𝑥 𝑗
𝛿𝑦 𝑗
)√︃∑𝑛𝑠

𝑖=1
𝐵𝑖 (𝜎𝑥𝑖 2 + 𝛿2

𝑥𝑖 )
√︃∑𝑛𝑠

𝑖=1
𝐵𝑖 (𝜎𝑦𝑖 2 + 𝛿2

𝑦𝑖 )

where x𝑗,𝑖 (y𝑗,𝑖 ) is the x𝑖 (y𝑖 ) normalized in the 𝑗-th basic window.

Now, to show that 𝜎𝑥 =

√︃
1

𝑇

∑𝑛𝑠
1

𝐵𝑖 (𝜎𝑥𝑖 2 + 𝛿2

𝑥𝑖 ), we evaluate:

𝑇𝜎𝑥
2 −

𝑛𝑠∑︁
1

𝐵𝑖 (𝜎𝑥𝑖 2 + 𝛿2

𝑥𝑖
) =

𝑛𝑠∑︁
1

(𝜎𝑥 2 − 𝜎𝑥𝑖 2 − 𝛿2

𝑥𝑖
)

=

𝑛𝑠∑︁
𝑘=1

Ω𝑘∑︁
𝑗=Ω𝑘−1+1

1

𝐵𝑘
(x𝑗 − 𝑥)2 −

1

𝐵𝑘
(x𝑗 − 𝑥𝑘 )2 −

1

𝐵𝑘
(𝑥1 − 𝑥𝑘 )2

=

𝑛𝑠∑︁
𝑘=1

(
Ω𝑘∑︁

𝑗=Ω𝑘−1+1

(−2𝑥x𝑗 + 2𝑥𝑘 𝑥) + (2x𝑗𝑥𝑘 − 2𝑥𝑘
2)

𝐵𝑘
)

=

𝑛𝑠∑︁
𝑘=1

1

𝐵𝑘
((−2𝐵𝑘𝑥𝑥𝑘 + 2𝐵𝑘𝑥𝑘 𝑥) + (2𝐵𝑘𝑥𝑘 2 − 2𝐵𝑘𝑥𝑘

2)) = 0

□

Using Lemma 1, we can pre-compute and store the statistics of

basic windows once and compute the correlation of time-series

for user-given query windows at query time. Moreover, Lemma 1

allows us to support arbitrary query windows and sizes. For in-

stance, for a user-provided query window 𝑥 = [𝑥𝑖 , . . . , 𝑥 𝑗 ] and
𝑦 = [𝑦𝑖 , . . . , 𝑦 𝑗 ], there exists a unique 𝜅 ∈ N such that 𝜅 · 𝐵 ≤
𝑖 < (𝜅 + 1) · 𝐵, and there exists a unique 𝜒 ∈ N such that 𝜒 · 𝐵 <

𝑗 ≤ (𝜒 + 1) · 𝐵. Let 𝐵1 = (𝜅 + 1) · 𝐵 − 𝑖 , 𝐵𝑛𝑠 = 𝜒 · 𝐵 − 𝑗 , and

𝐵𝑘 , for 𝑘 ∈ {2, · · · , 𝑛𝑠 − 1}. At query time, we need to compute

𝜎𝑥1
(𝜎𝑦1

), 𝜎𝑥𝑛𝑠 (𝜎𝑦𝑛𝑠 ), 𝛿𝑥1
(𝛿𝑦1

), and 𝛿𝑥𝑛𝑠 (𝛿𝑦𝑛𝑠 ) from the raw data,

and all the others for the 𝐵2, · · · , 𝐵𝑛𝑠−1 are pre-computed in the

pre-processing.

Note that the case of equally subdividing time-series into basic

windows of size 𝐵 and a query window size being the integral

multiple of the basic window size is a special case of Lemma 1. For

this special case, Algorithm 1 shows the steps of sketching basic

windows and Algorithm 2 describes the steps of constructing a

network based on the exact correlation of time-series calculated

from the pre-computed statistics of basic windows.

3.1.2 Real-time Data. The correlation equation of Lemma 1 can be

extended to deal with real-time data. A user-defined query window

on real-time data,𝑤 = (“𝑛𝑜𝑤”,𝑚), indicates the sequence of the𝑚
most recently observed data points of time-series. That is, the size

of the query window is fixed while the end timestamp is changing

as new data arrives. Consider two time-series 𝑥 = [x1, . . . , x𝑚] and
𝑦 = [y

1
, . . . , y𝑚], the special case of fixed basic window size𝐵, and a



query𝑤 = (“𝑛𝑜𝑤”,𝑚), we can compute correlation at time 𝑡 , namely

𝐶𝑜𝑟𝑟𝑡 (𝑥,𝑦), using the special case of Lemma 1. This involves

considering basic windows [𝑥1, . . . , 𝑥𝑛𝑠 ] and [𝑦1, . . . , 𝑦𝑛𝑠 ], where
𝑛𝑠 =𝑚/𝐵. At time 𝑡+𝐵, the observed time-series are [x1, . . . , x𝑚+𝐵]
and [y

1
, . . . , y𝑚+𝐵] and the basic windows are [𝑥1, . . . , 𝑥𝑛𝑠+1] and

[𝑦1, . . . , 𝑦𝑛𝑠+1]. Based on query 𝑤 = (“𝑛𝑜𝑤”,𝑚), we need to con-

sider [𝑥2, . . . , 𝑥𝑛𝑠+1] and [𝑦2, . . . , 𝑦𝑛𝑠+1]. According to Lemma 1, we

can recalculate the correlation at time 𝑡 + 𝐵 from scratch. That is,

𝐶𝑜𝑟𝑟𝑡+𝐵 (𝑥,𝑦) =
∑𝑛𝑠+1
𝑖=2
(𝜎𝑥𝑖𝜎𝑦𝑖𝑐𝑖 + 𝛿𝑥𝑖𝛿𝑦𝑖 )√︃∑𝑛𝑠+1

𝑖=2
(𝜎𝑥𝑖 2 + 𝛿2

𝑥𝑖 )
√︃∑𝑛𝑠+1

𝑖=2
(𝜎𝑦𝑖 2 + 𝛿2

𝑦𝑖 )

Note that 𝛿𝑥 𝑗
’s and 𝛿𝑦 𝑗

’s have changed and need to be recalculated,

since the means of the new query windows have probably changed

upon the arrival of new data. The following lemma allows us to

update the correlation of two time-series on a query window𝑤 =

(“𝑛𝑜𝑤”,𝑚) upon the arrival of an arbitrary number of data points,

without the need to re-calculate the statistics of the query window.

Lemma 2. Given query window 𝑥 = [x1, . . . , x𝑚] and 𝑦 =

[y
1
, . . . , y𝑚], basic windows [𝑥1, . . . , 𝑥𝑛𝑠 ] and [𝑦1, . . . , 𝑦𝑛𝑠 ], and ba-

sic window sizes 𝐵 = [𝐵1, . . . , 𝐵𝑛𝑠 ], where 𝑇 (𝑚) =
∑𝑛𝑠
𝑖=1

𝐵𝑖 . Upon
the arrival of 𝐵𝑛𝑠+1 new data points, we have 𝑥 = [x1, . . . , x𝑚+𝐵𝑛𝑠+1 ]
and 𝑦 = [y

1
, . . . , y𝑚+𝐵𝑛𝑠+1

] and basic windows [𝑥1, . . . , 𝑥𝑛𝑠+1] and
[𝑦1, . . . , 𝑦𝑛𝑠+1]. Let 𝑇 ′ =

∑𝑛𝑠+1
𝑖=2

𝐵𝑖 . Considering a query window
𝑤 = (“𝑛𝑜𝑤”,𝑚), we can incrementally compute the Pearson’s corre-
lation of 𝑥 and 𝑦 at time 𝑡 + 𝐵𝑛𝑠+1 from their correlation at time 𝑡 :

𝐶𝑜𝑟𝑟𝑡+𝐵𝑛𝑠+1 (𝑥,𝑦) =
1

𝐶 . 𝐷

(
𝑇𝜎𝑥𝜎𝑦𝐶𝑜𝑟𝑟𝑡 (𝑥,𝑦)

+ 𝐵𝑛𝑠+1 (𝜎𝑥𝑛𝑠+1𝜎𝑦𝑛𝑠+1𝑐𝑛𝑠+1 + 𝛿𝑥𝑛𝑠+1𝛿𝑦𝑛𝑠+1 )

− 𝐵1 (𝜎𝑥1
𝜎𝑦1

𝑐1 + 𝛿𝑥1
𝛿𝑦1
)−𝑇 ′𝛼𝑥𝛼𝑦

)
𝐶 =

√︃
𝑇𝜎2

𝑥 + 𝐵𝑛𝑠+1 (𝜎𝑥𝑛𝑠+1 2 + 𝛿2

𝑥𝑛𝑠+1
) − 𝐵1 (𝜎2

𝑥1
+ 𝛿2

𝑥1
) −𝑇 ′𝛼2

𝑥

𝐷 =

√︃
𝑇𝜎2

𝑦 + 𝐵𝑛𝑠+1 (𝜎𝑦𝑛𝑠+1 2 + 𝛿2

𝑦𝑛𝑠+1
) − 𝐵1 (𝜎2

𝑦1
+ 𝛿2

𝑦1
) −𝑇 ′𝛼2

𝑦

𝛼𝑥 =
𝐵𝑥𝑛𝑠+1𝛿𝑛𝑠+1 − 𝐵1𝛿𝑥1

𝑇
𝑎𝑛𝑑 𝛼𝑦 =

𝐵𝑛𝑠+1𝛿𝑦𝑛𝑠+1 − 𝐵1𝛿𝑦1

𝑇

𝛿𝑥𝑛𝑠+1 = 𝑥𝑛𝑠+1 − 𝑥1:𝑛𝑠 𝑎𝑛𝑑 𝛿𝑦𝑛𝑠+1 = 𝑦𝑛𝑠+1 − 𝑦1:𝑛𝑠

where, 𝜎𝑥 (𝜎𝑦) is the standard deviation of query window 𝑥 (𝑦) at
time 𝑡 , 𝜎𝑥 𝑗

(𝜎𝑦 𝑗
) is the standard deviation of the basic window of 𝑥 𝑗

(𝑦 𝑗 ), 𝑐 𝑗 is the correlation of the 𝑗-th basic windows of 𝑥 and 𝑦, 𝑥 𝑗 (𝑦 𝑗 )
is the mean of basic window 𝑥 𝑗 (𝑦 𝑗 ), and 𝑥𝑖:𝑗 (𝑦𝑖:𝑗 ) is the mean of
basic windows 𝑥𝑖 , . . . , 𝑥 𝑗 (𝑦𝑖 , . . . , 𝑦 𝑗 ).

The proof can be found in our extended version of the paper [36].

Using this lemma, unlike the existing approximation algorithms [24,

39], TSUBASA can update a correlation matrix at any time without

having to wait for data points of a basic window to arrive. Note

that the case of equally subdividing time-series into basic windows

of size 𝐵 and a query window size being the integral multiple of

the basic window size is a special case of this Lemma. Algorithm 3

describes the steps of constructing a network for real-time data.

Algorithm 3 Network-Construct-RealTime

Input: streams L = {x1, . . . , x𝑛 }; statistics 𝑆 ; query 𝑤; basic window size

𝐵; threshold 𝜃

Output: graph (𝐺,𝑉 )
1: 𝑆 ← 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 (L, 𝐵)
2: 𝐺,𝑉 ← 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 −𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡 −𝐻𝑖𝑠𝑡𝑜 (L, 𝑆, 𝑤, 𝐵, 𝜃 ) // create

initial network
3: 𝑏 ← [] // most recent basic window
4: while do
5: 𝑏 ← IngestData()
6: if Len(b) == B then
7: 𝑠 ← Stats(𝑏)
8: UpdateNetwork(G, V, s) // use Lemma 2
9: 𝑏 ← []
10: return

3.2 Approximate Pairwise Correlation
Next, we describe how our model can be extended to approximate

the correlation of time-series over a query window for all time-

series regardless of being cooperativeness or uncooperative. In § 2.2,

we describe how existing techniques reduce the DFT coefficients of

two time-series to the Euclidean distance of their normalized series.

Note that, in our model, the necessary statistics for normalization

are collected during the sketch time. In the following analysis, we

assume a query window is a sequence of fixed-size basic windows.

3.2.1 Historical Data. Recall 𝑑𝑖 is the distance of the normalized

𝑖-th basic windows, namely 𝑥𝑖 and 𝑦𝑖 , 𝑋𝑖 and 𝑌𝑖 are the DFT of

normalized basic windows 𝑥𝑖 and 𝑦𝑖 , and 𝐷𝑖𝑠𝑡𝑛 (𝑋𝑖 , 𝑌𝑖 ) is the Eu-
clidean distance of the first 𝑛 DFT coefficients in 𝑋𝑖 and 𝑌𝑖 . Since

DFT preserves the distance between coefficients and the original

time-series, we have 𝑑𝑖 ≃ 𝐷𝑖𝑠𝑡𝑛 (𝑋𝑖 , 𝑌𝑖 ). To compute the distance of

query windows, 𝐷𝑖𝑠𝑡𝑛 (𝑥,𝑦), from the distances of basic windows,

without any assumption about the form and properties of basic win-

dows in a query window, we can combine the equation of Lemma 1

and 𝐶𝑜𝑟𝑟 (𝑥,𝑦) ≃ 1 − 1

2
𝐷𝑖𝑠𝑡𝑛 (𝑥,𝑦) of § 2.2 as follows.

1 − 1

2

𝐷𝑖𝑠𝑡𝑛 (𝑋,𝑌 )2 ≈
∑𝑛𝑠
𝑖=1
(𝜎𝑥𝑖𝜎𝑦𝑖 (1 −

𝑑2

𝑖

2
) + 𝛿𝑥𝑖𝛿𝑦𝑖 )√︃∑𝑛𝑠

𝑖=1
(𝜎𝑥𝑖 2 + 𝛿2

𝑥𝑖 )
√︃∑𝑛𝑠

𝑖=1
(𝜎𝑦𝑖 2 + 𝛿2

𝑦𝑖 )

We simplify the equation and obtain an approximation of the dis-

tance of two query windows based on the distances of their basic

windows. When all DFT coefficients are used, i.e. 𝑛 = 𝐵, the ≈
becomes =, turning into an exact calculation.

𝐷𝑖𝑠𝑡𝑛 (𝑋,𝑌 )2 ≈ 2+
∑𝑛𝑠
𝑖=1

𝜎𝑥𝑖𝜎𝑦𝑖𝑑𝑛 (𝑋𝑖 , 𝑌𝑖 )2 − 2

∑𝑛𝑠
𝑖=1
(𝜎𝑥𝑖𝜎𝑦𝑖 + 𝛿𝑥𝑖𝛿𝑦𝑖 )√︃∑𝑛𝑠

𝑖=1
(𝜎𝑥𝑖 2 + 𝛿2

𝑥𝑖 )
√︃∑𝑛𝑠

𝑖=1
(𝜎𝑦𝑖 2 + 𝛿2

𝑦𝑖 )
(3)

To perform all-pair correlation approximation in our framework,

we can normalize basic windows and compute their DFT coeffi-

cients, and pairwise distances, during the sketch time. At query time,

we use Equation 3 to get 𝐷𝑖𝑠𝑡𝑛 (𝑋,𝑌 ) and apply 𝑐𝑖 = 1− 1

2
𝑑2 (𝑥𝑖 , 𝑦𝑖 )

of § 2.2 to obtain the correlation.

3.2.2 Real-time Data. Combining Equation 3 and Lemma 2 for the

special case of equal-size basic windows, we can get the incremental

update equation for approximating pairwise correlation:



2 − 𝐷𝑖𝑠𝑡𝑡+𝐵𝑛 (𝑋,𝑌 ) ≈
= (when n =b)

1

𝐴 . 𝐵

(
𝑛𝑠𝜎𝑥𝜎𝑦𝐷𝑖𝑠𝑡

𝑡
𝑛 (𝑋,𝑌 ) + 𝜎𝑥𝑛𝑠+1𝜎𝑦𝑛𝑠+1 (1 −

𝑑𝑛𝑠+1)2

2

)

− 𝜎𝑥1
𝜎𝑦1
(1 −

𝑑2

1

2

) − 𝛿𝑥1
𝛿𝑦1
−𝑛𝑠𝛼𝑥𝛼𝑦+𝛿𝑥𝑛𝑠+1𝛿𝑦𝑛𝑠+1

) (4)

Here, 𝐷𝑖𝑠𝑡𝑡+𝐵𝑛 (𝐷𝑖𝑠𝑡𝑡𝑛 (𝑋,𝑌 )) is the DFT Distance of the query win-

dow at time 𝑡 + 𝐵 (time 𝑡 ) using first 𝑛 coefficients in each basic

window. The new distance can be obtained by calculating the pair-

wise distances for the last basic window 𝑑𝑛𝑠+1.

3.3 Complexity Analysis
In this section, we discuss the complexity analysis of query/sketch

time and space overhead of TSUBASA, the DFT-based algorithm, and

the baseline algorithm for non-arbitrary query windows. Next, we

describe the synergies of time and space with usability. Suppose 𝑁

is the number of time-series and each time-series is in length 𝐿.

Space Complexity The space overhead of TSUBASA is𝜓 = 𝐿
𝐵
(2+

𝑁 (𝑁−1)
2
), where 𝐵 is the basic window size and

𝐿
𝐵
is the number of

basic windows since we divide a time-series evenly by default. For

each basic window of a time-series, TSUBASA stores two values for

the mean and the standard deviation. In addition, for aligned basic

windows of all pairs of time-series, TSUBASA stores the correlation

of each pair of time-series. As a result, the space complexity of

TSUBASA is 𝑂 ( 𝐿𝑁 2

𝐵
). The DFT-based approximate algorithm stores

the mean and the standard deviation for basic windows of each

time-series and the distance between the first few DFT coefficients

of aligned basic windows of pairs of time-series, thus, has the space

complexity of 𝑂 ( 𝐿𝑁 2

𝐵
). We remark that this space overhead is in

addition to the storage of raw time-series for both algorithms if the

raw time-series are not discarded after sketching.

Time complexity The sketch time complexity of TSUBASA is

independent of query window size and is𝑂 (𝐿 · 𝑁 2), since TSUBASA
requires calculating statistics over the aligned basic windows of all

pairs of time-series. The sketch time complexity of the approximate

algorithm is worse than TSUBASA and is 𝑂 (𝐿2 · 𝑁 2), since the cal-
culation of DFT coefficients for a time-series of length 𝐿 is 𝑂 (𝐿2)
and coefficients are required for calculating the distance of aligned

basic windows in all pairs of time-series. For a query window size

𝑙∗ = 𝑛𝑠 · 𝐵, both TSUBASA and the approximate algorithm scan all

basic windows, therefore, the query time complexity of TSUBASA

and the approximate method are both 𝑂 ( 𝑙∗
𝐵
· 𝑁 2). However, the

baseline algorithm scans the raw time-series and has the query

time complexity of 𝑂 (𝑙∗ · 𝑁 2).
The query time complexity of real-time TSUBASA is 𝑂 (𝐵∗𝑁 2),

where 𝐵∗ is the size of the new coming basic window since TSUBASA
needs to compute statistics for the new window. The query time

complexity of the real-time approximate algorithm is 𝑂 (𝐵∗2𝑁 2).
The query time complexity of real-time baseline algorithm is𝑂 (𝐿∗ ·
𝑁 2), where 𝐿∗ is the size of the query window size.

Usability Let𝑀 be themaximum space capacity available for the

storage of time-series sketches. Considering the above space analy-

sis and assuming equal-size basic windows, the minimum basic win-

dow size of TSUBASA can be calculated by solving
𝐿
𝐵
(2+ 𝑁 (𝑁−1)

2
) ≤

𝑀 . That is, with𝑀 available storage the maximum basic window

size handled by TSUBASA is
𝐿
𝑀
(2 + 𝑁 (𝑁−1)

2
). Note that both time

and space complexity reduce as 𝐵 increases. Moreover, choosing a

large 𝐵 means less space capacity requirement. Therefore, should

we just choose an extremely large 𝐵? The answer is no. When an

arbitrary query window is not supported, a large 𝐵 will reduce the

flexibility of query windows, thus, usability. For the case of the

query window size being the integral multiple of the basic window

size, the chosen query window size by users becomes extremely lim-

ited. If we consider the generic case of Lemma 1, we will observe a

significant rise in query time, since the start/end of a query window

can fall anywhere in a basic window, thus, when basic windows

are large, the first and last basic windows can be potentially large.

Suppose the query window is in length 𝑙∗, where ∃𝑛𝑠 ∈ 𝑅, such that
𝑛𝑠 · 𝐵 ≤ 𝑙∗ < (𝑛𝑠 + 1) · 𝐵. The time complexity is 𝑂 (( 𝑙∗

𝐵
+ 𝐵) · 𝑁 2).

When 𝐵 >
√
𝑙 , 𝑙
∗
𝐵
+ 𝐵 is monotonically increasing. Since 𝐵 >

√
𝑙 at

the most meaningful queries, the query time increases when the 𝐵

increases for the generic method.

3.4 Parallel and Disk-based TSUBASA
The disk-based TSUBASA stores sketches on the disk to be retrieved

at query time for correlation calculation. Moreover, despite the

quadratic complexity of the sketch time and query time, TSUBASA is
embarrassingly parallelizable. The set of all pairs of time-series can

be partitioned into groups that are processed in parallel. During

sketching, workers are divided into a database worker, that writes

statistics to the database, and computation workers, that perform

sketch computation. Each worker sketches time-series pairs of a

partition and sends the sketches in batches to the database worker

to write to a disk-based database. During the query time, each

worker is assigned a partition, reads the sketches of time-series

in batches directly from the database and computes the pairwise

correlations, and outputs a sub-matrix of the correlation matrix.

To leverage data locality and minimize the number of I/Os, for

partitioning time-series pairs, TSUBASA adopts an approach similar

to the parallel block nested loop join. Each partition contains a

subset of time-series paired with all time-series, i.e. each partition

is a group of rows in a correlation matrix and the processing is

done row by row in batches. Batches of pairs are assigned to a

worker and once a worker is finished, it reads the statistics of the

next batch of pairs from the database. Since Pearson’s correlation

is a symmetric measure, TSUBASA needs to process 𝑛(𝑛 − 1)/2 pairs

to construct the correlation matrix. For load balancing, TSUBASA
assigns the same number of pairs to each worker. Note that the

same architecture can be used to make the machinery described, in

§ 3.2, for correlation approximation.

4 EXPERIMENTS
We have developed, in this paper, mathematical models and algo-

rithms: Network-Construct-Histo and Network-Construct-

RealTime, for constructing and updating correlation matrices to

build exact networks on historical and real-time data. Our empiri-

cal evaluation has two parts. First, we study these algorithms and

compare their query time and sketch time against a baseline, on

historical and real-time version of a climate data set. For these

experiments, we use the in-memory version of the algorithms,



i.e. in-memory data structures are used for storing raw data and

sketches. Second, we evaluate the scalability and efficiency of the

disk-based and parallel TSUBASA and the approximate algorithm as

described in § 3.4.

For all experiments, we assume equal basic window sizes. All

algorithms are implemented using Go language. We use PostgreSQL

for storing data sketches. All experiments are conducted on a ma-

chine with 2 Intel
®
Xeon Gold 5218 @ 2.30GHz (64 cores), 512 GB

DDR4 memory, a Samsung
®
SSD 983 DCT M.2 (2 TB).

NCEA Data Set1 is a public data from the National Oceanic

and Atmospheric Administration (NOAA). The data is collected

every hour, and uploaded publicly in 24-hour increments. NOAA

utilizes radiometric satellite collection, buoys, weather stations,

citizen scientists, and other methods for perpetual data gathering.

The data is collected from 157 nodes (time-series) across the US.

Each node produces approximately 8,760 points of data in a year.

This data set is used for in-memory experiments.

Berkeley Earth Data Set2 is a collection of open-source data sets
provided by an independent U.S. non-profit organization (Berkeley

Earth). We use NetCDF-format gridded data from this data set. The

climate data includes average temperature data on both lands and

oceans. It divides the earth by 1
◦ × 1

◦
latitude-longitude grid. We

consider the land time-series in this data set. The data set includes

18,638 nodes and each node has length 3,652. The time resolution

is 24 hours. This data set is used for scalability experiments.

4.1 Accuracy
We compared the accuracy of the climate network of NCEA data

set, constructed based on the correlation matrix computed by the

DFT-based techniques [24, 39] (as described in § 2.2) and exact

calculation, followed by the application of a threshold. The ap-

proximate technique [10, 39] uses the first few DFT coefficients

for estimating the distance of aligned basic windows, then, basic

window distances are aggregated to obtain an approximation of the

distance and correlation of time-series on a query window. In our

experiments, we use the way, we believe, StatStream [39] computes

the distance (correlation) of query windows, i.e. by averaging the

distance (correlation) of DFT coefficients over all basic windows.

We evaluate the impact of approximation on the accuracy of

constructed networks, using two measures: the number of edges

and the correlation similarity ratio, inspired by [25]. A correlation

matrix is an 𝑛×𝑛 matrix, where 𝑛 is the number of time-series and a

cell 𝑐𝑖 𝑗 is a binary value that indicates the correlation score of time-

series𝑥𝑖 and𝑥 𝑗 is higher than threshold𝜃 . The correlation similarity

ratio evaluates the percentage of identical edges in two networks.

Formally, given two complex networks represented by adjacency

matrices 𝐴 : {𝑎𝑖 𝑗 | 0 ⩽ 𝑖, 𝑗 ⩽ 𝑛} and 𝐵 : {𝑏𝑖 𝑗 | 0 ⩽ 𝑖, 𝑗 ⩽ 𝑛}, the
similarity ratio is defined as follows.

𝐷𝑝 (𝐴, 𝐵) =
2

∑𝑛−1

𝑖=1

∑𝑛
𝑗=𝑖+1 1 − |𝑎𝑖 𝑗 − 𝑏𝑖 𝑗 |
𝑛(𝑛 − 1)

1
https://www.ncei.noaa.gov/pub/data/uscrn/products/hourly02/2020/

2
http://berkeleyearth.org/data/

For instance, the correlation similarity ratio of networks with the

adjacency matrices 𝐴 and 𝐵 is 2/3.

𝐴 =
©«
1 1 0

1 1 1

0 1 1

ª®¬ 𝐵 =
©«
1 0 0

0 1 1

0 1 1

ª®¬ 𝐷𝑝 (𝐴, 𝐵) =
2

3

For both techniques, we consider the basic window size 200 and

threshold 0.75, while varying the number of DFT coefficients from

50 to 200 for the approximate technique. Note that in the exact

technique (basic window correlation), the correlation of time-series

is computed by aggregating the correlation of basic windows as

suggested by [39]. Therefore, the structure of this network (the

solid red plot) is independent of the number of DFT coefficients.

As shown in Figure 3a, the number of edges in the network

constructed by DFT correlation calculation becomes equal to the

number of edges in the network constructed by exact calculation,

only when all 200 coefficients are used. This matches the theory,

i.e. the approximation becomes identical to the exact calculation

when all DFT coefficients are used. Note that the approximate

technique follows the rule of § 2.2 to find correlated time-series

based on their DFT-based distance. Following this rule, the DFT

correlation calculation never yields false negatives, but, creates

false positive edges. This explains why the number of edges in

networks decreases as more coefficients are used. Moreover, the

similarity ratio of correlation matrices increases as the number of

considered coefficients increases and is at its highest value when

all coefficients are used to represent a basic window.

The main takeaway is that constructing a network based on the

approximation of DFT-based distance can lead to inaccurate net-

works. For climate data sets, near-exact result is obtained only when

a very large number of coefficients are used for approximation. This

means smaller basic windows are preferred for approximation pur-

poses which leads to a higher number of basic windows, therefore,

higher correlation calculation time in addition to the high DFT

coefficient calculation time. These results highlight the necessity of

efficient algorithms for constructing and updating exact correlation

matrices and networks on large collections of time-series.

4.2 Efficiency
We evaluate the efficiency of the in-memory version of correlation

matrix calculation algorithms for climate network construction

with respect to query window size and basic window size parame-

ters.

Network ConstructionWe compare the sketch time plus query

time when using the DFT-based approximation of StatStream with

TSUBASA’s exact correlations. For the approximation technique, we

report on two scenarios: using all DFT coefficients and using 75% of

coefficients of a basic window. As shown in § 4.1, the former empir-

ically yields a network similar to the network of exact correlation

calculation. During sketch time, TSUBASA calculates the statistics of
Lemma 1 and the approximation algorithm calculates the statistics

of Equation 3 for all basic windows of all time-series. At query time,

Lemma 1 and Equation 3 are used to combine sketched statistics to

get approximate and exact networks, respectively.

Figure 3b reports the run time when varying the size of a ba-

sic window for a query window of size 3,000. The sketch time of

TSUBASA grows very gradually with the basic window size, while
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Figure 3: In-memory: (a) Network Accuracy Comparison (b) Basic Window Size Analysis (c) Query Window Size Analysis (d)
Network Update Time.

the sketch time of the approximate algorithm increases with the

size of a basic window. This is because of the 𝑂 (𝑛2) complexity of

DFT calculation. Our results show that TSUBASA outperforms the

approximation technique at sketch time and its query time is on

par with the approximate network construction technique.

Figure 3c shows the query time of TSUBASA, approximate calcu-

lation, and a baseline when varying the query window size, consid-

ering the constant basic window size of 50. The baseline algorithm

computes the Pearson’s correlation of Equation 1 for all pairs of

time-series directly from raw data at query time without any sketch-

ing. In this experiment, the approximate algorithm uses 75% of the

DFT coefficients of a basic window. Note that the distances of basic

windows (𝑑 𝑗 ’s in Equation 3) are calculated during the sketch time,

therefore, the query time of the approximate algorithm does not

depend on the number of considered DFT coefficients. TSUBASA is
almost as fast as the approximate algorithm for all query window

sizes and outperforms the baseline by two orders of magnitude. We

remark that all algorithms have quadratic complexity in the number

of time-series. However, the exact and DFT-based approximation

are extremely efficient at computing the correlation of each pair

at query time due to relying on statistics that are pre-calculated

during the sketch time.

Network Update We compare the network update time of

TSUBASA with the DFT-based approximation of § 3.2.2 for real-time

NCEA data set. The initial networks are constructed on the data set

for a given query window. Then, after the arrival of 𝐵 data points,

both algorithms update the correlation and network using the spe-

cial case of Lemma 2 and Equation 4, respectively. Figure 3d shows

the time taken by TSUBASA and the approximate algorithm upon

the arrival of 𝐵 new data points for various basic window sizes for

a query window size of 3,000. The approximate algorithm uses 75%

of DFT coefficients in a basic window. For both algorithms, updates

to the network depend on the statistics of the first basic window

of the current query window, which is already calculated, and the

most recently observed basic window, which needs to be calculated

on the fly. Indeed, the efficiency of updates only depends on the

processing of the most recently observed basic window. Since the

approximation algorithm needs to calculate DFT coefficients we ob-

serve that it is slower than TSUBASA at least one order of magnitude.

The gap between the two algorithms becomes more obvious for

larger basic window sizes because of the 𝑂 (𝑛2) complexity of DFT

calculation. In conclusion, TSUBASA can compute exact correlation

and networks for real-time much faster than the approximation

competitor.

4.3 Scalability
We compare TSUBASA and the approximation algorithm in similar

parallel and disk-based configurations. To separate the impact of

fine-tuning the database on performance, in all experiments, we

choose to use one database worker and allocate the rest of work-

ers for sketching and querying. For the scalability experiments,

we use subsets of time-series from the Berkeley Earth data set.

All experiments consider a basic window length of 120, a query

window length of 960, and 75% of DFT coefficients for correlation

approximation.

Sketch Time Figure 4a shows the sketch time of TSUBASA and
the approximate algorithm for correlation matrix calculation for a

various number of time-series on 63 partitions and 64 cores. The

plot separates the write time from the sketch calculation time. We

observe that TSUBASA outperforms the approximate algorithm in

sketch time. This is due to the quadratic complexity of DFT calcu-

lation as opposed to the linear complexity of computing TSUBASA
sketches. We observe that the majority of work by TSUBASA during

sketching is spent on writing sketches to a database, unlike matrix

approximation which is on par with the write time. Note that in this

configuration the total sketch time of TSUBASA and the approximate

algorithm is bounded by database write time. The total sketch time,

sketch calculation, and write time of TSUBASA and the approximate

algorithm increase quadratically with the number of time-series.

However, due to parallelization, the growth is slower than what is

expected for a single-core configuration.

Query Time Figure 4b shows the query time of TSUBASA and
the approximate algorithm for correlation matrix calculation for a

various number of time-series on 63 partitions and 64 cores. The

plot separates the database read time from the correlation matrix

calculation time. Both TSUBASA and the approximate algorithm have

on par query time and take less than a minute for computing the

correlation matrix even for the largest number of time-series. We

observe that the read time during querying is negligible compared

to matrix calculation. The read time percentage is slightly higher

for smaller networks due to the database overhead compared to

matrix calculation cost on a small number of time-series. The total

query time, matrix calculation, and read time of TSUBASA and the

approximate algorithm increase quadratically with the number of
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Figure 4: Parallel and Disk-based: (a) Sketch Time Breakdown (b) Query Time Breakdown (c) Impact of Parallelization (d) Space
Overhead.

time-series. However, due to parallelization, the growth is slower

than what is expected for a single-core configuration.

Impact ofNumber of Partitions Figure 4c shows how TSUBASA
scales with the number of partitions. For these experiments, we

use 2,000 time-series. Note that we have 63 partitions/cores for

sketch/matrix computation and we reserve one core for database

writes. Both sketch and matrix calculation times decrease with the

increase in the number of cores. We expect further optimization of

query and sketch time can be done by fine-tuning the database and

allocating further resources.

Space Overhead Figure 4d shows the size of databases used for

storing sketches of 2,000 time-series by TSUBASA and the approxi-

mate algorithm with respect to basic window size. Both algorithms

store sketches of the same size for each basic window and have the

same space overhead. As the size of the basic window increases the

number of basic windows decreases and the total size of sketches

stored by both algorithms decreases.

5 RELATEDWORK
Spatio-Temporal Databases represent the value of a climate vari-

able with three dimensions of geometry and time (i.e. latitude,

longitude, and timestamp). Systems such as Microsoft StreamIn-

sight [3], GeoMesa [1], and IBM PAIRS Geoscope [19] are designed

for processing streams of geospatial data, from sources such as

satellites and IoT sensors, benefiting from relational DBMSs, dis-

tributed column-oriented databases, and scalable key-value data

stores. The algorithms and mathematical models we designed in

this paper can be incorporated into geo-spatial systems. We use Go

for storage and analysis. TSUBASA can be a stand-alone system with

other network analysis extensions for clustering and community

detection.

Similarity Search on Time-Series To compute the similarity

between time-series, several measures have been proposed [23, 29].

In TSUBASA, we consider the Pearson’s correlation coefficient as it is

themost commonly usedmeasure for building climate networks [13,

35]. There has been extensive work from database community on

similarity search of time-series [6, 14, 23, 31, 39]. This line of work

considers threshold queries for similarity search in time-series

databases and often involve calculating a function over two or

more streams and reporting when the threshold is crossed. Time-

series similarity search problems in the community have mostly

focused on identifying similar time-series to a query time-series.

TSUBASA, however, focuses on the construction of the complete and

exact correlation matrix, a task that requires all-pair correlation

calculation.

Sketching and Data Reduction Alternative techniques to DFT

for time-series similarity approximation are DiscreteWavelet Trans-

form (DWT) [8], Singular Value Decomposition [16], and Piecewise

Constant Approximation [21]. Data reduction is based on the idea

of summarizing the population or sample data through smaller-

sized matrices or simple numbers [17]. As for time-series, it has

been a topic of interest that reduces data into low-dimensional data

while preserving its characteristics to a large extent [38], which has

IoT applications [28]. TSUBASA sketches data into statistics that are
required for the efficient and exact calculation of correlation scores

and networks.

Data Streaming Systems Most data streaming systems, includ-

ing S4 [26], Muppet [20], Spark [37], and Flink [7] are large-scale

data processing systems driven by the Map Reduce programming

model. They can work on different kinds of data coming from real-

world sensors or IoT devices. The data streaming systems, which

TSUBASA relies on for data ingestion, will definitely reduce the la-

tency of data processing, and also increase the throughput in a

given time.

6 CONCLUSION
We presented TSUBASA, an efficient and exact correlation matrix

calculation algorithm for climate network construction on histor-

ical and real-time data. TSUBASA uses the basic-window model to

subdivide a query time-window into smaller windows. TSUBASA
computes a cheap and simple sketch of basic windows and reuses

them at query time for building networks on arbitrary query win-

dows. We described a way of approximating time-series correlation

and compared it with TSUBASA. Experiments show that TSUBASA
can compute exact correlation and network faster than DFT-based

approximation techniques. The techniques proposed in TSUBASA
can be potentially applied to analyzing stock market data [22], bi-

ological data [4], and fMRI and EEG data [9, 33]. For future work,

we plan to extend our problem definition to unaligned time-series,

develop a pairwise correlation pruning algorithm based on a thresh-

old, and consider further optimization of the parallel TSUBASA by
fine-tuning.
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