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ABSTRACT

A climate network represents the global climate system as a net-
work where nodes are geographical locations each represented
by time-series and edges indicate the interactions of time-series.
Network science has been applied to climate data to study the
dynamics of a climate network. To enable network dynamics anal-
ysis on historical and real-time climate data, the core task is the
efficient computation and update of correlation matrices and cli-
mate networks. We demonstrate tsupy, a Python library, which
extends Jupyter Notebook as instrumentation for performing cli-
mate network construction and analysis at interactive speed. This
demonstration focuses on how tsupy enables dynamic network
analysis on climate data. We also show how tsupy can be applied to
neuro-imaging to understand the functional connectivity between
brain regions.
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1 INTRODUCTION

To identify and analyze patterns in global climate, scientists and
climate risk analysts model climate data as complex networks –
networks with non-trivial topological properties [1, 5, 6]. The cli-
mate network architecture represents the global climate system
by a set of anomaly time-series (departure from the usual behav-
ior) of gridded climate data and their interactions [12]. A climate
data set includes remote and in-situ sensor measurements (e.g. sea
surface temperature and sea level pressure) covering a grid (e.g.
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with a resolution of 2.5◦ × 2.5◦). Nodes in a climate network are
geographical locations, characterized by time-series and edges rep-
resent information flow between nodes. The edge weights indicate
a degree of correlation between the behaviors of time-series (e.g.
Pearson’s correlation). Note the geographical locality of nodes does
not directly imply the topology of a network.

Climate networks have been shown to be powerful tools for
gaining insights on earthquakes [1], rainfalls [6], and global climate
events such as El Niño [5]. The common way for network dynam-
ics analysis is to construct networks for each hypothesized time-
window and analyze them separately [4]. In most analyses, given a
query window, a correlation matrix is constructed by computing
the pairwise correlation of all time-series on the query window.
Pearson’s correlation is one of the most dominant measures for
studying the pairwise climatical correlation [3]. The correlation
matrix enables visualization [8], network dynamics analysis [2],
as well as tasks such as community detection [11]. The quadratic
complexity of all-pair correlation computation makes network con-
struction a laborious task, particularly, for interactive data analysis.

Example 1: Climate scientists are particularly interested in detecting
and identifying El Niño and La Niña [10]. This requires measuring the
spatial organization of high covariability along the Earth’s surface by
computing the node-weighted transitivity of the global climate net-
work [13]. In the analysis done by Radebach et al., each geographical
location in the grid of 10K locations is associated with a time-series
recording the temperature of the location over 50 years with a res-
olution of one day. The first step of this analysis is to compute the
correlation of all pairs of time-series in the global grid on a sliding
window (a sequence of query windows). The query window size is
commonly one year, containing 365 data points with a sliding size of
30 days. This gives us about 600 correlation matrices to compute and
analyze. Computing such a matrix is time-consuming, and it becomes
even more cumbersome for a sliding window query. The output of
the first step is a series of correlation matrices. The second step is to
convert each correlation matrix into a matrix that only contains the
high correlations (weighted matrix), then compute the node-weighted
transitivity of the matrix. An analysis of transitivity allows scientists
to decide whether El Niño has happened in a year (query window) or
not. Besides sliding the window many times, it might be needed to
change the window size and the sliding step in the first step to test
the robustness of results. Given a large number of time-series and
their lengths, this exploratory process raises the need for computing
correlation matrix with different query window sizes efficiently and
at interactive speed. □
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To bridge the gap between climate data and network analysis,
we present tsupy1, a data platform that enables climate scientists
and decision-makers to efficiently and interactively construct and
analyze climate networks on historical and real-time data. tsupy
is designed to be used as a library for interactive climate network
analysis. Due to the popularity of Jupyter notebooks for data science,
we chose to implement tsupy as an extension of Jupyter notebook.
tsupy is a Python wrapper around our core library2 implemented
in golang for efficiency purposes. This library currently provides
an API for 1) construction of Pearson correlation matrix on time-
series, 2) weighted and unweighted network construction using a
user-defined threshold, 3) construction of correlation matrices and
climate networks over sliding window queries, and 4) computation
of basic network properties such as transitivity. The tsupy library
is organized in a modular and extensible way to accommodate
new functionalities such as clustering and community detection
in a climate network. In this demo paper, we first introduce the
architecture of tsupy library (§ 2), then provide an overview of
concepts related to efficient correlation matrix construction (§ 3).
Next, we discuss our demonstration that will show how tsupy
can be used to perform the main steps for generating well-known
results [10] in the climate network community in Jupyter Notebook
at interactive speed.

Jupyter Notebooks
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Figure 1: tsupy Architecture.

2 ARCHITECTURE OF TSUPY

Figure 1 shows the architecture of tsupy. The core and first task in
climate network analysis is the computation of correlation matrix
and construction of a climate network. The existing work [7, 15]
identifies the pairs of time-series with a correlation higher that a
threshold in an approximate way by reducing the correlation of
time-series to the distance of their Discrete Fourier Transform (DFT)
coefficients and applying grid-based indexing [15] and I/O-aware
techniques [7]. Unlike the existing work, tsupy enables exact corre-
lation matrix computation in a speed on par with the approximate
techniques. tsupy includes the following API components.
Exact Correlation Matrix Calculation From the mathematical
perspective, the analysis of the evolution of a complex system
depends on the robustness and exactness of the initial weights in
the complex network [5]. Moreover, in some analyses, the threshold
1https://github.com/DataIntelligenceCrew/tsupy
2https://github.com/DataIntelligenceCrew/tsubasa

required for filtering meaningless edges in a network is obtained
based on an analysis of the entire correlation matrix [10]. Since
interactivity is the main requirement in exploratory workloads, the
efficiency and interactivity of correlation calculation on historical
data and correlation update for real-time data is a key functionality
of tsupy, which is supported through GetCorrelationMatrix.
Dynamic (Un)weighted Network Construction The common
way for network dynamics analysis is to construct networks for
each hypothesized time-window and analyze them separately [4].
This is usually done by applying a sliding window model and com-
puting the correlation matrix and network for a sequence of query
windows [10]. For example, to analyze the temperature over years
1990 to 2020, a user may define the range [01-1970, 12-2020],
sliding window size of 10, and a sliding step of 5 years. This is trans-
lated into nine query windows of [01-1970, 12-1980], [01-1975,
12-1985], [01-1980, 12-1990], [01-1985, 12-1995], . . ., [01-2010,
12-2020]. Supporting a sliding window analysis requires a series of
correlation matrix calculation and network construction.

Methods such as GetNetworkUnweighted and
GetNetworkWeightedRatio support network construction. The
former generates an unweighted network, where an edge exists
only if the correlation of its adjacent nodes is higher than a
threshold. The latter generates a weighted network, where an
edge exists in the network if the correlation of its adjacent nodes
is higher than a threshold and the weight of the edge becomes
the correlation value. The required threshold is either provided
by the user or is some 𝜌 quantile of the correlation values in the
computed matrix.

Additionally, tsupy supports the efficient calculation of some
basic network properties including the measurements of a network
as well its transitivity through methods such as GetTransitivity,
GetTimeSeriesNum, and GetTimeSeriesLength.
Implementation tsupy performs the parallel computation of both
sketching and matrix computation. It has two modes: in-memory
and disk-based, depending on the storage chosen for sketches. The
disk-based version of tsupy is built on top on PostgreSQL. Meth-
ods InitDB and SketchInDB allow users to store the sketch data in
database. tsupy is a Python binding for tsubasa Golang package.
It is generated by gopy. tsupy can be easily extended with useful
functions such as clustering and community detection.

3 SOLUTION SKETCH

Exact Correlation Matrix ComputationWe are given a collec-
tion L = {𝑥1, . . . , 𝑥𝑛} of geo-labeled time-series, where 𝑥𝑖 denotes
the time-stamped values of a climatic variable collected at location 𝑖 .
A time-series 𝑥𝑖 is defined as [x𝑖1, . . . , x

𝑖
𝑚], where x𝑖

𝑗
is the observed

value at time 𝑗 . We assume all time-series in L are synchronized,
i.e. each time-series has a value available at every periodic time in-
terval, namely time resolution. This can be achieved by aggregation
and interpolation on non-synchronized series.

At query time, a user defines a query time-window 𝑤 = (𝑒, 𝑙),
where 𝑒 is end timestamp and 𝑙 is the length of window.We consider
the data points within𝑤 for each time-series 𝑥 = [x1, . . . , x𝑘 ]. For
example, [x𝑘−𝑚+1, . . . , x𝑚] is the sequence we consider for 𝑥 on
the query window𝑤 = (𝑘,𝑚). When clear from the context, we call
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the sequence of a time-series 𝑥 , for a given query window simply
query window or time-series 𝑥 .
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Figure 2: tsupy Correlation Matrix/Network Computation.

The weighted climate network of L for a given query time-
window𝑤 is a graph N = (𝐺,𝑉 ), where a node in 𝐺 corresponds
to a location 𝑖 and is represented by time-series 𝑥𝑖 . An edge in
𝑉 between nodes 𝑖 and 𝑙 indicates that the correlation between
time-series 𝑥𝑖 and 𝑥𝑙 is above a user-defined threshold 𝜃 . Our focus
is on the most commonly used correlation measure i.e. Pearson’s
correlation coefficients [9].

Figure 2 illustrates a high-level overview of our prior work for
constructing and updating correlation matrices on historical and
real-time data [14]. The (disk-based or in-memory) storage contains
a collection of frequently updated time-series accessible through
locations. During the pre-processing, every time-series is divided
into basic windows. The common way is to process time-series in
batches of fixed size 𝐵, i.e. the stream [x1, . . . , x𝑛] is equally divided
into 𝑛/𝐵 basic windows, where the 𝑗-th basic window contains data
[x( 𝑗−1)∗𝐵, . . . , x𝑗∗𝐵]. Similarly, a query window is a sequence of
basic windows. The fixed-size basic window imposes limitations
on the start, end, and length of query windows. To support queries
with arbitrary length and position, we propose a mathematical
model that works with arbitrary basic window sizes.

Subdividing a series into basic windows allows us to process
data in smaller batches. We sketch basic windows of time-series,
in one pass, and store the collected statistics. This can also be
done at data ingestion time. At query time, the statistics of the
basic windows corresponding to a given query window of all time-
series are retrieved and all-pair correlations are calculated without
the need to access the raw data. For real-time data, the system
constructs the initial matrix and ingests the real-time raw data in
chunks. The sketching of the newly ingested basic window is done
on the fly and the correlations are updated incrementally without
computing the correlation from scratch.

Given query windows 𝑥 = [x1, . . . , x𝑚] and 𝑦 = [y1, . . . , y𝑚]
and the sizes of basic windows B = [𝐵1, 𝐵2, . . . , 𝐵𝑚], where 𝐵𝑖 is
the size of the 𝑖-th basic window. The exact Pearson’s correlation

of 𝑥 and 𝑦 is:

𝐶𝑜𝑟𝑟 (𝑥,𝑦) =
∑︁𝑛𝑠

𝑗=1 𝐵 𝑗 (𝜎𝑥 𝑗
𝜎𝑦 𝑗

𝑐 𝑗 + 𝛿𝑥 𝑗
𝛿𝑦 𝑗

)√︂∑︁𝑛𝑠
𝑖=1 𝐵𝑖 (𝜎𝑥𝑖 2 + 𝛿2𝑥𝑖 )

√︂∑︁𝑛𝑠
𝑖=1 𝐵𝑖 (𝜎𝑦𝑖 2 + 𝛿2𝑦𝑖 )

(1)

𝛿𝑥𝑖 = 𝑥𝑖 −
∑︁𝑛𝑠
𝑘=1 𝑥𝑘

𝑛𝑠
, 𝛿𝑦𝑖 = 𝑦𝑖 −

∑︁𝑛𝑠
𝑘=1 𝑦𝑘

𝑛𝑠

where, 𝜎𝑥𝑖 (𝜎𝑦𝑖 ) is the standard deviation of basic window of 𝑥𝑖 (𝑦𝑖 ),
𝑐𝑖 is the correlation of basic windows 𝑥𝑖 and 𝑦𝑖 , 𝑥𝑖 (𝑦𝑖 ) is the mean
of basic window 𝑥𝑖 (𝑦𝑖 ), and 𝑛𝑠 is the number of basic windows
in a query window. Using Equation 1, we can pre-compute and
store the statistics of basic windows and compute the correlation
for arbitrary query windows and sizes.

A user-defined query window on real-time data,𝑤 = (“𝑛𝑜𝑤”,𝑚),
indicates the sequence of the𝑚 most recently observed data points
of time-series. That is, the size of the query window is fixed while
the end timestamp is changing as new data arrives. Due to space lim-
its, we refer the interested reader to Lemma 2 in our prior work [14]
for incremental calculation of correlation for real-time data.

Contrast to Related Work Existing techniques for correlated
time-series search assume that a query window is divisible by the
size of a basic window and approximate the correlation using the
Discrete Fourier Transform (DFT) of basic windows [7, 15]. Com-
puting DFT coefficients has a time complexity of 𝑂 (𝑛2) in the size
of a basic window. For normalized time-series, DFT preserves the
Euclidean distance between two sequences. The approximation
techniques consider the first few DFT coefficients to capture the
shape and properties of time-series. It has been shown that the cor-
relation of two time-series can be reduced to the Euclidean distance
of the DFT coefficients of their normalized time-series [15].

We remark that these techniques do not compute exact correla-
tion of time-series and aim at constructing networks rather than
computing the complete correlation matrix which is crucial to net-
work analysis on climate data. In our prior work [14], we describe
a way of computing the correlation matrix using the DFT-based
approximate techniques. Similar to the exact solution, we sketch the
basic windows and use the statistics such as distance and correlation
of basic windows at query time for correlation approximation.

For 𝑁 time-series of each length 𝐿, the space overhead of the
exact solution is 𝐿

𝐵
(2 + 𝑁 (𝑁−1)

2 ), where 𝐵 is the basic window size
and 𝐿

𝐵
is the number of basic windows and the space overhead of the

approximate solution is𝑂 ( 𝐿𝑁 2

𝐵
). The sketch time complexity of the

exact solution is𝑂 (𝐿 ·𝑁 2), while the sketch time complexity of the
approximate algorithm is 𝑂 (𝐿2 · 𝑁 2), since the calculation of DFT
coefficients for a time-series of length 𝐿 is 𝑂 (𝐿2) and coefficients
are required for calculating the distance of aligned basic windows
in all pairs of time-series. The approximate and exact algorithms
are on par in terms of query time and both have complexity of
𝑂 ( 𝑙∗

𝐵
· 𝑁 2).

4 DEMONSTRATION DESCRIPTION

Climate Network AnalysisWe will show how tsupy can be used
to efficiently replicate the steps of an existing analysis of El Niño
and La Niña events in the climate network science community [10].



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Jinshu Liu, Yunlong Xu, Fatemeh Nargesian, & Gourab Ghoshal

1) Loading Data

Get Time-series Statistics

2) Sketching

4) Construction of an Unweighted
Network with a Threshold

5) Network Construction
on a Sliding Window

5a) Construction of a
Weighted Network with a

Ratio

3) Exact Calculation
of Correlation Matrix

5b) Network Transitivity
Computation

Network Transitivity  over
a Sliding Window: for a

query window size of one
year and sliding step of

one month ([1-12], [2,13],
..., [12,24], ...)

Figure 3: tsupy Demonstration Scenario.

We make a video of an example scenario of tsupy available3. We
will work data set4 used by the original work. This data set contains
10,224 temperature time-series over 1,826 days (50 years) with a
time resolution of one day. User activities are shown in Figure 3.
Step 1: Loading Data Time-series data can be loaded from a data
set covering the globe. In this demo, we use the data for five years.
Currently, tsupy supports netCDF file format. The user can then ask
for statistics of the data set including number of time-series and
their length.
Step 2: Sketching The user performs sketching of time-series
which involves computing the statistics of basic windows and stor-
ing them in memory or a disk-based database.
Step 3: Correlation Matrix Calculation The user can indicate a
query window by its end time and length and tsupy computes the
exact and complete correlation matrix.
Step 4: Unweighted Network Construction The user can indi-
cate a query window and a threshold and tsupy returns a binary
matrix where a cell gets the value one if the correlation of corre-
sponding time-series is higher than the threshold, otherwise, zero.
Step 5: Sliding Window Analysis To perform dynamic network
analysis over a sliding window, the user can use simple Python
commands to iterate over query windows in a sliding window. At
each iteration, an unweighted correlation matrix is calculated with
a user-defined parameter (e.g. 𝜌 = 0.005) and the transitivity of
the network is computed. Note that further analysis is required to
detect an El Niño/La Niña. At a high level, for a specific year, the
transitivity of its five-year period is computed from the correlation
matrix generated by a query window of size five years. If the tran-
sitivity of a window starting with a month in the specified year
exceeds this threshold, the year is reported as El Niño/La Niña.

3https://youtu.be/sCZJ12OwpvU
4https://psl.noaa.gov/cgi-bin/db_search/DBSearch.pl?Dataset=NCEP+Reanalysis+
Daily+Averages&Variable=Air+Temperature&group=0&submit=Search

Demonstration engagement In addition to our guided demonstration,
participants can ask to compute the correlation matrix on their data
set of choice and construct a network on it.
Other Domains In addition to the above scenario, the audience
will be able to choose from a list of datasets from other domains
or upload their own datasets and play with the library to write
code for network analysis. For example, we will make datasets from
neuroscience5 and finance6 domains available to the audience.
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