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EXACT CALCULATION OF CORRELATION MATRIX

Given a collection L = {xl, ..., X"} of historical or real-time time-series, the goal is
to efficiently compute the correlation matrix of L, i.e. Corr(xl,yf) forany i # j.
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Corr(x,y) =  Efficient network construction and update for historic and real-time data

CHALLNGES

* Exact calculation of the complete correlation matrix
* Correlation calculation on queries of arbitrary size with arbitrary start
and end points

\/Zﬁl(xf - .i')z\/z;’;l (y; — §)? to achieve interactivity

INCREMENTAL CORRELATION CALCULATION

* All algorithms are implemented using Go language. We use PostgreSQL for
storing data sketches and experiments are conducted on a machine with 2

CORRELATION NETWORK CONSTRUCTION

* Given a query window, a correlation matrix is constructed by computing the
pairwise correlation of all time-series on the query window.
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TSUPY is a Python library, which
PAIRWISE CORRELATION AND INCREMENTAL CALCULATION extends Jupyter Notebook as supyieringiongoks
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