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[ACM Comput. Surv. 56, 11]

How is CXL Implemented?

PCIe electricals + low-latency protocol layers

3

Transaction layer: queueing, processing, and ordering
Link layer: transaction reliability, data integrity
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Faster than PCIe, slower than DDR

Latency variability due
to  request processing
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A spectrum of CXL latencies (200 ~ 600 ns)
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What is the performance implication of CXL memory across
CXL devices, processors, and workloads at scale?

A spectrum of CXL latencies (200 ~ 600 ns)



State-of-the-Art CXL Study 5

[1] Demystifying CXL Memory with Genuine CXL-Ready Systems and Devices [MICRO ’23]

[2] Exploring Performance and Cost Optimization with ASIC-Based CXL Memory [EuroSys ’24]

[3] A Mess of Memory System Benchmarking, Simulation and Application Profiling [MICRO ’24]

I. Measure average latency and bandwidth for single CXL device

II. Quantify the performance of a ~10 workloads

III. Observational approaches for performance analysis

Overlook performance variation

Limited scope of workloads

Lack of root-cause analysis



Melody Overview

Extensive CXL characterization across diverse workloads
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SPA: A simple and accurate performance analysis approach

Unstable and unpredictable latency introduced by CXL

Quantitative slowdowns due to latency or bandwidth boundness

Dissect the root causes of CXL slowdown
Disclose CPU prefetching inefficiency

µs-scale tail latency even when bandwidth is not saturated

9 CPU counters for accurate slowdown estimation (>95% accuracy for over 95% workloads)

A comprehensive framework for CXL characterization and analysis
265 workloads across 4 CXL devices under 7 memory latency configurations on 5 CPUs!
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CXL tail latency

Workload characterization

SPA: Stall-based CXL performance analysis
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❏ Measuring per-cacheline memory access latency
❏ Latency distribution of billions of accesses
❏ The memory throughput << device bandwidth

CXL Latency Variation 8
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Average latency: 110ns Average latency: 390ns

Average latency is not enough to capture CXL performance variations
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Average latency is not enough to capture CXL performance variations

Some CXL devices exhibit unstable latency compared to regular DRAM

37ns 135ns



Tail Latency across CXL Devices 9

Some CXL devices have lower tail latency (CXL-A, CXL-D)

In paper:
• higher load
• interference 

CDFs



CXL Tail Latency in Workloads

CXL tail latency can lead to unpredictable application performance
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p99.9 – p50 = 40µs

p99.9 – p50 = 133µs



Outline

Melody overview

CXL tail latency

Workload characterization

SPA: Stall-based CXL performance analysis
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Workload Characterization on CXL

● Slowdown = (TimeCXL / TimeDRAM - 1) * 100%
● Workload categories:

○ SPEC CPU 2017
○ PARSEC
○ Graph (GAPBS, PBBS)
○ Database (Redis, Voltdb)
○ ML/AI (GPT-2, Llama, MLPerf)
○ Data analytics (Spark)
○ Phoronix

12
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Workload Characterization on CXL 13

CXL-A (214ns, 24GB/s)

60% workloads <13% slowdown
Bounded by neither latency nor bandwidth
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Workload Characterization on CXL 13

CXL-A (214ns, 24GB/s)

5% workloads >173% slowdown
Mainly bounded by bandwidth 

p95
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Workload Characterization on CXL 14

CXL-D (239ns, 52GB/s)

Higher CXL bandwidth (24GB/s à 52GB/s) partially mitigates slowdowns tails
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Workload Characterization on CXL 14

NUMA (212ns, 119GB/s)

CXL-D (239ns, 52GB/s)

Higher CXL bandwidth (24GB/s à 52GB/s) partially mitigates slowdowns tails
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CXL≈NUMA: The performance gap between (high-bandwidth) CXL and NUMA is closing!
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Melody overview

CXL tail latency

Workload characterization

SPA: Stall-based CXL performance analysis
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CXL Slowdown Analysis 16

CXL Memory Expander
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How does CXL latency affect CPU pipeline efficiency?
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CXL Memory Expander
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CXL Memory Expander

DRAM∆Cycles = CyclesCXL − CyclesDRAM

≈ ∆CyclesBackend

CPU Backend

How does CXL latency affect CPU pipeline efficiency?

Slowdown (S) = ∆Cycles / CyclesDRAM
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How does CXL latency affect CPU pipeline efficiency?

Core
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∆Cycles = CyclesCXL − CyclesDRAM

≈ ∆CyclesBackend
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How does CXL latency affect CPU pipeline efficiency?
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How does CXL latency affect CPU pipeline efficiency?

CPU Backend

Core Memory

DRAM Cache Store

Core

L1 
PF

L2 
PF

L3L2
LFB

L1

Store Buffer

DRAM
/CXL

SDRAM Demand read miss on L3

SCache Less efficient prefetching under longer memory latency

SStore Store buffer stays full for longer due to slower RFOs

L2PF’s coverage and
timelineness is reduced

More aggressive
L1PF from Memory

Delayed L1 hits

More details
in the paper



CXL Slowdown Breakdown of Real Applications

Overall Slowdown (S)

21
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The Sources of Slowdown Vary across Workloads 22

Redis, VoltDB, GPT-2: Slowdown is mainly from demand read

GAPBS, LLAMA: Part of slowdown is caused by prefetching inefficiency

CPU 2017: Diverse slowdown from demand read, prefetching and store
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I. Identify the range
of instructions with
high slowdown (e.g.,
> 20%)

II. Locate the
corresponding
lines of code

III. Identify 
corresponding 
memory objects

IV. Allocate
those objects
to local
DRAM

Slowdown will be reduced from 13% to 2%



More in the Paper! 24

CXL tail latency: analysis and reasoning
Factors for tail latency

Slowdown analysis
Large-scale experimental verification for SPA

SPA use cases and implications

Period-based slowdown analysis

Performance debugging, tuning, and prediction
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Abstract
Compute Express Link (CXL) has emerged as a pivotal inter-
connect technology for enabling scalable memory expansion.
Despite its potential, the performance implications of CXL
across diverse devices, latency regimes, processor architectures,
and workloads remain underexplored. In this paper, we present
M!"#$%, a comprehensive framework for systematic charac-
terization and analysis of CXL memory performance. M!"#$%
leverages an extensive evaluation spanning 265 workloads,
4 real CXL devices, 7 latency levels, and 5 CPU platforms.
M!"#$% yields many key insights: workload sensitivity to sub-
microsecond CXL latencies (140-410ns), the !rst disclosure and
quanti!cation of CXL-induced tail latency and its impact, CPU
tolerance to CXL latencies, a novel stall-based root cause anal-
ysis approach (S&’) for pinpointing CXL bottlenecks, and the
identi!cation of CPU prefetcher ine"ciencies under CXL.

CCS Concepts: • Hardware → Emerging technologies; •
Computer systems organization→ Architectures.

Keywords: Compute Express Link, CXL, Memory, Pro!ling
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Figure 1. The spectrumof sub-µs CXL latency and bandwidth.

1 Introduction
Driven by the growing requirements of memory-intensive
applications, the demand for increased memory capacity
is rapidly rising [37]. The surge is further compounded by
DRAM scaling challenges [41]. Emerging interconnects like
Compute Express Link (CXL) hold the promise of both scale-
up and scale-out memory expansion at the server/rack levels
[34, 36, 45]. Various memory vendors have introduced CXL
memory expanders [3, 4, 8, 15], some of which are being
deployed in production systems, facilitating access to signif-
icantly larger amounts of DRAM than previously feasible.

Low memory access latency is key to system performance,
but CXLmemory expansion introduces higher latencies com-
pared to traditional socket-local DRAM [27, 34, 42]. Figure
1 illustrates the substantial heterogeneity in CXL latency
and bandwidth, as measured across 4 CXL devices within
our platform (Table 1) and 2 more data points from pub-
lic sources1[15, 17]. Furthermore, CXL devices can exhibit
varying performance characteristics. The variability in la-
tency and bandwidth arises from varying interconnection
topologies and vendor optimizations [27, 42]. For instance,
the latencies of locally-attached CXL range from ↑200-400ns,
slightly exceeding NUMA latency. Accessing CXL memory
from a remote socket results in increased latency and di-
minished bandwidth (CXL+NUMA). The use of CXL switch(es)
to extend connectivity will introduce additional latencies
(CXL+Switch), even elevating latency to approximately 600ns.

The current CPU architecture and memory hierarchy are
tailored for typical multi-socket systems, o"ering ↑100ns la-
tency and 100s of GB/s bandwidth. However, the performance
implications of CXL memory with sub-µs latencies remain

1
CXL+Switch data is from [15], and bandwidth is averaged for 1 CXL device.
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Paper Code

Thank you! Questions?

https://github.com/MoatLab/Melody

https://github.com/MoatLab/Melody

