Notes on Petri Nets

Introduction

Petri nets were invented by Carl Adam Petriin 1939 at the age of 13. This work was the foundation for
his 1962 doctoral dissertation entitled Kommunikation mit Automaten. Petri nets have been used in a
variety of fields including computer science, chemistry, and biology. He retired from the Theoretical
Foundation of Computer Science group at the University of Hamburg in 1991.

Figure 1: Carl Adam Petri

Petri nets are a graphical for representing a system in which there are multiple independent activities in
progress at the same time. The ability to model multiple activities differentiates Petri nets from finite
state machines. In a finite state machine there is always a single “current” state that determines which
action can next occur. In Petri nets there may be several states any one of which may evolve by changing
the state of the Petri net. Alternatively, some, of even all, of these states may evolve in parallel causing
several independent changes to the Petri net to occur at once.

Basic Structure

A Petri net consists of four elements: places, transitions, edges, and tokens. Graphically, places are
represented by circles, transitions by rectangles, edges by directed arrows, and tokens by small solid
(filled) circles. There are a wide variety of extensions to Petri nets. These extensions add features to
model probabilistic behavior, allow weighted edges, or have tokens of various colors among others. Only
the most basic Petri net concepts will be covered here.

A basic Petri net is shown in Figure 2. This Petri net has four places, labeled PO through P4, and three
transitions, labeled TO through T2. Notice that places PO and P2 each have a single token represented by
the black dot inside each place. Edges, represented as directed arcs, connect places to transitions and
transitions to places. In a properly formed Petri net, places cannot be directly connected to other places
and transitions cannot be directly connected to other transitions. Also notice that the Petri net may
contain cycles. The Petri net in Figure 2 contains two cycles. One cycle contains PO, TO, P1, T1, P3, and

Computational Thinking 1 Dennis Kafura

T3. The other cycle contains T1, P4, T2, and P2. Cycles are common in Petri nets which represent
activities that happen repeatedly. For example, a web server repeated services incoming requests to
deliver web page content to different clients.

Figure 2: A Basic Petri Net

The state of a Petri net is represented by the occurrence of the tokens at various places. The state of the
Petri net in Figure 2 has tokens at places PO and P2. It will be shown that in another state of this Petri
net there are tokens at states P1 and P2. Yet another state has tokens at states P3 and P4. Not all
placements of tokens at places represent a possible state of the system. For example, the Petri net in
Figure 2 will never have as a possible state one in which the only tokens are at places P1 and P4. Which
states are possible and which are not are determined by the structure of the Petri net and the rules that
define how a Petri net changes its state.

A Petri net changes from one state to the next state when a transition “fires”. The firing of a transition
involves the transition’s input places and output places. The input places for a transition are all those
places that have an edge directed from the place to the transition. The output places of a transition are
all those places that have an edge directed from the transition to the place. For example, in Figure 2 the
input places for transition T1 are places P1 and P2. The output place for transition TO is place P1 while
the output places for transition T1 are places P3 and P4.

The firing rules for a transition are:

e atransition is able to fire when there is at least one token on each of the transition’s input
places, and

e when a transition fires it removes one token from each of its input places and produces a single
token on each of its output places.

A transition that is able to fire is said to be enabled and otherwise disabled. If there is more than one
enabled transition any one of enabled transitions may be the next one to fire. That is, Petri nets are able
to model systems with non-deterministic behavior. An example of this will be shown later.

Computational Thinking 2 Dennis Kafura

The Petri net in Figure 2 will be used to explain how a Petri net changes from one state to the next. In
Figure 2 the only transition that is able to fire is transition TO because it has a single input place, PO, and
that input place has at least one token. Notice that transition T1 is not able to fire because it has two
input places, P1 and P2, and P1 does not have at least one input token. As a result of the firing on
transition TO, the token in place PO is removed and a single token is created in place P1. This state is
shown in Figure 3.

Ot YO

Figure 3: State after the first transition

In the state of the Petri net shown in Figure 3 transition T1 is able to fire because there are input tokens
on each of its two input places, P1 and P2. Notice that transition T1 was not able to fire in the previous
state of the Petri net (as shown in Figure 2). The firing of transition TO in the earlier state create a new
state (the one shown in Figure 3) in which transition T1 is now able to fire. It is common to find that the
firing of a transition creates a new state in which previously disabled (i.e., unable to fire) transitions now
become enabled (i.e., able to fire). Notice that in Figure 3, transition T1 is the only transition that is
enabled. The firing of transition T1 in the state shown in Figure 3 produces the new state shown in
Figure 4.

In the state of the Petri net shown in Figure 4 both transitions T2 and T3 are enabled (i.e., able to fire).
As noted about, these transitions may fire in either order because the Petri net does not determine
which one of the two transitions is the next one to fire. The next state of the Petri net is, thus, not
uniquely determined. The next state can be the one following the firing of transition T3 or the one
following the firing of transition T2. The reader should draw both of these states and see that they are
different.

Computational Thinking 3 Dennis Kafura

T2

B2 P4

Pl

T3

Figure 4: State after Transition T1 fires.

The state shown in Figure 4 will eventually lead back to one of the previous states. The possibilities are:

e transition T2 fires and then transition T3 fires, leading to the state shown in Figure 2,

e transition T3 fires and then transition T2 fires, leading to the state shown in Figure 2, or

e transition T3 fires, transition TO fires, and then transition T2 fires, leading to the state shown in
Figure 3.

This Petri net will continue to transition among these states repeatedly.

Extended Edge Types

There are various extensions to the basic Petri net structure, two of which are read edges and inhibitor
edges. These new types of edges have different meanings from the normal edges and also have
different graphical representations. Both read edges and inhibitor edges are also restricted in that they
can only be drawn from places to transitions. Recall that regular edges can also be drawn from
transitions to places.

Figure 5 shows the use of read edges in three cases. The read edge is depicted graphically as an arc (a
solid line) from a place to a transition where a closed circle (a black dot) is drawn at the point where the
arc meets the transition. In Figure 5(a) the read edge is drawn from place A to the single transition;
similarly for the read edge shown in Figure 5(b) and 5(c).

Like a normal edge, a read edge influences whether the transition to which it is connected is able to fire.
In Figure 5(a) the transition is not able to fire because there is no token in place B even though there is a
token in place A. In Figure 5(b) the transition is able to fire because there are tokens at both places A
and B. What distinguishes a read edge from a normal edge is what happens when the transition fires. A
read edge is so named because it only “reads” if there is a token present on the place to which it is

Computational Thinking 4 Dennis Kafura

connected and does not cause the token at this place to be removed if the transition to which the read
edge is connected happens to fire. For example, if the transition in Figure 5(b) fires it results in the state
shown in Figure 5(c). As expected, a new token has been produced in place C. Also as expected, the
token has been removed from place A (because place A is connected to the transition by a normal edge).
Notice, however, that the token from place B has not been removed (because place B is connected to
the transition by a read edge).

ial [323] [{=3]

Figure 5: Read Edges

Intuitively, inhibitor edges are the opposite of normal and read edges. Normal edges and read edges
represent when a given condition holds. The presence of a token at a place signifies that the condition
associated with the place holds as long as a token is present. A transition having several normal or read
edges as its inputs will fire when all of its input places have tokens present. Intuitively, this is a form of
“and” logic in the sense that the transition fires when all of its input conditions hold. Inhibitor edges are
a form of “not” logic in the sense that the presence of a token on the place to which it is connected
inhibits or prevents the firing of the transition to which it is connected.

Figure 6 shows the use of an inhibitor edge. Notice that the inhibitor edge is drawn as an arc (a solid
line) connecting a place to a transition where an open circle (a white dot) is drawn at the point where
the arc meets the transition. There are two inhibitor edges in Figure 6 both drawn from place B to the
single transition in each of Figures 6(a) and 6(b).

The transition in Figure 6(a) is able to fire because there is a token at place A (place A is connected to
the transition by a normal edge) and there is no token at place B (place B is connected to the transition
by an inhibitor edge). The transition in Figure 6(b) is not able to fire because there is a token at place A
(place A is connected to the transition by a normal edge) and there is a token at place B (place B is
connected to the transition by an inhibitor edge).

Computational Thinking 5 Dennis Kafura

[a) =y

Figure 6: Inhibitor Edges

Example: Mutual Exclusion

It is often necessary for concurrent activities to ensure that they are both not performing some action
on a shared resource at the same time. That is, the concurrent activities must mutually exclude each
other from performing the action. There are many real world examples of mutual exclusion. Cars at a
four way stop intersection must mutually exclude each other from the use of the intersection in order to
prevent accidents that could occur by having multiple cars trying to pass through the intersection
simultaneously. Users of a vending machine must mutually exclude each other. Interleaving the actions
of two or more customers (depositing coins, making selections, taking the dispensed goods, taking any
change) is unlikely to result in a state where the customers are satisfied.

The Petri net in Figure 7 models the mutual exclusion among two cars using an intersection. In this
figure, each car modeled as being in one of four states: waiting at the intersection, using the
intersecting, leaving the intersection, and driving. In the figure, these states are abbreviated as At, Use,
Done, and Drive. The two cars continually drive and then return to the intersection and attempt to pass
through. The tokens in Figure 7 represent a state of the system when both cars are driving.

Computational Thinking 6 Dennis Kafura

ool 4

[et

wm

[
Ot

=

m

1]
o)

Drive (- -) Drive
3

Done
[] :E f Done |::|

Figure 7: Mutual Exclusion

To provide the guarantee of mutual exclusion an additional place along with other edges are also part of
the system shown in Figure 7. This additional place, named MutEx, has a single token. Consider the case
when both cars have arrived at the intersection. That is the transition between the Drive and At places
in each car fires with the result that each car has a single token in its At place. Notice that the transition
between the At and Use states can only fire when there is a toke in both the At and MutEx places.
Whichever one of these transitions fires causes the token in the MutEx state to be removed. The
removal of the token from the MutEx place means that the transition for the other car cannot fire now.
In this way, mutual exclusion is brought about. When the car using the intersection is done it must be
sure that the other car (if waiting) is allowed to proceed through the intersection. This is accomplished
in the Petri net in Figure 7 by the edges that lead into the MutEx place. When the transition between the
Use and Done places fires a token is produced in both the Done place and the MutEx place. By
recreating a token in the MutEx place, the intersection is again available to the other car.

In addition to mutual exclusion the Petri net model in Figure 7 has two other desirable properties. The
first desirable property is fairness. This means that neither car is disadvantaged in attempting to use the
intersection. When both car are at the intersection (i.e., there is a token in each of the two At places),
either one might be the one that is allowed to use the intersection. Fairness would not be achieved if
the car on the left was always allowed to proceed first. The second desirable property is that the
solution is non-blocking. This means that when the intersection is not being used by one of the cars
nothing blocks the other car from using the intersection.

Example: Resource Allocation

It is possible that a single place may contain multiple tokens at one time. This situation occurs frequently
in dealing with resource allocation problems where there are multiple units of a given resource to
allocate. In these problems, a place typically represents the number of available units of the resource.
The specific number of units available at a given time is denoted by the number of tokens contained in
the place. When there are no token in the place, meaning that there are no available units, activities

Computational Thinking 7 Dennis Kafura

which need a unit of the resource to execute must wait until a unit is returned or produced. In some
systems there are a fixed number of units which are acquired and returned by the activities. For
example, several processes may acquire and release a printer during their execution. In other cases, the
number of units is variable. For example, in distributed system a sender may generate many data
packets that are waiting to be read by the receiver. Finally, the number of available units, though
variable, may be limited to a maximum amount. For example, in a distributed system the number of
unread data packets may be limited to some number so that the amount of buffer space at the receiver
is limited.

The classical producer-consumer problem is a resource allocation problem with a variable number of
resources that are limited to a maximum number. There is a producer that generates new units and
makes them available to a consumer. The consumer takes one unit of the resource at a time. The
primary synchronization constraints are:

e overflow: the producer cannot produce a new unit unless the number of units is below the
maximum number allowed, and
e underflow: the consumer cannot take a unit unless there is at least one available.

The Petri net shown in Figure 8 is a model of a producer-consumer system where the maximum number
of units is limited to 3. In this model, there are two places that are used to represent the number of
units produced but not yet consumed and the number of additional units that can be produced. These
places are named Full and Empty, respectively. The names full and empty reflect that the units are often
contained in a fixed sized buffer of size N, where N is the maximum number of units allowed. The
number of buffer entries that are full contain produced units that are available to the consumer and the
number of buffer entries that are empty contain spaces available to the producer to store new units. An
invariant in this model is that number(full) + number(empty) = N. The buffer is modeled in Figure 8 by
the two places in the middle named Empty and Full. The three tokens in the Empty place represent the
initial state of the system with three empty buffer elements. The absence of tokens in the Full place
represents the initial state of the system where there are no buffer elements with information.

Ready Frocess

Erpty

Produce

Full

Ready

Gensrate

Producer Buffer Conswwer

Figure 8: Producer-Consumer System

Computational Thinking 8 Dennis Kafura

The producer in Figure 8 is modeled as a subsystem with two places. The Generate place represents the
condition of the producer when it is generating the next unit of information to transmit to the
consumer. The Ready state represents the condition where the producer is ready to insert the newly
generated information into the buffer where it is will be available to the consumer. Notice that the
transition Produce for the producer can only fire when the producer is Ready and there is at least one
token in the Empty place (denoting a currently empty buffer element into which the new information
can be placed).

The consumer in Figure 8 is modeled as a subsystem with two places. The Ready place represents the
condition where the consumer is ready to receive the next unit of new information that was generated
by the producer. Notice that the transition Take for the producer can only fire when the producer is
Ready and there is at least one token in the Full place (denoting a buffer element containing new
information which can be retrieved). The Process place in the producer represents the condition of the
consumer when it is processing the new information most recently retrieved from the buffer.

It can be observed that the producer-consumer system in Figure 8 satisfies the two primary
synchronization constraints noted above. The overflow constraint is satisfied because the producer
cannot fire its Produce transition unless there is at least one token in the Empty place. Thus, it is not
possible for the Produce transition to fire four (or more) times in a row without the Take transition firing
one or more times. The underflow constraint is satisfied because the consumer cannot fire its Take
transition unless there is at least one token in the Full place. Thus, it is not possible for the Take
transition to fire four (or more) times in a row without the Produce transition firing one or more times.

Computational Thinking 9 Dennis Kafura

