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What is Data?

! Collection of data objects 
and their attributes

! An attribute is a property 
or characteristic of an 
object

– Examples: eye color of a 
person, temperature, etc.

– Attribute is also known as 
variable, field, characteristic, 
dimension, or feature

! A collection of attributes 
describe an object

– Object is also known as 
record, point, case, sample, 
entity, or instance

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Attribute Values

! Attribute values are numbers or symbols 
assigned to an attribute for a particular object

! Distinction between attributes and attribute values
– Same attribute can be mapped to different attribute 

values
u Example: height can be measured in feet or meters

– Different attributes can be mapped to the same set of 
values
u Example: Attribute values for ID and age are integers
u But properties of attribute values can be different



Measurement of Length 

! The way you measure an attribute may not match the 
attributes properties.
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Types of Attributes 

! There are different types of attributes
– Nominal

u Examples: ID numbers, eye color, zip codes
– Ordinal

u Examples: rankings (e.g., taste of potato chips on a 
scale from 1-10), grades, height {tall, medium, short}

– Interval
u Examples: calendar dates, temperatures in Celsius or 

Fahrenheit.
– Ratio

u Examples: temperature in Kelvin, length, time, counts 
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Properties of Attribute Values 

! The type of an attribute depends on which of the 
following properties/operations it possesses:

– Distinctness:  =  ¹
– Order:  <  >
– Differences are +  -

meaningful : 
– Ratios are  *  /

meaningful

– Nominal attribute: distinctness
– Ordinal attribute: distinctness & order
– Interval attribute: distinctness, order & meaningful 

differences
– Ratio attribute: all 4 properties/operations
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Difference Between Ratio and Interval 

! Is it physically meaningful to say that a 
temperature of 10 ° is twice that of 5° on 
– the Celsius scale?
– the Fahrenheit scale?
– the Kelvin scale?

! Consider measuring the height above average
– If Alice’s height is three inches above average and 

Bob’s height is six inches above average, then would 
we say that Bob is twice as tall as Alice?

– Is this situation analogous to that of temperature?



 Attribute 
Type 

Description 
 

Examples 
 

Operations 
 

Nominal 
 

Nominal attribute 
values only  
distinguish. (=, ¹) 

zip codes, employee 
ID numbers, eye 
color, sex: {male, 
female} 

mode, entropy, 
contingency 
correlation, c2 
test 
 

C
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Ordinal Ordinal attribute 
values also order 
objects.  
(<, >) 

hardness of minerals, 
{good, better, best},  
grades, street 
numbers 

median, 
percentiles, rank 
correlation, run 
tests, sign tests 

Interval For interval 
attributes, 
differences between 
values are 
meaningful. (+, - ) 

calendar dates, 
temperature in 
Celsius or Fahrenheit 

mean, standard 
deviation, 
Pearson's 
correlation, t and 
F tests 

N
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Q
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nt
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tiv
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Ratio For ratio variables, 
both differences and 
ratios are 
meaningful. (*, /) 

temperature in Kelvin, 
monetary quantities, 
counts, age, mass, 
length, current 

geometric mean, 
harmonic mean, 
percent variation 

This categorization of attributes is due to S. S. Stevens



 Attribute 
Type 

Transformation 
 

Comments 
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Nominal 
 

Any permutation of values 
 

If all employee ID numbers 
were reassigned, would it 
make any difference? 
 

Ordinal An order preserving change of 
values, i.e.,  
new_value = f(old_value)  
where f is a monotonic function 
 

An attribute encompassing 
the notion of good, better best 
can be represented equally 
well by the values {1, 2, 3} or 
by { 0.5, 1, 10}. 
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Interval new_value = a * old_value + b 
where a and b are constants 

Thus, the Fahrenheit and 
Celsius temperature scales 
differ in terms of where their 
zero value is and the size of a 
unit (degree). 

Ratio new_value = a * old_value 
 

Length can be measured in 
meters or feet. 

 

This categorization of attributes is due to S. S. Stevens
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Discrete and Continuous Attributes 

! Discrete Attribute
– Has only a finite or countably infinite set of values
– Examples: zip codes, counts, or the set of words in a 

collection of documents 
– Often represented as integer variables.   
– Note: binary attributes are a special case of discrete 

attributes 
! Continuous Attribute 

– Has real numbers as attribute values
– Examples: temperature, height, or weight.  
– Practically, real values can only be measured and 

represented using a finite number of digits.
– Continuous attributes are typically represented as floating-

point variables.  
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Asymmetric Attributes

! Only presence (a non-zero attribute value) is regarded as 
important

u Words present in documents
u Items present in customer transactions

! If we met a friend in the grocery store would we ever say the 
following?
“I see our purchases are very similar since we didn’t buy most of the 
same things.” 

! We need two asymmetric binary attributes to represent one 
ordinary binary attribute

– Association analysis uses asymmetric attributes

! Asymmetric attributes typically arise from objects that are 
sets
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Key Messages for Attribute Types

! The types of operations you choose should be 
“meaningful” for the type of data you have
– Distinctness, order, meaningful intervals, and 

meaningful ratios are only four properties of data

– The data type you see – often numbers or strings –
may not capture all the properties or may suggest 
properties that are not there

– In the end, what is meaningful is determined by the 
domain
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Important Characteristics of Data

– Dimensionality (number of attributes)
u High dimensional data brings a number of challenges

– Distribution
u Skewness and sparsity require special handling

– Resolution
u Patterns depend on the scale 

– Size
u Type of analysis may depend on size of data
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Types of data sets 

! Record
– Data Matrix
– Document Data
– Transaction Data

! Graph
– World Wide Web
– Molecular Structures

! Ordered
– Spatial Data
– Temporal Data
– Sequential Data
– Genetic Sequence Data
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Record Data 

! Data that consists of a collection of records, each 
of which consists of a fixed set of attributes 

Tid Refund Marital 
Status 

Taxable 
Income Cheat 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 
10 
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Data Matrix 

! If data objects have the same fixed set of numeric 
attributes, then the data objects can be thought of as 
points in a multi-dimensional space, where each 
dimension represents a distinct attribute 

! Such data set can be represented by an m by n matrix, 
where there are m rows, one for each object, and n
columns, one for each attribute

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection 
of y load

Projection 
of x Load

1.12.216.226.2512.65

1.22.715.225.2710.23

Thickness LoadDistanceProjection 
of y load

Projection 
of x Load
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Document Data

! Each document becomes a ‘term’ vector 
– Each term is a component (attribute) of the vector
– The value of each component is the number of times 

the corresponding term occurs in the document. 

Document 1

season

tim
eout

lost

w
in

gam
e

score

ball

play

coach

team

Document 2

Document 3

3 0 5 0 2 6 0 2 0 2

0

0

7 0 2 1 0 0 3 0 0

1 0 0 1 2 2 0 3 0
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Transaction Data

! A special type of record data, where 
– Each record (transaction) involves a set of items.  
– For example, consider a grocery store.  The set of 

products purchased by a customer during one 
shopping trip constitute a transaction, while the 
individual products that were purchased are the items. 

TID Items 

1 Bread, Coke, Milk 

2 Beer, Bread 

3 Beer, Coke, Diaper, Milk 

4 Beer, Bread, Diaper, Milk 

5 Coke, Diaper, Milk 
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Graph Data 

! Examples: Generic graph, a molecule, and webpages 

5

2

1
 2

5

Benzene Molecule: C6H6
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Ordered Data 

! Sequences of transactions

An element of 
the sequence

Items/Events
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Ordered Data 

! Genomic sequence data

GGTTCCGCCTTCAGCCCCGCGCC
CGCAGGGCCCGCCCCGCGCCGTC
GAGAAGGGCCCGCCTGGCGGGCG
GGGGGAGGCGGGGCCGCCCGAGC
CCAACCGAGTCCGACCAGGTGCC
CCCTCTGCTCGGCCTAGACCTGA
GCTCATTAGGCGGCAGCGGACAG
GCCAAGTAGAACACGCGAAGCGC
TGGGCTGCCTGCTGCGACCAGGG
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Ordered Data

! Spatio-Temporal Data

Average Monthly 
Temperature of 
land and ocean
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Data Quality 

! Poor data quality negatively affects many data processing 
efforts

“The most important point is that poor data quality is an unfolding 
disaster.
– Poor data quality costs the typical company at least ten 

percent (10%) of revenue; twenty percent (20%) is 
probably a better estimate.”

Thomas C. Redman, DM Review, August 2004

! Data mining example: a classification model for detecting 
people who are loan risks is built using poor data

– Some credit-worthy candidates are denied loans
– More loans are given to individuals that default
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Data Quality …

! What kinds of data quality problems?
! How can we detect problems with the data? 
! What can we do about these problems? 

! Examples of data quality problems: 
– Noise and outliers 
– Missing values 
– Duplicate data 
– Wrong data
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Noise

! For objects, noise is an extraneous object
! For attributes, noise refers to modification of attribute values

– Examples: distortion of a person’s voice when talking on a poor 
quality phone and “snow” on television screen

Two Sine Waves Two Sine Waves + Noise
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! Outliers are data objects with characteristics that 
are considerably different than most of the other 
data objects in the data set
– Case 1: Outliers are 

unwanted and interfere
with data analysis 

– Case 2: Outliers are 
the goal of our analysis
u Credit card fraud
u Intrusion detection

! Causes?

Outliers
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Missing Values

! Reasons for missing values
– Information is not collected 

(e.g., people decline to give their age and weight)
– Attributes may not be applicable to all cases 

(e.g., annual income is not applicable to children)

! Handling missing values
– Eliminate data objects or variables
– Estimate missing values

u Example: time series of temperature
– Ignore the missing value during analysis
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Duplicate Data

! Data set may include data objects that are 
duplicates, or almost duplicates of one another
– Major issue when merging data from heterogeneous 

sources

! Examples:
– Same person with multiple email addresses

! Deduplication
– Process of dealing with duplicate data issues

! When should duplicate data not be removed?
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Similarity and Dissimilarity Measures

! Similarity measure
– Numerical measure of how alike two data objects are.
– Is higher when objects are more alike.
– Often falls in the range [0,1]

! Dissimilarity measure
– Numerical measure of how different two data objects 

are 
– Lower when objects are more alike
– Minimum dissimilarity is often 0
– Upper limit varies

! Proximity refers to a similarity or dissimilarity
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Similarity/Dissimilarity for Simple Attributes

The following table shows the similarity and dissimilarity 
between two objects, x and y, with respect to a single, simple 
attribute.
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Euclidean Distance

! Euclidean Distance

where n is the number of dimensions (attributes) and 
xk and yk are, respectively, the kth attributes 
(components) or data objects x and y.

! Standardization is necessary, if scales differ.
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Euclidean Distance

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

Distance Matrix

p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0
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Minkowski Distance

! Minkowski Distance is a generalization of Euclidean 
Distance

Where r is a parameter, n is the number of dimensions 
(attributes) and xk and yk are, respectively, the kth
attributes (components) or data objects x and y.
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Minkowski Distance: Examples

! r = 1.  City block (Manhattan, taxicab, L1 norm) distance. 
– A common example of this is the Hamming distance, which 

is just the number of bits that are different between two 
binary vectors

! r = 2.  Euclidean distance

! r ® ¥.  “supremum” (Lmax norm, L¥ norm) distance. 
– This is the maximum difference between any component of 

the vectors

! Do not confuse r with n, i.e., all these distances are 
defined for all numbers of dimensions.
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Minkowski Distance

Distance Matrix

point x y
p1 0 2
p2 2 0
p3 3 1
p4 5 1

L1 p1 p2 p3 p4
p1 0 4 4 6
p2 4 0 2 4
p3 4 2 0 2
p4 6 4 2 0

L2 p1 p2 p3 p4
p1 0 2.828 3.162 5.099
p2 2.828 0 1.414 3.162
p3 3.162 1.414 0 2
p4 5.099 3.162 2 0

L¥ p1 p2 p3 p4
p1 0 2 3 5
p2 2 0 1 3
p3 3 1 0 2
p4 5 3 2 0

0

1

2

3

0 1 2 3 4 5 6

p1

p2

p3 p4
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Visual Interpretation of Distances

x

ya

b

• L1-norm(x, y) = a + b

• L2-norm(x, y) = 𝑎! + 𝑏!

• L∞-norm(x, y) = max(a, b)

! L1-norm is robust to outliers in a few attributes
! L∞-norm is robust to noise in irrelevant attributes
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Mahalanobis Distance

For red points, the Euclidean distance is 14.7, Mahalanobis distance is 6.

S is the covariance matrix

𝐦𝐚𝐡𝐚𝐥𝐚𝐧𝐨𝐛𝐢𝐬 𝐱, 𝐲 = 𝑥 − 𝑦 !Σ"#(𝑥 − 𝑦)
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Mahalanobis Distance

Covariance 
Matrix:

ú
û

ù
ê
ë

é
=S

3.02.0
2.03.0

A: (0.5, 0.5)

B: (0, 1)

C: (1.5, 1.5)

Mahal(A,B) = 5
Mahal(A,C) = 4 

B

A

C
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Common Properties of a Distance

! Distances, such as the Euclidean distance, 
have some well known properties.

1. d(x, y) ³ 0   for all x and y and d(x, y) = 0 only if 
x = y. (Positive definiteness)

2. d(x, y) = d(y, x)   for all x and y. (Symmetry)
3. d(x, z) £ d(x, y) + d(y, z) for all points x, y, and z.  

(Triangle Inequality)

where d(x, y) is the distance (dissimilarity) between 
points (data objects), x and y.

! A distance that satisfies these properties is a 
metric
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Common Properties of a Similarity

! Similarities, also have some well known
properties.

1. s(x, y) = 1 (or maximum similarity) only if x = y. 

2. s(x, y) = s(y, x) for all x and y. (Symmetry)

where s(x, y) is the similarity between points (data 
objects), x and y.



42Introduction to Data Mining, 2nd Edition   
Tan, Steinbach, Karpatne, Kumar

Similarity Between Binary Vectors

! Common situation is that objects, p and q, have only 
binary attributes

! Compute similarities using the following quantities
f01 = the number of attributes where p was 0 and q was 1
f10 = the number of attributes where p was 1 and q was 0
f00 = the number of attributes where p was 0 and q was 0
f11 = the number of attributes where p was 1 and q was 1

! Simple Matching and Jaccard Coefficients 
SMC =  number of matches / number of attributes 

=  (f11 + f00) / (f01 + f10 + f11 + f00)

J = number of 1-1 matches / number of non-zero attributes
= (f11) / (f01 + f10 + f11) 
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Cosine Similarity

! If d1 and d2 are two document vectors, then
cos( d1, d2 ) = <d1,d2> / ||d1|| ||d2|| ,

where <d1,d2> indicates inner product or vector dot
product of vectors, d1 and d2, and || d || is the length of
vector d.

! Example:

d1 = 3 2 0 5 0 0 0 2 0 0
d2 =  1 0 0 0 0 0 0 1 0 2

<d1, d2>=  3*1 + 2*0 + 0*0 + 5*0 + 0*0 + 0*0 + 0*0 + 2*1 + 0*0 + 0*2 = 5
| d1 || = (3*3+2*2+0*0+5*5+0*0+0*0+0*0+2*2+0*0+0*0)0.5 =  (42) 0.5 = 6.481

|| d2 || = (1*1+0*0+0*0+0*0+0*0+0*0+0*0+1*1+0*0+2*2) 0.5 = (6) 0.5 = 2.449

cos(d1, d2 ) = 0.3150



44Introduction to Data Mining, 2nd Edition   
Tan, Steinbach, Karpatne, Kumar

Extended Jaccard Coefficient (Tanimoto)

! Variation of Jaccard for continuous or count 
attributes
– Reduces to Jaccard for binary attributes
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Correlation measures the linear relationship 
between objects
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Visually Evaluating Correlation

Scatter plots 
showing the 
similarity from 
–1 to 1.
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Drawback of Correlation

! x = (-3, -2, -1, 0, 1, 2, 3)
! y = (9, 4, 1, 0, 1, 4, 9)

yi = xi2

! mean(x) = 0, mean(y) = 4
! std(x) = 2.16, std(y) = 3.74

! corr = (-3)(5)+(-2)(0)+(-1)(-3)+(0)(-4)+(1)(-3)+(2)(0)+3(5) / ( 6 * 2.16 * 3.74 )
= 0
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Relation b/w Correlation and Cosine

! If we transform x and y by subtracting off their means,
– xm = x – mean(x)
– ym = y – mean(y)

! Then, corr(x, y) = cos(xm, ym)
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Differences Among Proximity Measures

! Scaling Operator:

! Translation Operator:

! Which proximity measure is invariant to scaling?
– i.e., Proximity (x, y) = Proximity (x, ys)

! Which proximity measure is invariant to translation?
– i.e., Proximity (x, y) = Proximity (x, yt)

!

! !

!

86 Chapter 2 Data

Table 2.12. Properties of cosine, correlation, and Minkowski distance measures.

Property Cosine Correlation Minkowski Distance
Invariant to scaling (multiplication) Yes Yes No
Invariant to translation (addition) No Yes No

behavior of cosine, correlation, and Minkowski distance measures regarding
their invariance to scaling and translation operations. It can be seen that
while correlation is invariant to both scaling and translation, cosine is only
invariant to scaling but not to translation. Minkowski distance measures, on
the other hand, are sensitive to both scaling and translation and are thus
invariant to neither.

Let us consider an example to demonstrate the significance of these differ-
ences among different proximity measures.

Example 2.21 (Comparing proximity measures). Consider the following two
vectors x and y with seven numeric attributes.

x = (1, 2, 4, 3, 0, 0, 0)
y = (1, 2, 3, 4, 0, 0, 0)

It can be seen that both x and y have 4 non-zero values, and the values
in the two vectors are mostly the same, except for the third and the fourth
components. The cosine, correlation, and Euclidean distance between the two
vectors can be computed as follows.

cos(x,y) = 29√
30×

√
30

= 0.9667

correlation(x,y) = 2.3571
1.5811×1.5811 = 0.9429

Euclidean distance(x,y) = ||x− y|| = 1.4142

Not surprisingly, x and y have a cosine and correlation measure close to 1,
while the Euclidean distance between them is small, indicating that they are
quite similar. Now let us consider the vector ys, which is a scaled version of y
(multiplied by a constant factor of 2), and the vector yt, which is constructed
by translating y by 5 units as follows.

ys = 2× y = (2, 4, 6, 8, 0, 0, 0)

!

! !

!
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Table 2.12. Properties of cosine, correlation, and Minkowski distance measures.

Property Cosine Correlation Minkowski Distance
Invariant to scaling (multiplication) Yes Yes No
Invariant to translation (addition) No Yes No

behavior of cosine, correlation, and Minkowski distance measures regarding
their invariance to scaling and translation operations. It can be seen that
while correlation is invariant to both scaling and translation, cosine is only
invariant to scaling but not to translation. Minkowski distance measures, on
the other hand, are sensitive to both scaling and translation and are thus
invariant to neither.

Let us consider an example to demonstrate the significance of these differ-
ences among different proximity measures.

Example 2.21 (Comparing proximity measures). Consider the following two
vectors x and y with seven numeric attributes.

x = (1, 2, 4, 3, 0, 0, 0)
y = (1, 2, 3, 4, 0, 0, 0)

It can be seen that both x and y have 4 non-zero values, and the values
in the two vectors are mostly the same, except for the third and the fourth
components. The cosine, correlation, and Euclidean distance between the two
vectors can be computed as follows.

cos(x,y) = 29√
30×

√
30

= 0.9667

correlation(x,y) = 2.3571
1.5811×1.5811 = 0.9429

Euclidean distance(x,y) = ||x− y|| = 1.4142

Not surprisingly, x and y have a cosine and correlation measure close to 1,
while the Euclidean distance between them is small, indicating that they are
quite similar. Now let us consider the vector ys, which is a scaled version of y
(multiplied by a constant factor of 2), and the vector yt, which is constructed
by translating y by 5 units as follows.

ys = 2× y = (2, 4, 6, 8, 0, 0, 0)

!

! !

!

2.4 Measures of Similarity and Dissimilarity 87

Table 2.13. Similarity between (x,y), (x,ys), and (x,yt).

Measure (x,y) (x,ys) (x,yt)
Cosine 0.9667 0.9667 0.7940

Correlation 0.9429 0.9429 0.9429
Euclidean Distance 1.4142 5.8310 14.2127

yt = y + 5 = (6, 7, 8, 9, 5, 5, 5)

We are interested in finding whether ys and yt show the same proximity
with x as shown by the original vector y. Table 2.13 shows the different
measures of proximity computed for the pairs (x,y), (x,ys), and (x,yt). It
can be seen that the value of correlation between x and y remains unchanged
even after replacing y with ys or yt. However, the value of cosine remains
equal to 0.9667 when computed for (x,y) and (x,ys), but significantly reduces
to 0.7940 when computed for (x,yt). This highlights the fact that cosine is
invariant to the scaling operation but not to the translation operation, in
contrast with the correlation measure. The Euclidean distance, on the other
hand, shows different values for all three pairs of vectors, as it is sensitive to
both scaling and translation.

We can observe from this example that different proximity measures be-
have differently when scaling or translation operations are applied on the data.
The choice of the right proximity measure thus depends on the desired notion
of similarity between data objects that is meaningful for a given application.
For example, if x and y represented the frequencies of different words in a
document-term matrix, it would be meaningful to use a proximity measure
that remains unchanged when y is replaced by ys, because ys is just a scaled
version of y with the same distribution of words occurring in the document.
However, yt is different from y, since it contains a large number of words with
non-zero frequencies that do not occur in y. Because cosine is invariant to
scaling but not to translation, it will be an ideal choice of proximity measure
for this application.

Consider a different scenario in which x represents a location’s temperature
measured on the Celsius scale for seven days. Let y, ys, and yt be the
temperatures measured on those days at a different location, but using three
different measurement scales. Note that different units of temperature have
different offsets (e.g., Celsius and Kelvin) and different scaling factors (e.g.,
Celsius and Fahrenheit). It is thus desirable to use a proximity measure that
captures the proximity between temperature values without being affected by

Proximity Measures
• Cosine
• Correlation
• Euclidean Distance
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Differences Among Proximity Measures

!

! !

!
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Table 2.13. Similarity between (x,y), (x,ys), and (x,yt).

Measure (x,y) (x,ys) (x,yt)
Cosine 0.9667 0.9667 0.7940

Correlation 0.9429 0.9429 0.9429
Euclidean Distance 1.4142 5.8310 14.2127

yt = y + 5 = (6, 7, 8, 9, 5, 5, 5)

We are interested in finding whether ys and yt show the same proximity
with x as shown by the original vector y. Table 2.13 shows the different
measures of proximity computed for the pairs (x,y), (x,ys), and (x,yt). It
can be seen that the value of correlation between x and y remains unchanged
even after replacing y with ys or yt. However, the value of cosine remains
equal to 0.9667 when computed for (x,y) and (x,ys), but significantly reduces
to 0.7940 when computed for (x,yt). This highlights the fact that cosine is
invariant to the scaling operation but not to the translation operation, in
contrast with the correlation measure. The Euclidean distance, on the other
hand, shows different values for all three pairs of vectors, as it is sensitive to
both scaling and translation.

We can observe from this example that different proximity measures be-
have differently when scaling or translation operations are applied on the data.
The choice of the right proximity measure thus depends on the desired notion
of similarity between data objects that is meaningful for a given application.
For example, if x and y represented the frequencies of different words in a
document-term matrix, it would be meaningful to use a proximity measure
that remains unchanged when y is replaced by ys, because ys is just a scaled
version of y with the same distribution of words occurring in the document.
However, yt is different from y, since it contains a large number of words with
non-zero frequencies that do not occur in y. Because cosine is invariant to
scaling but not to translation, it will be an ideal choice of proximity measure
for this application.

Consider a different scenario in which x represents a location’s temperature
measured on the Celsius scale for seven days. Let y, ys, and yt be the
temperatures measured on those days at a different location, but using three
different measurement scales. Note that different units of temperature have
different offsets (e.g., Celsius and Kelvin) and different scaling factors (e.g.,
Celsius and Fahrenheit). It is thus desirable to use a proximity measure that
captures the proximity between temperature values without being affected by

!

! !

!
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Table 2.12. Properties of cosine, correlation, and Minkowski distance measures.

Property Cosine Correlation Minkowski Distance
Invariant to scaling (multiplication) Yes Yes No
Invariant to translation (addition) No Yes No

behavior of cosine, correlation, and Minkowski distance measures regarding
their invariance to scaling and translation operations. It can be seen that
while correlation is invariant to both scaling and translation, cosine is only
invariant to scaling but not to translation. Minkowski distance measures, on
the other hand, are sensitive to both scaling and translation and are thus
invariant to neither.

Let us consider an example to demonstrate the significance of these differ-
ences among different proximity measures.

Example 2.21 (Comparing proximity measures). Consider the following two
vectors x and y with seven numeric attributes.

x = (1, 2, 4, 3, 0, 0, 0)
y = (1, 2, 3, 4, 0, 0, 0)

It can be seen that both x and y have 4 non-zero values, and the values
in the two vectors are mostly the same, except for the third and the fourth
components. The cosine, correlation, and Euclidean distance between the two
vectors can be computed as follows.

cos(x,y) = 29√
30×

√
30

= 0.9667

correlation(x,y) = 2.3571
1.5811×1.5811 = 0.9429

Euclidean distance(x,y) = ||x− y|| = 1.4142

Not surprisingly, x and y have a cosine and correlation measure close to 1,
while the Euclidean distance between them is small, indicating that they are
quite similar. Now let us consider the vector ys, which is a scaled version of y
(multiplied by a constant factor of 2), and the vector yt, which is constructed
by translating y by 5 units as follows.

ys = 2× y = (2, 4, 6, 8, 0, 0, 0)

Choice of suitable measure depends on the needs of the application domain
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Mutual Information

! Measures similarity among two objects as the 
amount of information shared among them

– How much information does an object X provide 
about another object Y, and vice-versa?

! General and can handle non-linear relationships
! Complicated (especially for objects with 

continuous attributes) and time-intensive to 
compute
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Entropy: Measure of Information

! Information often measured using Entropy, H
! Assume objects X and Y contain discrete values

– Values in X can range in u1, u2, u3, … um
– Values in Y can range in v1, v2, v3, … vn

!

! !

!
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can be defined in terms of the probabilities of each value and pair of values as
follows:

H(X) = −
m∑

j=1

P (X = uj) log2 P (X = uj) (2.12)

H(Y ) = −
n∑

k=1

P (Y = vk) log2 P (Y = vk) (2.13)

H(X,Y ) = −
m∑

j=1

n∑

k=1

P (X = uj , Y = vk) log2 P (X = uj , Y = vk) (2.14)

where if the probability of a value or combination of values is 0, then 0 log2(0)
is conventionally taken to be 0.

The mutual information of X and Y can now be defined straightforwardly:

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (2.15)

Note that H(X,Y ) is symmetric, i.e., H(X,Y ) = H(Y,X), and thus mutual
information is also symmetric, i.e., I(X,Y ) = I(Y ).

Practically, X and Y are either the values in two attributes or two rows
of the same data set. In Example 2.22, we will represent those values as two
vectors x and y and calculate the probability of each value or pair of values
from the frequency with which values or pairs of values occur in x, y and
(xi, yi), where xi is the ith component of x and yi is the ith component of y.
Let us illustrate using a previous example.

Example 2.22 (Evaluating Nonlinear Relationships with Mutual Informa-
tion). Recall Example 2.19 where yk = x2k, but their correlation was 0.

x = (−3,−2,−1, 0, 1, 2, 3)
y = ( 9, 4, 1, 0, 1, 4, 9)

From Figure 2.22, I(x,y) = H(x) +H(y) −H(x,y) = 1.9502. Although
a variety of approaches to normalize mutual information are possible—see
Bibliographic Notes—for this example, we will apply one that divides the
mutual information by log2(min(m,n)) and produces a result between 0 and
1. This yields a value of 1.9502/ log2(4)) = 0.9751. Thus, we can see that x
and y are strongly related. They are not perfectly related because given a
value of y there is, except for y = 0, some ambiguity about the value of x.
Notice that for y = −x, the normalized mutual information would be 1.

Individual Entropy

Joint Entropy
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Computing Mutual Information

! Mutual Information, I(X,Y), is defined as:

! Minimum value: 0 (no similarity)

! Maximum value: log2(min(m,n))
– Where m and n are the number of possible values of 

X and Y, respectively

! Normalized Mutual Information =
I(X,Y)/ log2(min(m,n))

!

! !

!
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can be defined in terms of the probabilities of each value and pair of values as
follows:

H(X) = −
m∑

j=1

P (X = uj) log2 P (X = uj) (2.12)

H(Y ) = −
n∑

k=1

P (Y = vk) log2 P (Y = vk) (2.13)

H(X,Y ) = −
m∑

j=1

n∑

k=1

P (X = uj , Y = vk) log2 P (X = uj , Y = vk) (2.14)

where if the probability of a value or combination of values is 0, then 0 log2(0)
is conventionally taken to be 0.

The mutual information of X and Y can now be defined straightforwardly:

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (2.15)

Note that H(X,Y ) is symmetric, i.e., H(X,Y ) = H(Y,X), and thus mutual
information is also symmetric, i.e., I(X,Y ) = I(Y ).

Practically, X and Y are either the values in two attributes or two rows
of the same data set. In Example 2.22, we will represent those values as two
vectors x and y and calculate the probability of each value or pair of values
from the frequency with which values or pairs of values occur in x, y and
(xi, yi), where xi is the ith component of x and yi is the ith component of y.
Let us illustrate using a previous example.

Example 2.22 (Evaluating Nonlinear Relationships with Mutual Informa-
tion). Recall Example 2.19 where yk = x2k, but their correlation was 0.

x = (−3,−2,−1, 0, 1, 2, 3)
y = ( 9, 4, 1, 0, 1, 4, 9)

From Figure 2.22, I(x,y) = H(x) +H(y) −H(x,y) = 1.9502. Although
a variety of approaches to normalize mutual information are possible—see
Bibliographic Notes—for this example, we will apply one that divides the
mutual information by log2(min(m,n)) and produces a result between 0 and
1. This yields a value of 1.9502/ log2(4)) = 0.9751. Thus, we can see that x
and y are strongly related. They are not perfectly related because given a
value of y there is, except for y = 0, some ambiguity about the value of x.
Notice that for y = −x, the normalized mutual information would be 1.
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Mutual Information Example

!

! !

!
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can be defined in terms of the probabilities of each value and pair of values as
follows:

H(X) = −
m∑

j=1

P (X = uj) log2 P (X = uj) (2.12)

H(Y ) = −
n∑

k=1

P (Y = vk) log2 P (Y = vk) (2.13)

H(X,Y ) = −
m∑

j=1

n∑

k=1

P (X = uj , Y = vk) log2 P (X = uj , Y = vk) (2.14)

where if the probability of a value or combination of values is 0, then 0 log2(0)
is conventionally taken to be 0.

The mutual information of X and Y can now be defined straightforwardly:

I(X,Y ) = H(X) +H(Y )−H(X,Y ) (2.15)

Note that H(X,Y ) is symmetric, i.e., H(X,Y ) = H(Y,X), and thus mutual
information is also symmetric, i.e., I(X,Y ) = I(Y ).

Practically, X and Y are either the values in two attributes or two rows
of the same data set. In Example 2.22, we will represent those values as two
vectors x and y and calculate the probability of each value or pair of values
from the frequency with which values or pairs of values occur in x, y and
(xi, yi), where xi is the ith component of x and yi is the ith component of y.
Let us illustrate using a previous example.

Example 2.22 (Evaluating Nonlinear Relationships with Mutual Informa-
tion). Recall Example 2.19 where yk = x2k, but their correlation was 0.

x = (−3,−2,−1, 0, 1, 2, 3)
y = ( 9, 4, 1, 0, 1, 4, 9)

From Figure 2.22, I(x,y) = H(x) +H(y) −H(x,y) = 1.9502. Although
a variety of approaches to normalize mutual information are possible—see
Bibliographic Notes—for this example, we will apply one that divides the
mutual information by log2(min(m,n)) and produces a result between 0 and
1. This yields a value of 1.9502/ log2(4)) = 0.9751. Thus, we can see that x
and y are strongly related. They are not perfectly related because given a
value of y there is, except for y = 0, some ambiguity about the value of x.
Notice that for y = −x, the normalized mutual information would be 1.

Correlation = 0
Mutual Information = 1.9502
Normalized Mutual Information = 1.9502/log2(4) = 0.9751

!

! !

!
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Figure 2.18. Computation of mutual information.

Table 2.14. Entropy for x
xj P (x = xj) −P (x = xj) log2 P (x = xj)
-3 1/7 0.4011
-2 1/7 0.4011
-1 1/7 0.4011
0 1/7 0.4011
1 1/7 0.4011
2 1/7 0.4011
3 1/7 0.4011

H(x) 2.8074

Table 2.15. Entropy for y
yk P (y = yk) −P (y = yk) log2(P (y = yk)
9 2/7 0.5164
4 2/7 0.5164
1 2/7 0.5164
0 1/7 0.4011

H(y) 1.9502

Table 2.16. Joint entropy for x and y

xj yk P (x = xj ,y = xk) −P (x = xj ,y = xk) log2 P (x = xj ,y = xk)
-3 9 1/7 0.4011
-2 4 1/7 0.4011
-1 1 1/7 0.4011
0 0 1/7 0.4011
1 1 1/7 0.4011
2 4 1/7 0.4011
3 9 1/7 0.4011

H(x,y) 2.8074

2.4.7 Kernel Functions*

It is easy to understand how similarity and distance might be useful in an
application such as clustering, which tries to group similar objects together.
What is much less obvious is that many other data analysis tasks, including
predictive modeling and dimensionality reduction, can be expressed in terms
of pairwise “proximities” of data objects. More specifically, many data analysis
problems can be mathematically formulated to take as input, a kernel ma-
trix, K, which can be considered a type of proximity matrix. Thus, an initial
preprocessing step is used to convert the input data into a kernel matrix, which
is the input to the data analysis algorithm.

More formally, if a data set has m data objects, then K is an m by m
matrix. If xi and xj are the ith and jth data objects, respectively, then kij ,
the ijth entry of K, is computed by a kernel function:

kij = κ(xi,xj) (2.16)

As we will see in the material that follows, the use of a kernel matrix
allows both wider applicability of an algorithm to various kinds of data and
an ability to model nonlinear relationships with algorithms that are designed
only for detecting linear relationships.
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Data Preprocessing

! Aggregation

! Sampling

! Dimensionality Reduction
! Discretization and Binarization

! Attribute Transformation
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Aggregation

! Combining two or more attributes (or objects) into 
a single attribute (or object)

! Purpose
– Data reduction

u Reduce the number of attributes or objects
– Change of scale

u Cities aggregated into regions, states, countries, etc.
u Days aggregated into weeks, months, or years

– More “stable” data
u Aggregated data tends to have less variability 
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Example: Precipitation in Australia …

Standard Deviation of Average 
Monthly Precipitation (in cm)

Standard Deviation of Average 
Yearly Precipitation (in cm)

! We want to study the variability in precip for 3,030 0.5◦ by 0.5◦
grid cells in Australia from the period 1982 to 1993. 
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Sampling 

! Sampling is the main technique employed for data
reduction.

– It is often used for both the preliminary investigation of
the data and the final data analysis.

! Statisticians often sample because obtaining the
entire set of data of interest is too expensive or
time consuming.

! Sampling is typically used in data mining because
processing the entire set of data of interest is too
expensive or time consuming.
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Sampling … 

! The key principle for effective sampling is the 
following: 

– Using a sample will work almost as well as using the 
entire data set, if the sample is representative

– A sample is representative if it has approximately the 
same properties (of interest) as the original set of data 

! Choosing a sampling scheme
– Type of sampling technique
– Sample size 
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Types of Sampling

! Simple Random Sampling
– There is an equal probability of selecting any particular 

object
– Sampling without replacement

u As each item is selected, it is removed from the 
population

– Sampling with replacement
u Objects are not removed from the population as they 

are selected for the sample.   
u In sampling with replacement, the same object can 

be picked up more than once
! Stratified sampling

– Split the data into several partitions; then draw random 
samples from each partition
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Sample Size

8000 points 2000 Points 500 Points
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Sample Size

!What sample size is necessary to get at least one
object from each of 10 equal-sized groups.
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Curse of Dimensionality

! When dimensionality 
increases, data becomes 
increasingly sparse in the 
space that it occupies

! Definitions of density and 
distance between points, 
which are critical for 
clustering and outlier 
detection, become less 
meaningful •Randomly generate 500 points

•Compute difference between max and 
min distance between any pair of points



64Introduction to Data Mining, 2nd Edition   
Tan, Steinbach, Karpatne, Kumar

Dimensionality Reduction

! Purpose:
– Avoid curse of dimensionality
– Reduce amount of time and memory required by data 

mining algorithms
– Allow data to be more easily visualized
– May help to eliminate irrelevant features or reduce 

noise

! Techniques
– Principal Components Analysis (PCA)
– Singular Value Decomposition
– Others: supervised and non-linear techniques
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Dimensionality Reduction: PCA

! Goal is to find a projection that captures the 
largest  amount of variation in data

x2

x1

e

Interactive tool for visualizing PCA: 
http://setosa.io/ev/principal-component-analysis/

http://setosa.io/ev/principal-component-analysis/
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Dimensionality Reduction: PCA
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Discretization

! Discretization is the process of converting a 
continuous attribute into an ordinal attribute
– A potentially infinite number of values are mapped 

into  a small number of categories
– Discretization is commonly used in classification
– Many classification algorithms work best if both 

the independent and dependent variables have 
only a few values

– We give an illustration of the usefulness of 
discretization using the Iris data set
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Iris Sample Data Set  

! Iris Plant data set.
– Can be obtained from the UCI Machine Learning Repository 

http://www.ics.uci.edu/~mlearn/MLRepository.html
– From the statistician Douglas Fisher
– Three flower types (classes):

u Setosa
u Versicolour
u Virginica

– Four (non-class) attributes
u Sepal width and length
u Petal width and length Virginica. Robert H. Mohlenbrock. USDA 

NRCS. 1995. Northeast wetland flora: Field 
office guide to plant species. Northeast National 
Technical Center, Chester, PA. Courtesy of 
USDA NRCS Wetland Science Institute. 

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Discretization: Iris Example

Petal width low or petal length low implies Setosa.
Petal width medium or petal length medium implies Versicolour.
Petal width high or petal length high implies Virginica.
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Discretization: Iris Example …

! How can we tell what the best discretization is?
– Unsupervised discretization: find breaks in the data 

values
uExample:

Petal Length 

– Supervised discretization: Use class labels to find 
breaks 

0 2 4 6 80

10

20

30

40

50
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C
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Discretization Without Using Class Labels 

Data consists of four groups of points and two outliers. Data is one-
dimensional, but a random y component is added to reduce overlap.
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Discretization Without Using Class Labels 

Equal interval width approach used to obtain 4 values. 
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Discretization Without Using Class Labels 

Equal frequency approach used to obtain 4 values.
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Discretization Without Using Class Labels 

K-means approach to obtain 4 values.
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Binarization

! Binarization maps a continuous or categorical 
attribute into one or more binary variables

! Typically used for association analysis

! Often convert a continuous attribute to a 
categorical attribute and then convert a 
categorical attribute to a set of binary attributes
– Association analysis needs asymmetric binary 

attributes
– Examples: eye color and height measured as 

{low, medium, high}
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Attribute Transformation

! An attribute transform is a function that maps the 
entire set of values of a given attribute to a new 
set of replacement values such that each old 
value can be identified with one of the new values
– Simple functions: xk, log(x), ex, |x|
– Normalization

u Refers to various techniques to adjust to 
differences among attributes in terms of mean, 
variance, range

u Take out unwanted, common signal, e.g., 
seasonality  

– In statistics, standardization refers to subtracting off 
the means and dividing by the standard deviation
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Example: Sample Time Series of Plant Growth

Correlations between time series

Minneapolis

 Minneapolis Atlanta Sao Paolo 
Minneapolis 1.0000  0.7591 -0.7581 
Atlanta  0.7591 1.0000 -0.5739 
Sao Paolo -0.7581 -0.5739 1.0000 
 

Correlations between time series

Net Primary 
Production (NPP) 
is a measure of 
plant growth used 
by ecosystem 
scientists.
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Seasonality Accounts for Much Correlation

Correlations between time series

Minneapolis

Normalized using 
monthly Z Score:
Subtract off monthly 
mean and divide by 
monthly standard 
deviation

 Minneapolis Atlanta Sao Paolo 
Minneapolis 1.0000 0.0492 0.0906 
Atlanta  0.0492 1.0000 -0.0154 
Sao Paolo  0.0906 -0.0154 1.0000 
 

Correlations between time series


