Introduction to Machine Learning

Anuj Karpatne

Assistant Professor, Computer Science Virginia Tech

Torgersen Hall 2160F, karpatne@vt.edu <u>https://people.cs.vt.edu/karpatne/</u> Slide materials adapted from:

https://www-users.cs.umn.edu/~kumar001/dmbook/index.php

Key Areas of Machine Learning

1. Predictive Modeling / Supervised Learning

Basic Goal:

• Model relationship between input and output variables to predict the output on unseen (new) instances

Key Areas of Machine Learning

- 1. Predictive Modeling
- Classification
 - Target takes discrete values: {0,1,2,...}
- Regression
 - Target takes continuous values

Key Areas of Machine Learning

- 1. Predictive Modeling
- Classification
- Regression

• Find human-interpretable patterns from "unlabeled" data

- Dimensionality Reduction
 - Find low dimensional data representations
- Generative Modeling
 - Learn a model to generate synthetic samples from a data distribution

Input 1

Set of Unlabeled Instances

- Clustering and Anomaly Detection
 - Find groups with similar properties
 - Find unusual instances 4

Classification: Illustrative Examples

- Object Recognition
 - Given the pixel values of an image region (*features*), identify the type of object (*class*)

Classification: Illustrative Examples

Image Recognition

- Given the pixel values of an image region *(features)*, identify the type of object *(class)*
- Spam Filtering
 - Given the message header and content of an email *(features),* classify spam or no spam *(class)*

Classification: Illustrative Examples

- Image Recognition
 - Given the pixel values of an image region (*features*), identify the type of object (*class*)
- Spam Filtering
 - Given the message header and content of an email *(features),* classify spam or no spam *(class)*
- Land Cover Mapping
 - Given the multi-spectral values *(features)*, classify land cover: water, vegetation, urban, etc. *(class)*

Predictive Modeling: General Approach

Two Modeling Choices:

- Choice of Model Design (linear/non-linear/...)
- Choice of Learning Algorithm

Example of Classification Model: **Decision Tree**

Training Data

Model: Decision Tree Design choice: Number of nodes in tree (size)

Example of Classification Model: Support Vector Machines (SVMs)

- Linear hyperplane (decision boundary) to separate the classes
- Non-linear version:
 - Learn decision boundaries in a higher-dimensional transformed space
 - Non-linear mapping to transformed space modeled using kernel functions

Example of Classification Model: k-Nearest Neighbor (kNN) Classifier

- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

Example of Classification Model: Naïve Bayes and Probabilistic Graphical Models

Bayes Theorem:

ConditionalPrior
$$P(Y \mid X_1 X_2 \dots X_{\overline{d}}) = \frac{P(X_1 X_2 \dots X_d \mid Y) P(Y)}{P(X_1 X_2 \dots X_d)}$$
PosteriorEvidence

- Naïve Bayes Model:
 - Assume conditional independence among attributes X_i when class is given:
 - $P(X_1, X_2, ..., X_d | Y_j) = P(X_1 | Y_j) P(X_2 | Y_j) P(X_d | Y_$
- Probabilistic Graphical Models:
 - Provides graphical representation of probabilistic relationships among a set of random variables
 - Directed edges: Bayesian Networks, Undirected edges: Markov Random Fields

Y_i)

Diet=Healthy

0.25

Example of Classification Model: Artificial Neural Networks

Perceptron (1970s)

- Single processing unit
- Can only learn linear decision boundaries

inputs weights

Deep Learning (~2010+)

- Composition of large number of processing units
- Can learn highly complex decision boundaries
- Feedforward neural networks, multi-layer perceptrons

Design choice: Number of layers, type of connections, ...

Deep Learning Architectures: Going beyond Fully Connected Architectures

- Residual Connections:
 - Enable learning of "very" deep neural networks by only learning residuals of last layer

- Dense Connections:
 - Include all shortcut connections to encourage feature reuse

https://towardsdatascience.com/an-overview-of-resnet-and-its-variants-5281e2f56035¹⁴

Deep Learning for Image Data: Convolutional Neural Networks

- Basic idea: Non-linear operators only need to be applied locally around a pixel of an image using a "convolution kernel"
- Two types of layers:
 - Convolution layers produces feature maps of similar size as input image
 - Pooling layers reduce the size of feature maps using sub-sampling

Deep Learning for Sequence Data: **Recurrent Neural Networks**

- Basic idea: Use information extracted from previous time-steps for making prediction at a current time-step
- Variants: Gated Recurrent Unit (GRU), Long Short-Term Memory (LSTM), Transformer Networks

https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks https://towardsdatascience.com/transformers-141e32e69591

Classification Models

- Decision Trees
- Support Vector Machines (SVM)
- Nearest-neighbor Classifier
- Naïve Bayes and Probabilistic Graphical Models
- Artificial Neural Networks

Models with varying *complexity*: Capacity to represent complex boundaries

Learning Algorithms for Classification

- Criteria for selecting a suitable model:
 - Good generalization performance:
 - Model should perform well on unseen instances encountered outside the training set
- However, we can only measure the performance on the training set during model building!
- Naïve Approach: Use training error (or loss) as an estimate of generalization error

Complex models (almost always) show lower training error

Assessing Generalization Performance

Two class problem:

- +: 5200 instances
- o: 5200 instances

10 % of the data used for training and 90% of the data used for testing

Assessing Generalization Performance

Training Error: 10% Test Error: 10% Is T2 better than T1?Not Really!

Phenomena of Overfitting:

 When model is too complex, training error is small but test error is large

Training Error: 5% Test Error: 18%

Ensuring Generalization Performance

• **Trade-off** training error (loss) with model complexity

Model = argmin Training Loss + λ Model Complexity

Basis of several ML principles such as structural risk minimization, bias-variance trade-off, ...

- Learning Algorithms:
 - Regularization (using statistical norms of parameters as loss)
 - Using Priors (in probabilistic frameworks)
 - Constrained Optimization Methods

Great interactive tutorial on bias-variance trade-off: http://www.r2d3.us/visual-intro-to-machine-learning-part-2/

Dimensionality Reduction

• Find a low-dimensional representation of data that is easy to visualize and ingest in ML algorithms

Autoencoders

- Objective: learn a latent representation of length k that minimizes reconstruction error over a data set with p attributes (k < p)
- Variants: Variational Autoencoders (VAE)

Generative Modeling:

Generative Adversarial Networks

- GANs can create new data instances that resemble training data, using two parts
 - The **Generator** learns to generate plausible data.
 - The **Discriminator** learns to distinguish the generator's fake data from the real data.
- Variants: Wassertien GAN, conditional GANs (cGANs), pix2pix, cycleGANs, ...

Examples of Images generated by Progressive GANs

Visit the following link to generate faces of people that don't exist <u>https://www.thispersondoesnotexist.com/</u>

Clustering

 Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups

Clustering: Illustrative Examples

Understanding

- Group related documents for browsing
- Group genes that have similar functionality
- Group regions with similar climate activity

Summarization

Reduce the size of large data sets

Clusters found using Sea Level Pressure Data

🖥 Google News - Microsoft Internet Explorer 📃		
Ele Edit View Favo	ites Iools Help	
🕁 Back 🔹 🤿 🗸 🙆 [] 🚰 @Search 📾 Favorites 🎯 History 📴 🗃 🖉 - 📄 👘	
Address 😰 http://news.google.com/		
Links 🧧 Customize Links	Pree Hotmail 🖉 Windows	
Cor	Web Images Groups Directory	y News
Search News Search the Web		
New	S Search and browse 4,500 news	sources updated continuously.
>Top Stories	Top Stories	Auto-generated 8 minutes ago
World	Former and CARO doubles in	
U.S.	Hong Kong	Bechtel Gets Huge Contract for
Business	The Hindu - 15 minutes and	Iraq Work
Sci/Tech	Beijing April 18 (PTI): Four Channel	Salt Lake Tribune - and 294 related »
Sporto	more people died of killer News Asia	'Unlinked' SARS cases hits
Sports	respiratory disease SARS in Hong Kong	Toronto condo
Entertainment	today, raising the toll to 69 even as 30 new	Canada.com - and 25 related »
Health	cases were reported, Health Department	
	officials said.	San Marino GP notebook
1 http://www.chappelpeuro	sia.com/stories/economicnews/view/37827/1/.html	Internet

Courtesy: Michael Eisen

Anomaly Detection

- Detect significant deviations from normal behavior
- Applications:
 - Credit Card Fraud Detection
 - Network Intrusion Detection
 - Detecting changes in the Global Forest Cover

Some General Guidelines in Machine Learning

- 1. Identify type of problem
 - Classification, regression, clustering, anomaly detection, ...
- 2. Select relevant features
 - Feature selection often guided by domain insights
- 3. Obtain training labels (if needed)
- 4. Select type of learning algorithm
- 5. Design evaluation setup
 - Partition data into training and testing and measure test performance
 - Perform sensitivity analysis of learned patterns/models
 - Ensure physical interpretability of discovered results

Great resource for coding ML in Python:

http://www.cse.msu.edu/~ptan/dmbook/software/

Breakout Session (~10 to 15 mins)

- You will be assigned to smaller groups of size 3 to 4
- Goal: To start thinking about potential project ideas involving ML
- Suggested "Ice-breaker" Questions:
 - What are some examples of scientific problems where you can see opportunities to apply ML?
 - What kind of ML formulations (e.g., classification, regression, etc.) can be used?
 - What challenges do you think you will face that will need us to move beyond black-box ML?
- Use Google Docs to capture your conversations using the template:
 - <u>https://docs.google.com/document/d/1PqqduKaQ0IY8RJb7eSlsDB_FhLhiOIK</u> <u>cD_1g1B8PTNs/edit?usp=sharing</u> (also available on course webpage)
- Reach out to me anytime by clicking on "Ask for Help (?)"
- Share discussion highlights with the class at the end of session

Follow-up Assignment 1

- Tell us about one scientific problem where you can see an application of ML
 - What type of ML formulation?
 - Classification, Regression, Dimensionality Reduction, Generative Modeling, Clustering, Anomaly Detection, Reinforcement Learning, Optimization, ...
 - Where will you find data?
 - What challenges will black-box ML face in this problem and what kind of scientific knowledge can be used?
 - In SGML theme areas, e.g., in selection of features, design and learning of ML models, or analysis of results
- Will be available on Canvas by tonight (due Aug 31)

What is Coming Up in Next Class?

- Introduction to SGML Theme Areas
- Suggested Readings for Next Week:
 - A. Karpatne, G. Atluri, J. Faghmous, M. Steinbach, A. Banerjee, A. Ganguly, S. Shekhar, N. Samatova, and V. Kumar, "Theory-guided Data Science: A New Paradigm for Scientific Discovery from Data," *IEEE Transactions on Knowledge and Data Engineering (TKDE)*, 29(10), 2318–2331, 2017.
 - Willard, Jared, Xiaowei Jia, Shaoming Xu, Michael Steinbach, and Vipin Kumar. "Integrating physicsbased modeling with machine learning: A survey." arXiv preprint arXiv:2003.04919 (2020).