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Large Memory Needs for Database Indexing Naive Tiering for ART is Inefficient

(1). Indexes are a major contributor to memory footprint in main- (1). Access latency for ART is due to pointer chasing (up to 28%
memory OLTP systems (over 50% of the total memory used in DB).  slowdown).

(2). CXL is the next generation memory expansion technology.
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. . Problem of state-of-the-art OS page-based tiering solutions:
Adaptlve Radix Tree (ART) (1). Agnostic to ART structural semantics

(1). ART indexing widely used in DuckDB, PostgreSQL, Hyper. (2). Coarse grained on page level (node level hotness not captured)
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(2). ART inner nodes are categorized into four different types. E E D
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Design 2. Online node swapping
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L o B Design 3. Profile-guided prefetching
Design 1. Historical information-guided static allocation (1) Leverage techniques in previous work like APT-GET (EuroSys ‘22),
(1) Based on short-term access history, calculate slowdown density RPG2 (ASPLOS ‘24) to find candidate prefetch distance and prefetch
| :levelin the tree injection sites
t :node type (4, 16, 48, 256) (2) Dynamically tune prefetch instructions in real time by detecting hot path

¢t : slowdown sensitivity for node type ¢ (3) Rely on Linux ptrace to perform actual code insertion

hi¢ : total hit count for node type t at level /

Nt : number of nodes of type t at level / Progress & Future Work
S

t : bytes per node for type t (1) Tuning static placement and online node swapping performance.

[ densityl, ¢ — slowdown cost avoided ¢ - hl,t] (2) Measuring state-of-the-art prefetching strategy performance on ART.
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memory bytes required Nyt - St Future work:

(2) Node static allocation based on local DRAM budget (1) Exploit node replication on both local / remote to reduce migration

overhead.

(2) Extend to other index data structure like B+-tree and skip list.



