Efficient Adaptive Radix Tree for CXL-based Memory System

Yuze Li, Sumit Monga, Kirshanthan Sundararajah, Ali R. Butt, Huaicheng Li ;0 1A TECH

Large Memory Needs for Database Indexing Naive Tiering for ART is Inefficient

(1). Indexes are a major contributor to memory footprint in main- (1). Access latency for ART is due to pointer chasing (up to 28%
memory OLTP systems (over 50% of the total memory used in DB). slowdown).

(2). CXL is the next generation memory expansion technology.

YCSB workloads - Pure Local vs Remote CXL

mm local

Node Type Memory Usage

Next-gen B remote CXL 305
memory N key len: 12 slowdown, B
pooling/tiering 12500 c
Memory RDMA-based L . - 24 20 s
expansion disaggregation C e g 100001 mmm 36 §
°
Intel Optane g‘ 7500 10w
Persistent Memory £
g 5000
=
(@
— 2500 V‘Q N> \\\? N7 & AN < s &S N . &%’
O & & & & B SO
1 1 1 > Y & & & LS LR RS VoS
T > 0 PN [[S [@o L L &S
2020 2022 present node4 nodel6 node48 node256 leaf total PN < < < ($>\ <

. . Problem of state-of-the-art OS page-based tiering solutions:
Adaptlve Radix Tree (ART) (1). Agnostic to ART structural semantics

(1). ART indexing widely used in DuckDB, PostgreSQL, Hyper. (2). Coarse grained on page level (node level hotness not captured)

. . . . hot node
(2). ART inner nodes are categorized into four different types. E E D

(3). Memory usage scales with average ken length. alocal page I:I cold node
4 partial keys 4 child pointers czzdé:dg ;;ray PR 48 C'j{’f’PU’"’e’s memory inefficiency
NODE_4 [3EFT] NoDE_48 [| [[AR [] RrsaS= === ——m===——— 1
ea ermmm.nnnn ea e"-.l! - .Hﬁﬂ @ " ‘ ’ " ‘ :YCSB WOI’kloadS ShOW :
. 1 o,
16 partial keys 16 child pointers Node25s X W/ X[jon average only 40% of1
: 1 5 255 a remote CXL page =a page is hot. 1

~ona1s ~ELL-G) O

performance penalty

Design 2. Online node swapping

' Heavily accessed at
top of the tree

Nodes colldcate
in the midd

Node Count
-
o

1
:Insights: Inner node types show distinct and stable access profiles | swap top K
1+ High fanout nodes show skewed distribution & higher access.] local DRAM h°"°°'d node remote CXL
1+ Low fanout nodes show normal distribution & lower access. : ‘ :
N o p e |0 0 O - OO
1e8 Node Access Count Distribution 1e6 Node Count Distribution : T
e . !
e === | —— Node 4 2.0 1 | — Node4 node16 |‘ 16 | ‘ ‘| i ” | ‘ “
1.0 | —— Node 16 1 —— Node 16 P !
—— Node 48 15 1 —— Node 48 LT
it o] [][-
] : L
1
|

Access Count
)
o

node256 |\ 2 || \| || | |
0.5 |
0.2
0.0 I 0.0
L o B Design 3. Profile-guided prefetching
Design 1. Historical information-guided static allocation (1) Leverage techniques in previous work like APT-GET (EuroSys ‘22),
(1) Based on short-term access history, calculate slowdown density RPG2 (ASPLOS ‘24) to find candidate prefetch distance and prefetch
| :levelin the tree injection sites
t :node type (4, 16, 48, 256) (2) Dynamically tune prefetch instructions in real time by detecting hot path

¢t : slowdown sensitivity for node type ¢ (3) Rely on Linux ptrace to perform actual code insertion

hi¢ : total hit count for node type t at level /

Nt : number of nodes of type t at level / Progress & Future Work
S

t : bytes per node for type t (1) Tuning static placement and online node swapping performance.

[densityl, ¢ — slowdown cost avoided ¢ - hl,t] (2) Measuring state-of-the-art prefetching strategy performance on ART.
b=

memory bytes required Nyt - St Future work:

(2) Node static allocation based on local DRAM budget (1) Exploit node replication on both local / remote to reduce migration

overhead.

(2) Extend to other index data structure like B+-tree and skip list.

