
Efficient Adaptive Radix Tree for CXL-based Memory System

Exploiting ART Structural Characteristics for Better Placement

Progress & Future Work

Yuze Li, Sumit Monga, Kirshanthan Sundararajah, Ali R. Butt, Huaicheng Li

Large Memory Needs for Database Indexing

(1). ART indexing widely used in DuckDB, PostgreSQL, Hyper.
(2). ART inner nodes are categorized into four different types.

Naïve Tiering for ART is Inefficient

(1). Access latency for ART is due to pointer chasing (up to 28%
slowdown).

Problem of state-of-the-art OS page-based tiering solutions:
(1). Agnostic to ART structural semantics
(2). Coarse grained on page level (node level hotness not captured)

Design 1. Historical information-guided static allocation

Heavily accessed at
top of the tree

Design 3. Profile-guided prefetching

(1). Indexes are a major contributor to memory footprint in main-
memory OLTP systems (over 50% of the total memory used in DB).
(2). CXL is the next generation memory expansion technology.

Adaptive Radix Tree (ART)

Insights: Inner node types show distinct and stable access profiles
• High fanout nodes show skewed distribution & higher access.
• Low fanout nodes show normal distribution & lower access.

(1) Tuning static placement and online node swapping performance.
(2) Measuring state-of-the-art prefetching strategy performance on ART.
Future work:
(1) Exploit node replication on both local / remote to reduce migration
overhead.
(2) Extend to other index data structure like B+-tree and skip list.

YCSB workloads show
on average only 40% of
a page is hot.

Nodes collocate
in the middle

Design 2. Online node swapping

(3). Memory usage scales with average ken length.

: level in the tree

 : node type (4, 16, 48, 256)

 : slowdown sensitivity for node type t

 : total hit count for node type t at level l

 : number of nodes of type t at level l

 : bytes per node for type t

(1) Based on short-term access history, calculate slowdown density

(2) Node static allocation based on local DRAM budget

(1) Leverage techniques in previous work like APT-GET (EuroSys ‘22),
RPG2 (ASPLOS ‘24) to find candidate prefetch distance and prefetch

injection sites
(2) Dynamically tune prefetch instructions in real time by detecting hot path
(3) Rely on Linux ptrace to perform actual code insertion

