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Abstract

Modern Python applications consume massive amounts of
memory in data centers. Emerging memory technologies
such as CXL have emerged as a pivotal interconnect for
memory expansion. Prior efforts in memory tiering that re-
lied on OS page or hardware counters information incurred
notable overhead and lacked awareness of fine-grained ob-
ject access patterns. Moreover, these tiering configurations
cannot be tailored to individual Python applications, lim-
iting their applicability in QoS-sensitive environments. In
this paper, we introduce Memory Tiering in Python VM
(MTP), an extension module built atop the popular CPython
interpreter to support memory tiering in Python applica-
tions. MTP leverages reference count changes from garbage
collection to infer object temperatures and reduces unneces-
sary migration overhead through a software-defined page
temperature table. To the best of our knowledge, MTP is the
first framework to offer portability, easy deployment, and
per-application tiering customization for Python workloads.

CCS Concepts: - Software and its engineering — Run-
time environments; Garbage collection.

Keywords: virtual machine, garbage collection, memory tier-
ing

ACM Reference Format:

Yuze Li, Shunyu Yao, Jaiaid Mobin, Tianyu Zhan, M. Mustafa Rafique,

Dimitrios Nikolopoulos, Kirshanthan Sundararajah, and Ali R. Butt.
2025. Memory Tiering in Python Virtual Machine. In Proceedings

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

VMIL °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2164-9/25/10
https://doi.org/10.1145/3759548.3763372

of the 17th ACM SIGPLAN International Workshop on Virtual Ma-
chines and Intermediate Languages (VMIL °25), October 12—18, 2025,
Singapore, Singapore. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3759548.3763372

1 Introduction

Python dominates software programming communities, rank-
ing first on TIOBE [8] and IEEE Spectrum [9] in 2025 for
its simplicity and extensive libraries. However, Python data
types tend to consume more memory than their native coun-
terparts [7] due to Python’s own managed runtime. For ex-
ample, a typical integer consumes 24+ (n x 4) bytes (where n
is the number of digits in Python but only 4 bytes in C/C++).
The extra memory is used to store the type information and
reference counting, along with other metadata, to maintain
run-time states. Together with the fact that Python employs
a Garbage Collection (GC) that delays memory reclamation,
it drastically increases the amount of memory consumed
compared to native code [7, 27]. This excessive memory
overhead is particularly problematic in cloud computing and
high-performance computing environments, where memory
costs scale with usage. Python’s memory inefficiencies can
lead to increased costs, degraded performance, and limited
scalability [50].

In recent years, cloud data centers have adopted more
heterogeneous memory hierarchies to meet the capacity
and performance demands of modern applications. This cre-
ates a mismatch between Python’s memory behavior and
traditional tiering approaches. For example, Non-Uniform
Memory Access (NUMA) [32] - one of the earliest exam-
ples of tiered memory — has been widely used in building
scalable and cost-effective memory systems [6, 47]. The emer-
gence of new memory techniques, such as Compute Express
Link (CXL) [15, 35], further enables memory expansion and
alleviates the memory wall problem through software/hard-
ware scheduling and tiering at the OS/runtime level [21, 34].
Upper-tier memory typically offers lower latency and higher
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bandwidth but less capacity, while lower-tier memory pro-
vides greater capacity at the cost of higher latency and lower
bandwidth. When managing dynamic working set sizes in
a tiered memory system, it is crucial to orchestrate data
across the hierarchy carefully. However, effectively manag-
ing Python applications in tiered memory systems remains
a significant challenge. Existing solutions either lack aware-
ness of fine-grained Python object accesses or are incompat-
ible with CPython’s runtime, preventing Python workloads
from taking full advantage of tiered memory hierarchy.

Modern memory tiering systems primarily rely on two
dominant approaches, each with notable limitations. The
first, OS-level management [29, 31, 36, 38, 41, 44, 54], has
been widely adopted in production. These systems typically
use page faults [29, 32, 38, 56] or access-bit sampling [33, 41,
45, 56] to infer memory access patterns. However, such tech-
niques operate at the granularity of OS pages (4KB), whereas
Python objects are much smaller (typically 24-200 bytes). As
a result, multiple objects share the same page, leading to false
sharing and inefficient placement decisions. Furthermore,
these approaches often struggle to balance accuracy and
overhead. Sampling-based systems may incur high or even
unbounded overhead [33, 55, 56]. Moreover, cloud-based
Python applications often have diverse priorities and QoS
requirements, but OS-based tiering applies a uniform config-
uration to all workloads, with no awareness of which pages
belong to latency-sensitive jobs and which do not [38]. As a
result, it cannot tailor tiering policies to workload-specific
QoS needs, leading to suboptimal placement decision.

The second type of tiered memory approach is tightly cou-
pled with runtimes, which either define a new programming
model offering self-defined APIs [16, 25, 46] in languages that
support native execution (e.g., C/C++), or leverage garbage
collection in modern memory-managed languages to place
program data [37, 52, 53, 58]. These approaches can track
data access frequencies at the fine-grained object level. How-
ever, the former type only targets native executions pro-
grammed in C/C++ and requires non-trivial source code
instrumentation (i.e., non-transparent), while the second
type only focuses on JVM-based languages. Consequently,
Python programs that run in tiered memory have been left
unexplored in this track.

In summary, existing solutions for tiered memory manage-
ment are agnostic to the QoS of the workload or optimized
for languages with native execution support (e.g., C/C++)
or JVM-based runtimes. However, Python applications pose
unique challenges due to their dynamic nature, high object
allocation rates, and reliance on automatic memory man-
agement. This creates a fundamental mismatch between
Python’s memory behavior and traditional OS-level page-
based tiering approaches.

We analyze the performance of existing state-of-the-art
memory tiering solutions and uncover that they fall short
of achieving customizability in deployment and a balance
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between tracing accuracy and overhead (Sec. 3). To address

these challenges, we present Efficient Memory Tiering (MTP)

for memory-intensive Python programs. The key idea of

MTP is that Python’s built-in Reference Counting (refcount),

which tracks how many variables point to each object, can

be leveraged to infer Python object access patterns.
Our contributions are as follows:

o Lightweight sampling framework: A CPython-integrated
system that monitors object hotness with configurable
overhead bounds (Sec. 5.1 & 5.2).

® Reference count-based object tracking: A novel approach
that leverages CPython’s built-in reference counting to
infer object access patterns (Sec. 5.3).

o Adaptive tiering without OS changes: Introducing eagerness-
awared strategy with software-defined page table to enable
seamless data movement between memory tiers (Sec. 6).
Using real-world memory-intensive Python workloads

in an emulated CXL-tiered environment, our evaluation

shows that MTP outperforms existing solutions in most
cases. Across 33 comparisons (11 workloads, each with three-
tier configurations), MTP outperforms TPP[38] in 25 cases,

AutoNUMA [4] in 30, and MEMTIS [33], with MTP yield-

ing speedups of up to 29%. Unlike existing solutions that

require OS modifications or application changes, MTP op-
erates entirely within the Python VM through two simple

APIs for enabling tracing and configuring QoS-based policies.

To our knowledge, MTP is the first approach to integrate

fine-grained memory tiering directly within an interpreted

language runtime.

2 Python VM and Garbage Collector

Understanding MTP’s approach requires familiarity with
CPython’s memory management, which provides the foun-
dation for our object tracking and migration strategies.

CPython [1] is the standard Python interpreter, written in
C and used by over 99% of Python applications [10]. It works
by parsing Python statements and generating abstract syntax
tree (AST), compiling the AST to bytecode, and executing
the bytecode in the Python virtual machine. In CPython, all
objects are represented by the PyObject structure, which
contains metadata including type information and memory
management fields. Each PyObject has a refcount that tracks
how many references point to it in the heap. An object is
freed when its refcount drops to zero. The key insight behind
MTP is that reference count changes correlate with object
access patterns. While refcounts don’t directly measure ac-
cess frequency, their fluctuations during execution provide
valuable signals about object hotness (Sec. 5.3).

Beyond reference counting, CPython includes a cyclic
garbage collector [43] that handles reference cycles—groups
of objects that reference each other but are unreachable from
the program. The cyclic GC maintains three generational
lists that track container objects by age, with newer objects
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collected more frequently than older ones. Reachable objects
have their reference counts restored, while unreachable ob-
jects in cycles are deallocated to prevent memory leaks. MTP
reuses this cyclic-GC infrastructure to efficiently discover
all live objects in the system without additional traversal
overhead (Sec. 5.1).

This combination of reference counting and cyclic collec-
tion provides MTP with both fine-grained access information
and comprehensive object discovery capabilities.

3 Motivation

We identify two key limitations in existing tiered memory so-
lutions that motivate MTP: (1) inability to adapt to workload-
specific QoS requirements, (2) poor trade-offs between trac-
ing accuracy and overhead, and (3) lack of tiering compati-
bility with Python VM. We present a summary of the com-
parison with prior work in Table 1. In the remainder of the
section, we investigate these factors in detail.

3.1 Adapting to Workload-specific QoS Needs

Existing OS-based memory tiering systems [29, 31, 38, 41, 44,
54, 57] apply one-size-fits-all policies across all applications,
hence they are unable to adapt to the diverse QoS require-
ments of individual workloads. For latency-sensitive work-
loads, the OS may be unaware of performance requirements,
leading to unnecessary memory migration that increases
access latency and overhead. Conversely, in long-running
background tasks, the OS might misclassify the workload
as hot, pinning the entire Resident Set Size (RSS) in fast-tier
memory and limiting resources for other applications. These
limitations arise from the OS’s reliance on general heuristics,
which do not account for workload-specific characteristics.
For example, a machine learning training job may benefit
from keeping model parameters in fast memory while allow-
ing gradient buffers to reside in slower tiers, but OS-level
systems cannot make such application-aware distinctions.
Previous work like HeteroOS [28] and AutoNUMA [4] high-
lights the inefficiencies of OS-level policies that overlook
application-specific QoS needs, leading to suboptimal mem-
ory placement.

While AIFM [46] requires application developers to man-
ually instrument code and tune object structures, MTP em-
powers cloud providers to transparently enable tiering for
any Python application through a simple API (listing 1), al-
lowing them to adjust parameters to balance the trade-offs
between tiering memory efficiency and tracing overhead.

Motivation 1. Memory tiering systems must provide con-
figurable policies that can adapt to workload requirements
rather than applying rigid, one-size-fits-all approaches.
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3.2 Balancing Tracing Accuracy and Overhead

Current OS-based solutions face a fundamental dilemma:
achieving accurate memory access tracking requires tech-
niques that introduce prohibitive overhead, while approaches
with low overhead sacrifice the fine-grained accuracy needed
for effective tiering.

Accuracy. Page fault-based methods [4, 38, 56] and page
table scanning [41, 45] scale poorly with memory footprint.
DAMON [41] reduces overhead by grouping contiguous
pages, assuming uniform access within regions. However,
MEMTIS [33] demonstrates that such misgrouping leads
to suboptimal data placement. PEBS-based approaches [33,
44, 45, 56] scale with access frequency but face a sampling
dilemma: sparse sampling misses critical access patterns
while aggressive sampling incurs high overhead. In contrast,
MTP enables high-resolution object-level tracing.

Overhead. Achieving high accuracy through page table
scanning can consume up to 10% of CPU resources due to
frequent sampling [41]. PEBS-based methods suffer from
fundamental hardware costs including microcode assists,
cache pollution, and interrupt handling overhead [2]. Both
lack dynamic tuning interfaces, reducing flexibility for cloud
and HPC workloads. While MTP also incurs overhead, it
offers a straightforward software interface for cloud providers
to balance tracing accuracy and performance.

Motivation 2. Effective tiering requires fine-grained ac-
cess tracking with controllable overhead—a balance that
existing solutions fail to achieve, particularly for Python’s
object-oriented memory patterns.

3.3 Integrating Tiering into Python VM

Prior work has leveraged garbage collection in modern man-
aged runtimes to place program data in tiered memory [3, 30,
37, 51, 52, 58] in tiered memory. These approaches can track
data access frequencies at a fine-grained object level with
acceptable overhead, but they primarily target JVM-based
languages, which are incompatible with the Python VM. Un-
like the JVM, Python’s garbage collector does not perform
object relocation. Any attempts to move objects therefore
incur additional overhead. Moreover, Python lacks the read-
/write barriers present in the JVM, making it infeasible to
directly track PyObject accesses.

Motivation 3. Due to the design difference between Python
VM and JVM, the absence of Python VM-specific object ac-
cess tracing and migration scheme necessitates a completely
new design.

4 MTP Design

MTP is designed to track PyObject accesses and migrate the
corresponding pages between fast (local) and slow (remote)
memory. MTP is a fully runtime-based, transparent, and
fine-grained object tracing tiering system for Python ap-
plications with controlled overhead. MTP is a complete
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Table 1. Comparison of prior memory tiering systems that focus on different aspects. MTP targets Python applications,
supports object tracking, is fully transparent to developers, customizable for cloud providers, and requires no offline profiling.

Solutions Access tracking mechanism Criteria for thresholding Sub-page tracing Offline Transparency | Customizability | Memory media
analysis

TPP [38] Page fault Static access count X X v X DRAM/CXL

DAOS [41] Access bit sampling Static access count X X v X DRAM/ZRAM

MEMTIS [33] HW-based sampling Memory access distribution v X v X DRAM/NVM/CXL

AIFM [46] Smart pointer interposition CLOCK replacement v X X v Local/far
memory

TrackFM [48] Smart pointer interposition CLOCK replacement v v v X Local/far
memory

Write- GC interposition GC-guided v X v X DRAM/NVM

Rationing [3]

Panthera [51] Static analysis + GC interposition Static allocation + GC-guided v/ (coarse-grained) v v X DRAM/NVM

MTP (ours) Refcount-based inference Memory access distribution + v X v v DRAM/CXL

eagerness-driven

user-space C extension module for CPython that is orthogo-
nal to any existing OS-based memory tiering system.

4.1 Overview

Listing 1 describes the MTP APL Once imported, MTP.start()
invokes the C extension module and initiates the marking

phase (Sec. 5.1) when fast-tier memory falls below mem_pressure.

The mask parameter indicates the memory node mask for
demoting cold data, while sample_interval controls the in-
terval for sampling phases (Sec. 5.2). Finally, MTP.end() halts
tracing and releases metadata.

Listing 1. MTP Python Interface

import MTP

MTP.start (mask, sample_interval)
# Python code you want to take effect
MTP.end ()

mem_pressure ,

MTP targets cloud providers running tiered-memory-backed
services. In serverless platforms, it can be embedded into
Python environments to manage instances with customiz-
able tiering policies, remaining fully transparent to end users.
Its lightweight API supports QoS-aware orchestration; for
example, integrating MTP with Kubernetes Memory Man-
ager [5] enables dynamic tiering adjustments for:

e Latency-sensitive jobs: set high mem_pressure and medium
sample_interval to reduce remote access latency.

¢ Long-running background tasks: set low mem_pressure
and high sample_interval to maintain acceptable perfor-
mance without impacting high-priority workloads.

However, such customization is not possible with OS-based

tiering approaches [38].

4.2 Challenges

To achieve object hotness tracing for migration in tiered
memory for Python applications, MTP faces several chal-
lenges:

() How to obtain object access information in the
CPython runtime? Object-level access information is tightly
linked to programming language runtime implementation.
Prior approaches focus on two domains: The first one is to

provide a customized set of APIs based on C/C++ for pro-
grammers. Object temperatures can be obtained by overload-
ing C++ smart pointer and the dereference operator (i.e., —>)
and marking some bits as hotness indicators [24, 46]. How-
ever, this method does not apply to Python virtual machine,
which defines object structures in C!. The second one focuses
on JVM-based languages (e.g., Java, Scala) that instruments
read/write barriers [3, 52, 53]. CPython lacks such barriers.
Instead, each object type defines its own set of APIs, e.g.,
PyList_SET_ITEM() implements list->ob_item[index].
Manually instrumenting bookkeeping operations for each
API is impractical.

To address this, MTP leverages reference counting [11],
a garbage collection strategy in CPython. Note that unlike
JVM, refcount does not directly indicate a PyObject is ac-
cessed, since it is simply pushing and popping operands from
the stack. This leaves the object temperature tracking effort
to MTP. Instead, MTP monitors the changes of refcount to
infer object temperatures (Sec. 5.3).

(I) How to mitigate the extra run-time costs during
tracing? Since CPython only marks container PyObjects
(e.g., lists, sets, tuples) rather than all live objects [43], MTP
has to take care of it. We identified two approaches to miti-
gate the cost: The first is enabling the Py_TRACE_REFS macro
to track all live PyObject references [18], though this adds
significant CPU overhead (up to 60%) due to list manipula-
tion during each PyObject lifecycle. The second approach is
leveraging CPython’s cyclic-GC module [43], which marks
live objects by recursively traversing container PyObjects.
However, this is a stop-the-world operation, temporarily
blocking the application.

To mitigate this, we observe that the set of live Python
objects is related to how CPython cyclic-GC behaves.
One can use CPython GC hints to eliminate unnecessary
tracing and thus, to reduce overhead (Sec. 5.1).

IEfforts to build a high-performance C++ version of Python are still in early
stages [20].
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Figure 1. MTP Pipeline.

4.3 Pipeline

Figure 1 shows MTP’s pipeline. Its principle is to periodically
mark all live objects, observe refcount changes, and apply
migration strategies accordingly. When enabled, MTP acti-
vates when local memory pressure is detected. First, in the
marking phase (Sec. 5.1), all live objects are marked, gener-
ating PyObject temperature metadata. Next, MTP performs
consecutive sampling phases (Sec. 5.2) to track PyObject
refcount changes, filtering out unsuitable objects and calcu-
lating real-time hotness (Sec. 5.3).

After several sampling phases, MTP enters the migra-
tion plane to select migration candidates. It uses object-
level hotness information to calculate the temperature of
the corresponding memory pages (Sec. 6). The migration
plane employs bucketing to classify hot and cold pages. MTP
keeps hotness statistics up to date through periodic cooling
and adaptively minimizes tracing overhead by monitoring
CPython’s cyclic-GC behavior during runtime. Note that
all MTP’s components run on a separate thread and do not
interpose native CPython GC.

5 Object Access Tracing

This section presents the design to trace PyObject hotness in
two key points: (1) marking and sampling phases to obtain
and sample PyObjects’ refcount changes, and (2) an online
model to obtain real hotness values from those changes.

5.1 Marking Phase

To begin, MTP needs to know the scope of objects to sample.
We noticed that CPython’s native cyclic-GC module main-
tains three generational lists to detect cyclic references [43].
However, these lists only track containers PyObjects (e.g.,
list, tuple, dict), meaning that non-container PyObjects (e.g.,
an actual PyLongObject that is accessed) would be missed
if MTP solely samples on them. To correctly mark all live Py-
Objects, MTP uses a built-in recursive marking approach,
outlined in Algorithm 1. It starts by marking objects from
the existing cyclic-GC lists (line 4). For PyObjects that are
iterable, MTP leverages the tp_traverse method tailored
to each object’s type (line 11). If a child node is iterable, it
recursively traverses its children (lines 13, 18), performing
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a depth-first search until no further child elements remain.
Each marking phase appends newly initialized elements to
the temperature metadata (lines 7 and 17).

MTP’s marking has to be stop-the-world, meaning the
application is temporarily paused. However, fewer mark-
ing phases can result in missing PyObjects created during
run time. Therefore, MTP must balance marking overhead
with accuracy. Fortunately, this can be inferred by observing
CPython’s cyclic garbage collection (GC) behavior. Figure 2
shows the relationship between the number of cyclic-GC
events observed between two consecutive markings (x-axis)
and the number of newly identified PyObjects in the same
sampling period (y-axis). The trend reveals that when few
cyclic-GC events occur (bottom-left region), the number
of new objects is low, making a marking phase less worth-
while. Based on that, MTP temporarily skips current marking
phase when cyclic-GC activity is less intensive. While this
may slightly reduce marking accuracy, missed objects will
be detected in subsequent markings. To remedy potential
under-marking objects caused by consistently low cyclic-GC
counts, MTP enforces one marking when it detects multiple
consecutive moderate cyclic-GCs.

To further reduce overhead within a single marking phase,
MTP applies two optimizations. First, it tracks both the con-
tainer size and nesting level of the current container PyObject
being traversed, and stops recursion immediately when ei-
ther exceeds a preset threshold. Figure 3 shows how limiting
these values controls the trade-off between marking accu-
racy and overhead. These two thresholds are dynamically
tuned by observing last marking time: we set two thresh-
olds unbounded when we observe short marking time. Con-
versely, we gradually constrain them (starting from the value
of 10) when we observe longer marking time. Second, MTP
maintains a global_set to record those already-traversed
objects on the fly (lines 6, 16 in Algorithm 1), so that any
PyObjects that are already in the set do not need to be recur-
sively retraced. This is necessary since any PyObject can be
referenced by one or multiple container PyObjects.
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Algorithm 1: MTP Marking Phase.

Data: gc_list: global cyclic-GC list
glob_set: global set for all live PyObjects
hotness_arr: temperature metadata for refcnt
changes
1 Function Do_Marking():
2 PyGILState_Ensure() // Acquire GIL

3 for node in gc_list do

4 obj = FROM_GC(node) // Obtain PyObject
5 if obj not in glob_set then

6 glob_set.insert(obj)

7 hotness_arr.append(obj) // Mark

8 Recursive_Visitor(obj)

9 | PyGlLState Release() // Release GIL

10 Function Recursive_Visitor(obj):

11 traverse = Py_TYPE(obj).tp_traverse
12 if traverse then

13 L traverse(obj, Traverse_Routine)

14 Function Traverse_Routine(inner_obj):

15 if inner_obj not in glob_set then

16 glob_set.insert(inner_obj)

17 hotness_arr.append(inner_obj) // Mark
18 Recursive_Visitor (inner_obj)

5.2 Sampling Phase

Having the scope of interested PyObjects during marking,
MTP enters the sampling phase to sample their refcount
changes. MTP leverages the system’s endianness: it uses
the unused 32 most significant bits (MSB) of the existing
ob_refcnt field as a growth counter, which increases re-
gardless of whether the original refcount rises or falls.

During marking, MTP prepares the temperature metadata
(lines 7 and 17 in algorithm 1). This metadata is stored as
a global array, where each entry holds an 8-byte PyObject
address ob, a 4-byte prev_growth, and eight 1-byte fields to
record refcount changes. MTP uses the following formula
to sample changes: changes|[i] = ob.growth — prev_growth
where prev_growth stores the previous growth and is up-
dated during each sampling. changes|[0...7] are later used to
calculate hotness for that object.

Note that we choose to sample refcount instead of directly
interposing refcount interfaces. While the latter approach
seems viable, it incurs excessive CPU overhead, scaling up
to 5 times, even if users do not intend to enable MTP dur-
ing runtime. This is expected to be higher than interposing
JVM’s read/write barriers, which directly indicate object
reads/writes, because the refcount in CPython occurs far
more frequently than JVM barriers.

Sample filtering. Although sampling phases run asyn-
chronously with the application thread, blindly sampling
all objects could lead to unbounded duration — sampling 10
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Table 2. Different prediction models’ performance on pre-
dicting PyObject real hotness based on refcount changes.

Models MLR MLR + Polynomial | Random | MLP
RFE Forest

Mean Squared Error 0.511 0.511 0.501 0.501 0.502

Mean Absolute Error 0.307 0.308 0.304 0.304 0.299

R? 0.709 0.709 0.715 0.715 0.715

Pearson Correlation 0.842 0.842 0.846 0.846 0.846

million PyObjects (which usually happens in modern work-
loads) takes around 1 second — delaying tracing recency.
To mitigate this, we filter specific object samples under the
following cases.

First, MTP skips two sampling phases for those PyObjects
whose changes[0...7] are all zeros (meaning they are not ac-
cessed). After that, all the skipped samples will be re-sampled
in case they are accessed. Second, as any PyObject can be
deallocated by CPython’s main thread (GC) at any time and
later on be replaced by another semantically different object
at the same address. Accessing the growth field of these tem-
porarily "freed" objects will result in segmentation faults and
crash the program. To address this, we add a signal handler
for SIGSEGV in CPython’s signal module and use longjump
during sampling. If an invalid memory access occurs, MTP
immediately marks those PyObjects as dropped to prevent
further access.

5.3 Object Temperature Prediction

We conduct extensive offline analysis to correlate refcount
changes with ground-truth temperatures from DAMON [41].
Empirical results show a typical pattern: frequent but small
refcount changes correlate with higher object temperatures.
While DAMON samples at coarse page or page-group granu-
larity (Figure 4), we collect its data using the highest resolu-
tion and shortest interval, then align MTP’s object addresses
to DAMON’s nearest page addresses to represent object-level
hotness.

For each object-level refcount sample from MTP, we ex-
tract statistical features: median, standard deviation, count
of non-zero refcount changes, and range. Then we use them
as inputs to several prediction models (e.g., MLP, MLR), with
DAMON-provided temperatures as labels.

Table 2 summarizes model performance across various
workloads (80/20 train-test split). All models predict PyOb-
ject temperature well. For example, MLR explains 70.9% of
variance from the selected features (R? = 0.709) and achieves
a Pearson correlation of 0.842, indicating a strong positive
relationship with actual temperatures. Since complex models
(e.g., MLP, Random Forest) yield only marginal gains with
higher overhead, we adopt MLR in MTP.

Figure 4 illustrates the accuracy of the MLR model: the
heatmap inferred from refcount changes (left, using 500ms
sample_interval) closely aligns with the one generated from
OS page table entry scans (right) for the same Python matrix
multiplication workload. Although absolute temperatures
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may differ due to hotness range, the model can effectively
distinguish hot and cold ones as long as their relative tem-
peratures remain stable. This demonstrates that MTP can
transparently capture object-level temperatures during run
time without OS page access information.

6 Page Migration Strategy

After certain sampling phases, MTP triggers the migration
plane. We choose to keep the migration unit at the page
level due to Python VM constraints and the overhead of
object-level migration (more details are discussed in Sec . 8).

First, we use a software-defined page temperature table

that maps objects to their corresponding pages. Unlike the
OS page table, our table is thinner, as it only tracks pages
containing live PyObjects monitored by MTP. To decide
the hotness of a page, MTP aggregates all objects’ hotness
inside that page. For instance, in Figure 5, a page with three
PyObjects of hotness 3, 4, and 3 has a total hotness of 10.
Next, MTP determines the threshold between hot and cold
pages by applying bucketing and eagerness. After that, MTP
demotes cold pages (if any) to the slow tier if there isn’t
enough space in the fast tier for hot pages. This frees up
room to promote hot pages based on the available fast tier
size.

MTP absorbs the page migration scheme from MEMTIS [33]
but with an extension to improve migration efficiencies.

Existing design of page temperature cooling and access
histogram-based bucketing in MEMTIS are incorporated into
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MTP, as explained below. With hotness stored in the page ta-
ble, the temperature of a page is affected by periodic cooling.
In other words, if the hotness of a page in the i interval is
x, and the (i — 1)th interval is hotness(;_1), the hotness in
the it interval affected by cooling is as follows.

hotness; = k X x + (1 — k) X hotness;_; (1)

where k is a parameter to balance the weight of history
temperature records and the current one.

Using hotness collected for page temperatures, MTP builds
a histogram (Figure 5). In particular, the histogram consists of
10 buckets, and each bucket has a range of hotness following
an exponential scale. For example, n'" bucket has the range of
[2", 2"“). The value of each bucket is the number of distinct
base pages in the hotness range.

Determining hot/cold threshold for migration is challeng-
ing in MTP. In MEMTIS, a histogram is used to determine
the hot page threshold, denoted as bucket index h. The to-
tal size of the pages in bin h and above is just below the
fast memory capacity, and this threshold is periodically up-
dated as the histogram changes. However, integrating such
an OS-level scheme into MTP — or any user-level migration
scheme — is challenging. MEMTIS has a global view of all
system pages, making it straightforward to calculate the hot
page threshold based on the fast tier capacity. In contrast,
MTP only tracks the virtual pages of the current Python
program, so using the fast tier capacity to set this threshold
makes no sense. An alternative approach, similar to TPP,
would involve pre-allocating a memory buffer to hold only
newly identified hot pages. However, implementing this in
CPython would require moving pages (objects) from the
Python VM into this buffer, along with additional metadata
to track updated addresses, which introduces both run-time
and memory overhead.

New design. To accurately determine the hot/cold page

threshold, the only solution is to demote some pages before
promoting hot ones. MTP introduces an intelligent approach
using a concept called eagerness, which quantifies how eager
pages in the slow tier are to be promoted to the fast tier.
Eagerness is a relative measure, compared to recent history,
that reflects the changing extent to which pages in the slow
tier are being accessed. It is computed using the following
equation:

Eageriotal(i) = RSStast * Eageric_miss[i) * Eagervw[i]  (2)

where i represents i’s interval. RSSg, is the percentage of
pages currently located in the fast tier. Eageric miss[i] is the z-
score of pages encountering LLC load misses. It is computed
as:

llc_miss[i] — avg(prev)
std_dev(prev)

®)

Eagerllcimiss[i] =
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where llc_miss[i] is the absolute LLC load misses ratio during
interval i, and prev is a buffer holding recent LLC load misses.
This equation measures how much the current LLC deviates
from the expected range based on recent values. Similarly,
Eagerpyi is calculated by measuring memory bandwidth to
the slow tier.

MTP uses this information to iterate through the his-
togram buckets. Starting from index zero and moving right,
until it finds a bucket index h where the number of colder
pages in the fast tier (needing demotion) just exceeds the
number of hotter pages in the slow tier (needing promo-
tion). This initial & is considered the most eager threshold.
If Eageryotali] is smaller than Eagerioparfi-1}, MTP decrements
h, indicating that the current hot pages are less eager for
promotion compared to the previous cycles.

7 Evaluation

To show the effectiveness of MTP, we evaluate it by answer-

ing the following questions:

e How does MTP perform with real-world Python work-
loads compared to state-of-the-art tiering solutions in an
emulated CXL environment (Sec. 7.2)?

e What are the run-time and memory overhead for MTP
(Sec. 7.3)?

7.1 Methodology

Hardware setup. In the absence of real CXL hardware,
we emulate it on a dual-socket server, using one socket as
the remote slow tier and the other as the local fast tier. Prior
work [34] shows that CXL access latency is similar to cross-
socket access latency. The fast-tier socket features a 16-core
Intel(R) Xeon(R) Silver 4314 CPU at 2.40 GHz and various
configurations of DRAM capacity. The slow-tier socket has
96GB DRAM capacity with all CPUs disabled. The CPU ac-
cess latency to the slow tier is measured at 140ns, with a max-
imum bandwidth of 31 GB/s. We disable transparent huge
pages, randomized virtual address space, hyper-threading,
kernel same-page merging, Intel Turbo Boost, and memory
swapping.

Workloads. We select 11 representative memory-intensive
Python applications, including three SQL workloads that uti-
lize SQLAlchemy [13] and eight graph computing workloads
using the popular Python library NetworkX [26]. Table 3
shows detailed workload descriptions, including their mem-
ory consumption.

Comparison targets. We compare MTP against 3 sys-
tems: TPP [38], AutoNUMA [4], and MEMTIS [33]. We
report the normalized performance compared to the base-
line, where each workload runs entirely in the remote slow tier
(CXL) without any tiering solution.
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Table 3. Workloads specification and their memory usage.

Workloads | Descriptions RSS

Astar Returns a list of nodes in a shortest path between source | 5.6G
and target using the A-star algorithm.

Bellman Computes shortest path lengths and predecessors on 5.6G
shortest paths in weighted graphs.

BES / BFS Iterate over edges in a breadth-first-search starting at 5.2G

rand consecutive/random sources.

Bidirectional | Returns a list of nodes in a shortest path between source | 4.6G
and target using bidirectional search.

KC Returns the maximal subgraph that contains nodes of 8.6G
degree k.

LC Find the best partition of a graph using the Louvain 3.9G
Community Detection Algorithm.

SP Find shortest paths between nodes. 5.6GB

SQL1 Populate relational databases with different table structures | 3.6G

SQL2 and insertion and updates on random values using foreign | 8.8G

SQL3 key. 3.7G

Tiering Configurations. We configure fast tier size to
25%, 50%, and 75% of each workload’s RSS (Table 3) to simu-
late different levels of fast-tier scarcity. To do that, we first
modify the Linux kernel boot argument using the memmap
GRUB option [42] to reserve most of the fast-tier memory.
We then use a memory hogger to consume the remaining
fast-tier memory until the target size is reached.

For MTP, we set mem_pressure to 1GB and sample_interval
to 250ms. For TPP, we adjust the demote_scale_factor to
2% to trigger fast-tier memory reclamation. For MEMTIS,
which relies on transparent huge pages (THP), we present its
performance with THP enabled. For the other three solutions,
we compare performance with THP disabled, as all these
migration designs are based on base pages.

7.2 Performance Comparison

Figure 6 shows the normalized performance of all tiering
solutions relative to running workloads entirely on slow tier.
Across 33 configurations (11 workloads x 3 memory ratios),
MTP outperforms TPP in 25 cases and AutoNUMA in 30.
While MEMTIS outperforms MTP in 15 instances, MTP still
achieves a competitive geometric mean performance (1.18
vs. 1.20).

Astar (Figure 6a) benefits from MTP ’s MLR-based hotness
inference via object refcounts, yielding 21% speedup over
MEMTIS and up to 29% over AutoNUMA. TPP suffers from
excessive kernel overhead — 53% runtime spent in kernel
— due to aggressive migrations triggered by uniform page
hotness, causing “ping-pong” effects. Similar issues occur
in LC and SQL1 (Figures 6g, 6i). For MEMTIS, performance
improvements compared to all slow tiers are marginal, with
speedup ranging from 6% to 11% as the fast-tier size increases
from 25% to 75%. Comparatively, MTP achieves the highest
performance while maintaining stable run-time variance
across fast-tier sizes.
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Figure 6. Performance of MTP and OS page-based tiering solutions under three tiering configurations (with the fast tier
set to 25%, 50%, and 75% of total RSS), normalized to the performance of running the entire benchmarks in slow tier (CXL).
Only MEMTIS is evaluated against the THP-enabled baseline. Across 33 comparisons, MTP outperforms TPP in 25 cases,

AutoNUMA in 30, and MEMTIS in 15 cases.

In Bellman (Figure 6b), TPP has better performance com-
pared to Astar, as it better distinguishes hot/cold pages. Au-
toNUMA performs the worst due to minor page faults. Simi-
lar patterns are observed in BFS_rand, KC, and SQL2. MTP
still achieves the best result among all solutions.

In contrast, for BFS_rand, Bidirectional, and SP (Figures 6c,
6e, 6h), MTP ’s initial marking cost dominates — especially
there are massive amount of objects in Python VM — lead-
ing to high overhead during the first marking. Despite this,
once MTP has collected the object information, it effectively
distributes memory objects accordingly, as evidenced by the
minor performance variations across different settings.

SQL workloads (Figure 61, 6j, 6k) populate relational databases

with different table structures and perform update/insertion
on random values, with different scales and compute inten-
sity. In this case, MTP performs better than AutoNUMA by
an overall 5%. However, it is slightly slower than TPP by
5.1% and MEMTIS by 4.9% in SQL2 and SQL3, respectively.

Finally, comparing TPP and AutoNUMA, TPP achieves
an 11.2% geometric mean advantage over AutoNUMA in
memory-intensive workloads (Bellman, BFS_rand, KC, SQL2,
and SQL3) by sampling slow-tier page faults and relying on
LRU aging in the fast tier. This minimizes the overhead of
temperature detection.

7.3 MTP Overhead Analysis

Run-time overhead: MTP ’s overhead is dominated by its
marking phase, accounting for over 95% of total overhead
(Figure 7). Marking can add up to 8.3% (SP) to total run
time, but this is mitigated by skipping unnecessary phases
based on GC frequency. Most overhead arises from the initial
marking phase, which is crucial for identifying the initial
scope of PyObjects. This shows that, even under the context
of unavoidable overhead, MTP remains competitive in overall

performance compared to prior OS-based tiering approaches
(Figure 6), demonstrating its effectiveness in classifying hot
and cold objects for migration.

The ratio of marking time increases when the fast-tier size
grows, as the absolute marking time remains stable while
the total run time decreases, thereby raising this percent-
age. However, note that such growth is bounded, since MTP
triggers marking only when fast-tier capacity is insufficient.
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Figure 7. Marking time and memory overhead percentage
for MTP. Marking time consists of at most 8.3% of total
running time, while memory overhead consists of at most
6.4% of total RSS.

Memory overhead: In Figure 7 (dashed line), we show
memory overhead as a percentage of RSS compared to vanilla
CPython 3.12. This overhead, primarily from tracking Py-
Object temperature metadata, correlates with run-time over-
head (bars), as both scale with the number of sampled ob-
jects. Memory overhead ranges from 1% to 6.4%, with graph
workloads incurring more due to higher object creation than
SQL workloads. Because Python treats everything as objects,
MTP ’s metadata tracking incurs more memory overhead
than page-level OS approaches. One mitigation is storing
metadata in the slow tier, though frequent access may delay
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migration decisions. Alternatively, using a more compact
metadata structure could reclaim some space.

Overhead discussion: Notably, MTP incurs no runtime
overhead when it is not explicitly activated by the application
(Listing 1), and likewise imposes no performance penalty
under sufficient fast memory. In terms of memory footprint,
MTP stores the growth field within unused bits of ob_refcnt,
eliminating any additional memory cost even when tracing

is disabled.

8 Limitations and Discussion

Inability to track native executions. Even though we put
significant effort into realizing MTP and minimizing over-
head, MTP can only track PyObjects with refcount changes in
the Python VM. Hence, it misses native objects from libraries
like NumPy, SciKit-Learn, or TensorFlow [7, 17, 39, 49]. A po-
tential solution is detecting native execution and delegating
migration to OS-level methods.

MTP vs. MEMTIS. While MEMTIS outperforms in cer-
tain scenarios, it operates at a coarse-grained, system-wide
level, limiting its adaptability to workload-specific tuning.
In contrast, MTP is a user-level solution that offers fine-
grained control at both the application and code-segment
level —without requiring any kernel modifications.

Importantly, MTP and MEMTIS are complementary and
can coexist. For instance, they can run in separate VMs on the
same server: MEMTIS can handle general-purpose tiering,
while MTP optimizes Python workloads with specific QoS
requirements.

Why MTP uses page-level migration. We do not incor-
porate object-level migration for two principal reasons. First,
existing object-level approaches such as Write-rationing [3],
Panthera [51] are tailored for JVMs whose garbage collec-
tor is moving GC. Thus, it’s intuitive to bind GC-managed
regions to different memory tiers. Object moving in virtual
addresses automatically translates to movement among phys-
ical memory devices. However, forcibly adapting moving GC
to Python VM violates its core GC and memory management
design, making it impractical.

Second, even if this challenge is solved with engineer-
ing effort, forcibly enabling object-level migration may still
cause more overhead than page migrations. Prior work in
SemSwap [14] reveals that consolidating hot objects into
dense pages could minimize network traffic. However, it in-
troduces considerable overhead in metadata management
and run-time address translation costs. Furthermore, Di-
LOS [59] shows that page migration imposes comparatively
only little additional cost relative to object-level migration
(~ 25% extra overhead for a 4KB page vs. a 128-byte object
under one-sided RDMA reads). With CXL’s low latency (~
210ns), page-level migration is both practical and efficient,
especially when hot objects are densely colocated.
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MTP in GIL-free build. We acknowledge the no-GIL ini-
tiative (PEP 703) and Python 3.13’s free-threaded build [19,
23], which enable true multi-threading. Yet GIL removal pri-
marily addresses bytecode parallelism, not global coordination.
Stop-the-world phases such as cyclic GC still remain [22].
As with cyclic GC, MTP must scan nearly all live PyObjects
during marking, which cannot proceed safely alongside con-
current mutations. Therefore, these pauses arise from coordi-
nation requirements rather than the GIL itself, and a no-GIL
interpreter does not remove MTP ’s marking overhead.

GC non-intrusive design. JVM-based tiering systems
such as Memliner [53] achieve fine-grained data placement
by heavily modifying the native JVM garbage collector. This
requires invasive changes to GC algorithms, creating sub-
stantial engineering complexity and tight coupling between
tiering logic and the runtime. Such coupling increases main-
tenance burden when upstream GC evolves.

In contrast, MTP adopts a lightweight, non-intrusive strat-
egy: it reads CPython’s cyclic-GC lists for liveness markings
and samples PyObject reference count changes to infer
hotness, without altering the GC’s decision-making. This de-
coupled design preserves CPython’s memory management,
reduces the risk of GC regressions, and allows integration
with minimal runtime disruption. As a result, MTP avoids
heavy CI/CD dependencies on native VM/GC logic and eases
adoption across Python environments.

MTP atop GraalPython. GraalPython [40] is a Python 3
implementation on GraalVM [12], a runtime that supports
languages like Java. It inherits JVM features such as mov-
ing GC, a generational heap, and built-in read/write barri-
ers—enabling fine-grained hotness tracking and object-level
decisions, as in prior JVM-based tiering systems [30, 51, 53].

9 Conclusion

In this work, we present MTP, a runtime extension built on
CPython that enables transparent and efficient memory tier-
ing for Python applications. It infers object hotness through
refcount changes using a simple inference model and em-
ploys a software-defined page table with page bucketing for
efficient migration. Experimental results show that MTP de-
livers comparable performance compared to state-of-the-art
OS-based tiering solutions. Most importantly, MTP offers
opportunities to customize tiering configurations based on
each workload’s QoS requirement that OS-based systems
cannot achieve.
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