
Efficient Memory Tiering for Python Applications

ABSTRACT
Modern Python applications, such as computing over graphs and
database querying, consume massive amounts of memory in data
centers. Emerging tiered memory technologies such as CXL offer
promising solutions to mitigate this challenge by providing multi-
ple memory layers with varying capacity, latency, and cost, aiming
to balance efficiency with high memory demands. Previous ap-
proaches to memory tiering using OS-level information overlooked
fine-grained object access patterns and introduced significant over-
head. Moreover, these tiering configurations cannot be tailored to
individual Python applications. Conversely, fine-grained tempera-
ture tracing at the object level is challenging, as it typically requires
extensive application modifications, thus limiting its deployment
scope. In this paper, we introduce Efficient Memory Tiering (EMT),
an extension module built on top of the widely used CPython in-
terpreter to enable memory tiering for Python applications. EMT
leverages reference count changes from garbage collection to infer
object temperatures and reduces unnecessary migration overhead
through a software-defined page temperature table with adaptive
lazy demotion. To the best of our knowledge, EMT is the first
framework to offer portability, easy deployment, and opportunity
to customize tiering configurations for Python applications.

1 INTRODUCTION
Python is one of the most popular programming languages for its
simplicity and abundance of libraries; e.g., it ranks first on TIOBE [7]
and IEEE Spectrum [8] in 2024. However, Python data types tend
to consume more memory than their native counterparts [6] due to
its own managed runtime. For example, a typical integer consumes
24 + (𝑛 ∗ 4) bytes (where 𝑛 is the number of digits in Python but
only 4 bytes in C/C++. The extra memory is used to store the type
information and reference counting, along with other metadata, to
maintain run-time states. Together with the fact that Python em-
ploys a Garbage Collection (GC) that delays memory reclamation,
it drastically increases the amount of memory consumed compared
to native code [6, 25]. Python’s ecosystem also includes numer-
ous libraries covering a wide range of domains: graph computa-
tions [12, 24], database query [11, 38], machine learning [45, 52],
web development kits [15, 41], and more. While this extensive col-
lection of libraries makes Python a versatile and powerful language
for developers and researchers alike, it also leads to significant
memory usage. This excessive memory overhead is particularly
problematic in cloud computing and high-performance computing
environments, where memory costs scale with usage. In modern
workloads such as machine learning and data analytics, Python’s
memory inefficiencies can lead to increased costs, degraded perfor-
mance, and limited scalability.

In recent years, cloud data centers have adopted more heteroge-
neous memory hierarchies to meet the capacity and performance
demands of modern applications. For example, Non-Uniform Mem-
ory Access (NUMA) [32] – one of the earliest examples of tiered
memory – has been widely used in building scalable and cost-
effective memory systems [5, 50]. The emergence of new memory

techniques such as Compute Express Link (CXL) [14] further allow
memory expansion and alleviate the memory wall problem via soft-
ware/hardware schedule and tiering at OS/runtime level [21, 34].
Upper-tier memory typically offers lower latency and higher band-
width but less capacity, while lower-tier memory provides greater
capacity at the cost of higher latency and lower bandwidth. When
managing dynamic working set sizes in a tiered memory system, it
is essential to carefully orchestrate data across the hierarchy.

There are two dominant approaches to managing tiered mem-
ory in modern systems, each with its own limitations. The first is
in the OS kernel [29, 31, 37, 42, 46, 56, 59], and has been widely
adopted in production for years. Most OS-based approaches rely on
page faults [29, 32, 37, 58], access-bit sampling [33, 42, 48, 58], but
both have fundamental drawbacks. Specifically, these approaches
use access pattern detection based on OS pages or hardware infor-
mation. However, as Python objects are typically smaller than a
page, such a method leads to making decisions based on coarse-
grained information. Moreover, these techniques normally do not
balance well between tracing accuracy and overhead, sometimes
even making the overhead unbounded [33, 57, 58]. Yet, they fail
to provide easy-to-use software interface for users to adjust trade-
offs. In addition, existing Python applications in the cloud typically
have different priorities and Quality of Service (QoS) requirements,
OS-based systems may give suboptimal performance [37] as they
cannot be customized for different user-level programs.

The second type of tiered memory approach is tightly coupled
with runtimes, which either define a new programming model offer-
ing self-defined APIs [16, 23, 49] in languages that support native
execution (e.g., C/C++), or leverage garbage collection in modern
memory-managed languages to place program data [36, 54, 55, 60].
These approaches can track data access frequencies at the fine-
grained object level. However, the former type only targets native
executions programmed in C/C++ and requires non-trivial source
code instrumentation (i.e., non-transparent), while the second type
only focuses on JVM-based languages. Consequently, Python pro-
grams that run in tiered memory have been left unexplored in this
track.

In summary, existing solutions for tiered memory management
are agnostic to the QoS of the workload or optimized for languages
with native execution support (e.g., C/C++) or JVM-based runtimes.
However, Python applications pose unique challenges due to their
dynamic nature, high object allocation rates, and reliance on auto-
matic memory management. This creates a fundamental mismatch
between Python’s memory behavior and traditional OS-level page-
based tiering approaches.

We analyze the performance of existing state-of-the-art mem-
ory tiering solutions and uncover that they fall short of achieving
customizability in deployment and a balance between tracing accu-
racy and overhead (Sec. 3). To address these challenges, we present
Efficient Memory Tiering (EMT) for memory-intensive Python pro-
grams. The key idea of EMT is that the Reference Counting (refcount)
can be leveraged to infer Python object access patterns.

Our contributions are as follows:

1

• Lightweight, sampling-based memory tracking: Introducing
a CPython-integrated approach that efficiently tracks object
access patterns with controlled overhead (Sec. 5.1 & 5.2).

• Inference of object hotness using refcount: Accurately infer-
ring memory access information by leveraging Python’s
built-in garbage collection metadata (Sec. 5.3).

• Software-defined page table and adaptive migration: Intro-
ducing an adaptive lazy demotion strategy and software-
defined page table to enable seamless data movement be-
tween memory tiers (Sec. 6).

By integrating EMT into real-world memory-intensive Python
workloads, we demonstrate improvements in memory efficiency
and scalability. Using multiple real-world workloads in an emulated
CXL-tiered environment, our evaluation shows that EMT outper-
forms existing solutions in most cases. Across 33 comparisons (11
workloads, each with three-tier configurations), EMT outperforms
TPP[37] in 25 cases, AutoNUMA [3] in 30, and MEMTIS [33] in 15.
In addition, EMT offers configurable trade-offs to balance perfor-
mance, memory efficiency, and overhead, making it well-suited for
cloud-based and HPC environments. Most importantly, EMT does
not require any OS changes and can be easily integrated into cloud
orchestration tools like Kubernetes [4]. We anonymously open-
source EMT at https://anonymous.4open.science/r/cpython-20F7.

2 BACKGROUND
This section first discusses the CXLmemory system, the protocol on
which our platform relies (Sec. 2.1). Next, we provide background on
CPython, the most widely used Python interpreter, and its garbage
collector design, on which EMT is based on (Sec. 2.2).

2.1 CXL Memory System
CXL is an open standard interconnect designed to enhance the
performance of data centers [14]. One of the key components of
CXL is CXL.mem, which allows direct attachment of memory de-
vices to the CPU. It uses PCIe’s interface with custom link and
transaction layers for low latency. The CXL.mem provides a unified
memory space, enabling seamless memory expansion and reducing
bottlenecks associated with traditional memory hierarchies, such
as limited DRAM capacity, high latency in accessing far memory,
and bandwidth constraints between memory tiers. By integrating
CXL.mem, data centers can achieve higher memory capacity and
more efficient resource utilization, thus addressing the growing
demands of today’s data-intensive applications. Since CXL latency
is relatively high – almost double as compared to local DRAM –
EMT leverages CXL.mem as a slow tier to offload cold data into
CXL, monitors and detects when the data becomes hot, and moves
the data to local DRAM to mitigate latency penalty.

2.2 CPython Runtime and Garbage Collector
CPython [27] is the standard implementation of Python Interpreter
written in C and maintained by a large community. It works by
parsing Python statements and generating abstract syntax tree
(AST), compiling the AST to bytecode, and executing the bytecode
in the Python virtual environment.

In CPython, objects are created, managed, and destroyed through
a well-defined structure called PyObject. Each PyObject has a ref-
count that tracks how many references point to it in the heap. An
object is freed when its refcount drops to zero. EMT’s tracing insight
comes from reference counting. Although refcounts do not directly
indicate accesses to PyObjects, one can infer their real hotness by
observing how refcounts are changed throughout the execution
(Sec. 5.3).

In addition to refcount, CPython’s GC periodically scans certain
objects that reference each other but are no longer reachable from
outside [44] (i.e., cyclic-GC). It does this by maintaining three gen-
erational lists of container objects, such as lists, dictionaries, and
classes. Objects that remain reachable are restored to their origi-
nal state, while unreachable objects, identified as part of a cycle,
are deallocated to free memory. EMT leverages CPython’s existing
cyclic-GC module to obtain all live PyObject references through
recursive tracing (Sec. 5.1).

3 MOTIVATION
The design of EMT is based on the following motivations: limi-
tation of adapting to QoS needs of workloads, and difficulty in
balancing overhead and tracing accuracy in OS-based solutions. We
present a summary of comparison with prior work in Table 1. In
the remainder of the section, we investigate these factors in more
detail.

3.1 Adapting to Workload-specific QoS Needs
OS-based memory tiering systems [29, 31, 37, 42, 46, 56, 59] man-
age system-wide memory but lack the flexibility to adapt to the
specific QoS needs of individual applications. For latency-sensitive
workloads, the OS may be unaware of performance requirements,
leading to unnecessary memory migration that increases access
latency and overhead. Conversely, in long-running background
tasks, the OS might misclassify the workload as hot, pinning the
entire Resident Set Size (RSS) in fast-tier memory and limiting re-
sources for other applications. These limitations arise from the OS’s
reliance on general heuristics, which do not account for workload-
specific characteristics. Previous work like HeteroOS [28] and Au-
toNUMA [3] highlights the inefficiencies of OS-level policies that
overlook application-specific QoS needs, leading to suboptimal
memory placement.

AIFM [49] allows application developers to deploy custom logic on
far memory and tune object structures tomanagememory overhead.
In contrast, EMT empowers cloud providers to enable or disable
its tiering mechanism for Python code snippets through a simple
API (listing 1), allowing users to adjust parameters to balance the
trade-offs between tiering benefits and tracing overhead.

Insight 1. Rigid OS-based tiering solutions are not suitable for
the dynamic needs of workloads. A better framework should offer
opportunities to customize tiering configurations.

3.2 Balancing Tracing Accuracy and Overhead
State-of-the-art OS-based memory tiering solutions often struggle
to balance accuracy and overhead in tracking memory access.

2

https://anonymous.4open.science/r/cpython-20F7

Efficient Memory Tiering for Python Applications

Table 1: Comparison of tiered memory systems focus on important features of some state-of-the-art tiering systems. Page
fault-based tracking adds latency and lacks fine-grained (sub-page) accuracy, while access bit sampling struggles with scalability.
System-wide deployments hinder workload-specific QoS customization. Prior runtime-level solutions focus on C++ or Java,
and neglect Python. In contrast, EMT targets Python applications, supports sub-page (object) tracking, is fully transparent to
developers, customizable for cloud providers, and requires no offline profiling.

Solutions Access tracking mechanism Criteria for thresholding Sub-page tracing Offline
analysis

Transparency Customizability Memory media

TPP [37] Page fault Static access count ✗ ✗ ✓ ✗ DRAM/CXL
AutoNUMA [3] Page fault Static access count ✗ ✗ ✓ ✗ DRAM/DRAM
DAOS [42] Access bit sampling Static access count ✗ ✗ ✓ ✗ DRAM/ZRAM
MEMTIS [33] HW-based sampling Memory access distribution ✓ ✗ ✓ ✗ DRAM/NVM/CXL
AIFM [49] Smart pointer interposition CLOCK replacement ✓ ✗ ✗ ✓ Local/far memory
TrackFM [51] Smart pointer interposition CLOCK replacement ✓ ✓ ✓ ✗ Local/far memory
Write-Rationing [2] GC interposition GC-guided ✓ ✗ ✓ ✗ DRAM/NVM
Panthera [53] Static analysis + GC

interposition
Static allocation + GC-guided ✓(but coarse-grained) ✓ ✓ ✗ DRAM/NVM

EMT (ours) Refcount-based inference Memory access distribution +
eagerness-driven

✓ ✗ ✓ ✓ DRAM/CXL

Accuracy. Techniques relying on page faults [3, 37, 58] and page
table scanning [42, 48] face scalability challenges as memory foot-
print increases. For example, DAMON [42] attempts to reduce mon-
itoring overhead as memory increases by grouping contiguous
pages into a region. This approach assumes uniform access fre-
quencies within a region, leading to inaccuracies. Experiments in
MEMTIS [33] have shown that such coarse granularity can erro-
neously group pages with distinct access patterns, resulting in
suboptimal data placement. On the other hand, methods based on
Processor Event-Based Sampling (PEBS) [33, 46, 48, 58] scale with
the number of memory accesses. It could miss accesses without
triggering a lot of sampling overhead. EMT, on the other hand, can
achieve high-resolution object-level access tracing.

Overhead. Scanning page table is expensive for high-accuracy
tracing, as frequent and high-resolution sampling introduces sig-
nificant CPU overhead. Meanwhile, PEBS incurs fundamental costs
from PEBS assist, cache pollution, and interrupt handling [1]. Ad-
ditionally, both page table scanning and PEBS lack any software
interface to balance the trade-offs dynamically, which makes them
less adaptable for diverse workloads in cloud and HPC environ-
ments. In contrast, although EMT cannot completely devoid over-
head, it allows cloud providers to easily balance tracing accuracy
and overhead with a straightforward software interface.

Insight 2. A good tiering system should achieve both fine-
grained data access tracing and controllable overhead, in which
current solutions fall short.

4 EMT DESIGN
EMT is designed to track PyObject accesses and migrate the cor-
responding pages between fast (local) and slow (remote) memory.
EMT is a fully runtime-based, transparent, and fine-grained ob-
ject tracing tiering system for Python applications with controlled
overhead. EMT is a complete user-space C extension module for
CPython that is orthogonal to any existing OS-based memory tier-
ing system.

4.1 Overview
Listing 1 describes the EMT API. Once imported, EMT.start() in-
vokes the C extension module and initiates the marking phase
(Sec. 5.1) when fast-tier memory falls below mem_pressure. The

mask parameter indicates the memory node mask for demoting
cold data, while sample_interval controls the interval for sampling
phases (Sec. 5.2). Finally, EMT.end() halts tracing and releases meta-
data.

Listing 1: EMT Python Interface
import EMT

EMT.start(mask , mem_pressure , sample_interval)

Python code you want to take effect

EMT.end()

EMT’s primary target is cloud providers who intend to provide
cloud services backed by tiered memory. For example, on serverless
platforms, providers can embed EMT within Python environments,
enabling them to manage clients’ code execution within a tiered
memory systemwith tailored parameters, all while remaining trans-
parent to end-users.

This simple API enables EMT for future QoS-aware orchestrator
design. For example, Kubernetes Memory Manager [4] could prior-
itize Python workloads by adjusting tracing parameters: latency-
sensitive jobsmay delay tracing (via highermem_pressure) to reduce
overhead, while background tasks can be throttled (via higher sam-
ple_interval) until fast-tier resources free up. This dynamic, tunable
tracing strategy optimizes resource utilization and enhances over-
all efficiency. However, such customization is not possible with
OS-based tiering approaches [37].

4.2 Challenges
To achieve object hotness tracing for migration in tiered memory
for Python applications, EMT faces several challenges:

(I)How to obtain object access information in the CPython
runtime? Object-level access information is tightly linked to pro-
gramming language runtime implementation. Prior approaches
focus on two domains: The first one is to provide a customized
set of APIs based on C/C++ for programmers. Object tempera-
tures can be obtained by overloading C++ smart pointer and the
dereference operator (i.e., ->) and marking some bits as hotness in-
dicators [22, 49]. However, this method does not apply to CPython
virtual machine, which defines object structures in C1. The sec-
ond one focuses on JVM-based languages (e.g., Java, Scala) that
1Efforts to build a high-performance C++ version of Python are still in early stages [20].

3

instruments read/write barriers [2, 54, 55]. CPython lacks such
barriers. Instead, each object type defines its own set of APIs, e.g.,
PyList_SET_ITEM() implements list->ob_item[index]. Manu-
ally instrumenting bookkeeping operations for each API is imprac-
tical.

To address this, EMT leverages reference counting [10], a
garbage collection strategy in CPython. Note that unlike JVM, ref-
count does not directly indicate a PyObject is accessed, since it is
simply pushing and popping operands from the stack. This leaves
the object temperature tracking effort to EMT. Instead, EMT moni-
tors the changes of refcount to infer object temperatures (Sec. 5.3).

(II) How to mitigate the extra run-time costs during trac-
ing? Since CPython only marks container PyObjects (e.g., lists, sets,
tuples) rather than all live objects [44], EMT has to take care of
it. We identified two approaches to mitigate the cost: The first is
enabling the Py_TRACE_REFS macro to track all live PyObject refer-
ences [19], though this adds significant CPU overhead (up to 60%)
due to list manipulation during each PyObject lifecycle. The second
approach is leveraging CPython’s cyclic-GC module [44], which
marks live objects by recursively traversing container PyObjects.
However, this is a stop-the-world operation, temporarily blocking
the application.

To mitigate this, we observe that the set of live Python objects
is related to how CPython cyclic-GC behaves. One can use
CPython GC hints to eliminate unnecessary tracing and thus, to
reduce overhead (Sec. 5.1).

4.3 Pipeline
Figure 1 shows EMT’s pipeline. Its principle is to periodically mark
all live objects, observe refcount changes, and apply migration
strategies accordingly. When enabled, EMT runs activates upon de-
tecting local memory pressure. First, in the marking phase (Sec. 5.1),
all live objects are marked, generating PyObject temperature meta-
data. Next, EMT performs consecutive sampling phases (Sec. 5.2)
to track PyObject refcount changes, filtering out unsuitable objects
and calculating real-time hotness (Sec. 5.3).

After several sampling phases, EMT enters the migration plane
to select migration candidates. It uses object-level hotness infor-
mation to calculate the temperature of the corresponding memory
pages (Sec. 6). Built on a software-defined page table and guided
by an adaptive lazy demotion policy (Sec. 6.2), the migration plane
employs bucketing to classify hot and cold pages (Sec. 6.1). EMT
keeps hotness statistics up to date through periodic cooling and
adaptively minimizes tracing overhead by monitoring CPython
cyclic-GC behavior during run time. Note that all EMT’s compo-
nents run on a separate thread and do not interpose native CPython
GC.

5 OBJECT ACCESS TRACING
This section presents the design to trace PyObject hotness in two
key points: (1) marking and sampling phases to obtain and sample
PyObjects’ refcount changes, and (2) an online model to obtain real
hotness values from those changes.

P
yt

ho
n

A
P

I EMT.start()

E
M

T
 tr

ac
in

g
th

re
ad

M
et

ad
at

a

Sampling phases

Live objs set

…

Sample
filtering

Objs hotness
metadata

Hotness
prediction

no

Marking
phase

needs to trigger
marking

yes

fast
tier

slow
tier

Software-defined
page table

<page#, hotness>

pages

Bucketing
Migration Plane

Adaptive lazy
demotion

Figure 1: EMT Pipeline.

5.1 Marking Phase
To begin, EMT needs to know the scope of objects to sample. We
noticed that CPython native cyclic-GC module maintains three
generational lists to detect cyclic references [44]. However, these
lists only track containers PyObjects (e.g., list, tuple, dict), meaning
that non-container PyObjects (e.g., an actual PyLongObject that is
accessed) would be missed if EMT solely samples on them.

To correctly mark all live PyObjects, EMT uses a built-in re-
cursive marking approach, outlined in Algorithm 1. It starts by
marking objects from the existing cyclic-GC lists (line 4). For Py-
Objects that are iterable, EMT leverages the tp_traverse method
tailored to each object’s type (line 11). If a child node is iterable, it
recursively traverses its children (lines 13, 18), performing a depth-
first search until no further child elements remain. Each marking
phase appends newly initialized elements to the temperature meta-
data (line 7, 17).

EMT’s marking has to be stop-the-world, meaning the appli-
cation is temporarily paused. However, fewer marking phases can
result in missing PyObjects created during run time. Therefore,
EMT must balance marking overhead with accuracy. Fortunately,
this can be inferred by observing CPython’s cyclic-GC behavior.
Figure 2 shows the correlation between cyclic-GC counts (x-axis)
and newly identified PyObjects (y-axis) in the same sampling period
for several workloads. Few objects are not worth a marking (bottom
left side) if EMT observes only a few cyclic-GC events occur.

To further mitigate overhead within one marking phase, EMT
makes the following optimizations. First, it keeps track of the length
and the accumulated depth of the current container PyObject being
traversed. Once either of these two valuesmeets the hard thresholds,
the recursive function immediately returns. Figure 3 shows by
confining the length and depth, one can dynamically control the
trade-off between marking accuracy and overhead. Second, EMT
maintains a global_set to record those already-traversed objects
on the fly (lines 7, 18 in Algorithm 1), so that any PyObjects that
are already in the set are not necessary to be recursively traced
again. This is necessary since any PyObject can be referenced by
one or multiple container PyObjects.

5.2 Sampling Phase
Having the scope of interested PyObjects during marking, EMT
enters the sampling phase to sample their refcount changes. EMT
leverages the system’s endianness: it uses the unused 32 most signif-
icant bits (MSB) of the existing 𝑜𝑏_𝑟𝑒 𝑓 𝑐𝑛𝑡 field as a 𝑔𝑟𝑜𝑤𝑡ℎ counter,

4

Efficient Memory Tiering for Python Applications

Algorithm 1: EMT Marking Phase.
Data: 𝑔𝑐_𝑙𝑖𝑠𝑡 : global cyclic-GC list

𝑔𝑙𝑜𝑏_𝑠𝑒𝑡 : global set for all live PyObjects
ℎ𝑜𝑡𝑛𝑒𝑠𝑠_𝑎𝑟𝑟 : temperature metadata for refcnt changes

1 Function Do_Marking():
2 PyGILState_Ensure() // Acquire GIL

3 for 𝑛𝑜𝑑𝑒 in 𝑔𝑐_𝑙𝑖𝑠𝑡 do
4 𝑜𝑏 𝑗 = FROM_GC(𝑛𝑜𝑑𝑒) // Obtain PyObject

5 if 𝑜𝑏 𝑗 not in 𝑔𝑙𝑜𝑏_𝑠𝑒𝑡 then
6 𝑔𝑙𝑜𝑏_𝑠𝑒𝑡 .insert(𝑜𝑏 𝑗)
7 ℎ𝑜𝑡𝑛𝑒𝑠𝑠_𝑎𝑟𝑟 .append(𝑜𝑏 𝑗) // Mark

8 Recursive_Visitor(𝑜𝑏 𝑗)

9 PyGILState_Release() // Release GIL

10 Function Recursive_Visitor(obj):
11 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 = Py_TYPE(𝑜𝑏 𝑗).tp_traverse
12 if 𝑡𝑟𝑎𝑣𝑒𝑟𝑠𝑒 then
13 traverse(𝑜𝑏 𝑗 , Traverse_Routine)

14 Function Traverse_Routine(inner_obj):
15 if 𝑖𝑛𝑛𝑒𝑟_𝑜𝑏 𝑗 not in 𝑔𝑙𝑜𝑏_𝑠𝑒𝑡 then
16 𝑔𝑙𝑜𝑏_𝑠𝑒𝑡 .insert(𝑖𝑛𝑛𝑒𝑟_𝑜𝑏 𝑗)
17 ℎ𝑜𝑡𝑛𝑒𝑠𝑠_𝑎𝑟𝑟 .append(𝑖𝑛𝑛𝑒𝑟_𝑜𝑏 𝑗) // Mark

18 Recursive_Visitor (𝑖𝑛𝑛𝑒𝑟_𝑜𝑏 𝑗)

More GC -> more marking

Less GC -> less marking

Figure 2: Marking phase fre-
quency can be estimated by
cyclic-GC frequency (x-axis)
during run time.

Max Confined Length/Depth

B
lo

ck
in

g
Ti

m
e

0

5

10

15

∞ 10 5 4 3 2 1 0

Max length Max depth

Figure 3: Application block-
ing time by confining dif-
ferent lengths and depths.

which increases regardless of whether the original refcount rises
or falls.

During marking, EMT prepares the temperature metadata (lines
7 and 17 in algorithm 1). This metadata is stored as a global array,
where each entry holds an 8-byte PyObject address 𝑜𝑏, a 4-byte
𝑝𝑟𝑒𝑣_𝑔𝑟𝑜𝑤𝑡ℎ, and eight 1-byte fields to record refcount 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 .
EMT uses the following formula to sample changes: 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 [𝑖] =
ob.growth − prev_growth where 𝑝𝑟𝑒𝑣_𝑔𝑟𝑜𝑤𝑡ℎ stores the previous
𝑔𝑟𝑜𝑤𝑡ℎ and is updated during each sampling. 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 [0...7] are
later used to calculate hotness for that object.

Note that we choose to sample refcount instead of directly inter-
posing refcount interfaces. While the latter approach seems viable,
it incurs excessive CPU overhead, scaling up to 5x, even users do
not intend to enable EMT during run time. This is expected to be
higher than interposing JVM’s read/write barriers, which directly
indicates objects reads/writes because refcount in CPython occurs
far more frequently than JVM barriers.

Table 2: Different prediction models’ performance on pre-
dicting PyObject real hotness based on refcount changes.

Models MLR MLR +
RFE

Polynomial Random
Forest

MLP

Mean Squared Error 0.511 0.511 0.501 0.501 0.502
Mean Absolute Error 0.307 0.308 0.304 0.304 0.299
𝑅2 0.709 0.709 0.715 0.715 0.715
Pearson Correlation 0.842 0.842 0.846 0.846 0.846

Sample filtering. Although sampling phases run asynchronously
with the application thread, blindly sampling all objects could lead
to unbounded duration — sampling 10 million PyObjects (which
normally happens in modern workloads) takes around 1 second —
hurting tracing recency. To mitigate this, we filter certain object
samples under the following cases. First, EMT skips two sampling
phases for those PyObjects whose 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 [0...7] are all zeros (mean-
ing they are not accessed). After that, all the skipped samples will be
re-sampled in case they are accessed. Second, as any PyObject can
be deallocated by CPython’s main thread (GC) at any time and later
on be replaced by another semantically different object at the same
address. Accessing the 𝑔𝑟𝑜𝑤𝑡ℎ field of these temporarily "freed"
objects will result in segmentation faults and crash the program.
To address this, we add a signal handler for SIGSEGV in CPython’s
signal module and use longjump during sampling. If an invalid
memory access occurs, EMT immediately marks those PyObjects
as dropped to prevent further access.

5.3 Object Temperature Prediction
We conduct extensive offline analysis to correlate refcount changes
with the real temperatures obtained from theOS, usingDAMON [42].
Initial empirical analysis reveals a typical hotness pattern: frequent
but small refcount changes often correspond to higher temperatures.
DAMON uses access-bit sampling to determine page temperatures,
as shown in Figure 4. But since it samples at the OS page level or
page groups, its ground truth is inherently coarse. To infer object-
level hotness from this data, we collect DAMON’s ground truth
using the highest sampling resolution and shortest interval, and
run EMT with high sampling frequency on the same program. We
then align EMT object addresses with the nearest page addresses in
DAMON’s output, given that a page temperature reflects all objects
it contains.

For each object refcount change sample collected by EMT, we
compute statistical features from refcount changes — such as me-
dian, standard deviation, number of non-zero changes, count of
small changes, and the range. These features, along with their real
hotness as labels, are sent to several prediction models, ranging
from simple multiple linear regression (MLR) to more complex
models like multilayer perceptron (MLP).

Table 2 summarizes the average performance of the models
across various workloads using an 80/20 train-test split. Notably,
all models performed similarly well in predicting PyObject tem-
peratures based on refcount changes. For example, in the case of
MLR, the selected features explained 70.9% of the temperature vari-
ance (𝑅2 = 0.709), and the predictions showed a strong positive
relationship with actual temperatures (Pearson correlation = 0.842).
Given the fact that more complex models, e.g., Random Forest and

5

Figure 4: Heatmap generated from OS (right), and inferred
from PyObject refcount changes (left).

MLP, provide marginal performance improvement but with higher
inference overhead, we opted to integrate MLR into EMT.

Figure 4 illustrates the accuracy of the MLR model: the heatmap
inferred from refcount changes (left) closely aligns with the one
generated from OS page table entry scans (right) for the same
Python matrix multiplication workload. Although absolute temper-
atures may differ due to normalization, the model can effectively
distinguish hot and cold ones as long as their relative temperatures
remain stable. This demonstrates that EMT can transparently cap-
ture object-level temperatures during run time without relying on
OS-level information.

6 PAGE MIGRATION STRATEGY
After certain sampling phases, EMT triggers the migration plane.
We choose to keep the migration unit at page level due to program-
ming language constraints and object-level migration overhead,
more details are discussed in Sec. 8. We use a software-defined
page temperature table that maps PyObjects to their correspond-
ing pages. Unlike the OS page table, our table is thinner, as it only
tracks pages containing live PyObjects monitored by EMT.

Per page hotness representation. First, EMT aligns all sampled
objects to their page boundaries and inserts the page addresses into
the page table. During the insertion, EMT calculates each page’s
hotness using different representation models. We evaluate four
models: Summed Hotness (SH), Median Hotness (MH), Interval
Mode Hotness (IMH), and Averaged Hotness (AH) which compute
a page’s hotness using sum, median, interval mode, and average
of all PyObject hotness values within that pages, respectively. For
example, in Figure 5, if a page contains three PyObjects with hotness
values of 3, 4, and 3, the SH of that page is 10. By default, EMT
uses SH for simplicity and low overhead, but can be easily changed
to other representations during build. More detailed analysis is
provided in Sec. 7.3.

Next, EMT determines the threshold between hot and cold pages
by applying bucketing and eagerness (Sec. 6.1). To mitigate unnec-
essary migration, EMT evaluates the eagerness of pages in the slow
tier to be promoted (Sec. 6.2).

After that, EMT demotes cold pages (if any) to the slow tier if
there isn’t enough space in the fast tier for hot pages. This frees up
room to promote hot pages based on the available fast tier size.

Figure 5: Software-defined page table contains represented
hotness. We use bucketing to guide migration, while the
hot/cold threshold is inferred by how eager hot pages are to
be promoted.

6.1 Page Bucketing and Threshold
Determination

EMT absorbs the page migration scheme from MEMTIS [33] but
with an extension to improve migration efficiencies.

Existing design of page temperature cooling and access histogram-
based bucketing in MEMTIS are incorporated into EMT, as ex-
plained below. With SH stored in the page table, the temperature of
a page is affected by periodic cooling. In other words, if the SH of
a page in the 𝑖th interval is 𝑥 , and the (𝑖 − 1)th interval is SH(𝑖−1) ,
the SH in the 𝑖th interval affected by cooling is as follows.

𝑆𝐻𝑖 = 𝑘 × 𝑥 + (1 − 𝑘) × 𝑆𝐻𝑖−1 (1)
where k is a parameter to balance the weight of history temperature
records and the current one.

Using SH collected for page temperatures, EMT builds a his-
togram (Figure 5). In particular, the histogram consists of 10 buckets,
and each bucket has a range of SH following an exponential scale.
For example, 𝑛th bucket has the range of

[
2𝑛, 2𝑛+1

)
. The value of

each bucket is the number of distinct base pages in the SH range.
Determining hot/cold threshold for migration is challenging in

EMT. In MEMTIS, a histogram is used to determine the hot page
threshold, denoted as bucket index ℎ. The total size of the pages
in bin ℎ and above is just below the fast memory capacity, and
this threshold is periodically updated as the histogram changes.
However, integrating such an OS-level scheme into EMT — or any
user-level migration scheme — is challenging. MEMTIS has a global
view of all system pages, making it straightforward to calculate the
hot page threshold based on the fast tier capacity. In contrast, EMT
only tracks the virtual pages of the current Python program, so
using the fast tier capacity to set this threshold does not make any
sense. An alternative approach, similar to TPP, would involve pre-
allocating a memory buffer to hold only newly identified hot pages.
However, implementing this in CPython would require moving
pages (objects) from the CPython VM into this buffer, along with
additional metadata to track updated addresses, which introduces
both run-time and memory overhead.

New design. To accurately determine the hot/cold page thresh-
old, the only solution is to demote some pages before promoting
hot ones. EMT introduces an intelligent approach using a concept
called eagerness, which quantifies how eager pages in the slow tier
are to be promoted to the fast tier. Eagerness is a relative measure,
compared to recent history, that reflects the changing extent of

6

Efficient Memory Tiering for Python Applications

pages in the slow tier being accessed. It is computed using the
following equation:

𝐸𝑎𝑔𝑒𝑟total[i] = 𝑅𝑆𝑆fast ∗ 𝐸𝑎𝑔𝑒𝑟llc_miss[i] ∗ 𝐸𝑎𝑔𝑒𝑟bw[i] (2)

where 𝑖 represents 𝑖’s interval. RSSfast is the percentage of pages cur-
rently located in the fast tier (discussed in Sec. 6.2). Eagerllc_miss[i]
is the z-score of pages encountering LLC load misses. It is computed
as:

𝐸𝑎𝑔𝑒𝑟llc_miss[i] =
𝑙𝑙𝑐_𝑚𝑖𝑠𝑠 [𝑖] − avg(prev)

std_dev(prev) (3)

where llc_miss[i] is the absolute LLC load misses ratio during in-
terval i, and prev is a buffer holding recent LLC load misses. This
equation measures how much current LLC misses deviate from
the expected range based on recent values. Similarly, Eagerbw[i] is
calculated by measuring memory bandwidth to the slow tier.

EMT uses this information to iterate through the histogram
buckets, starting from index 0 and moving right, until it finds a
bucket index ℎ where the number of colder pages in the fast tier
(needing demotion) just exceeds the number of hotter pages in the
slow tier (needing promotion). This initial ℎ is considered the most
eager threshold. If Eagertotal[i] is smaller than Eagertotal[i-1], EMT
decrements ℎ, indicating that the current hot pages are less eager
for promotion compared to the previous cycles.

6.2 Adaptive Lazy Demotion
Promoting hot pages to the fast tier makes sense when they are
in the slow tier. However, immediate demotion of cold pages in
the fast tier may be unnecessary, as they could become hot again
soon. A simple solution is lazy demotion, where a page is demoted
only if it is identified as cold in two consecutive samplings. This
approach, used in TPP, helps reduce unnecessary migrations. Simi-
larly, MEMTIS employs a ‘warm bucket’ where pages remain still
temporarily. However, enabling lazy demotion regardlessly can
have drawbacks, as it doesn’t evaluate the trade-offs between mi-
gration overhead and benefits. In our experiment (see Figure 8),
lazy demotion proves beneficial when the fast-tier RSS ratio is low,
as it prevents unnecessary migrations and reduces contention for
limited fast-tier resources. However, when the most amount of RSS
is currently in the fast tier memory, disabling lazy demotion per-
forms better. In this case, the benefit of migration outweighs the
overhead.

Thus, to dynamically decide when to enable lazy demotion —
particularly when the fast-tier allocation is uncertain (e.g., 50%) —
EMT reuses the eagerness statistics described earlier. If eagerness
exceeds a predefined threshold T, lazy demotion is disabled; oth-
erwise, it remains active. The threshold T is determined through
a systematic, data-driven process using offline profiling across all
workloads we evaluate in the next section. Execution times and
eagerness vectors are collected during runs with and without lazy
demotion, defining a range for eagerness values. We evaluate candi-
date thresholds in an increment of 0.1 * eagerness_range, overall
10 values. The final threshold is chosen as it minimizes the geo-
metric mean of execution times, offering balanced performance
improvement across all workloads.

Table 3:Workloads specification and their respectivememory
usage.

Workloads Descriptions RSS
Astar Returns a list of nodes in a shortest path between source and

target using the A-star algorithm.
5.6G

Bellman Computes shortest path lengths and predecessors on shortest
paths in weighted graphs.

5.6G

BFS / BFS
rand

Iterate over edges in a breadth-first-search starting at
consecutive/random sources.

5.2G

Bidirectional Returns a list of nodes in a shortest path between source and
target using bidirectional search.

4.6G

KC Returns the maximal subgraph that contains nodes of degree k. 8.6G
LC Find the best partition of a graph using the Louvain Community

Detection Algorithm.
3.9G

SP Find shortest paths between nodes. 5.6GB
SQL1 Populate relational databases with different table structures and

insert random new items using foreign key.

3.6G
SQL2 8.8G
SQL3 3.7G

7 EVALUATION
To show the effectiveness of EMT, we evaluate it by answering the
following questions:

• How does EMT perform with real-world memory intensive
workloads compared to state-of-the-art tiering solutions in
an emulated CXL environment (Sec. 7.2)?

• How do different hotness representations affect page mi-
gration (Sec. 7.3)?

• How effective is EMT’s adaptive lazy demotion (Sec. 7.4)?
• What are the run-time and memory overhead for EMT

(Sec. 7.5)?

7.1 Evaluation Methodology
Hardware setup. Our evaluation is conducted on a dual-socket

machine, with one socket emulating CXL as the remote slow tier and
the other serving as the local fast tier. The fast-tier socket features
a 16-core Intel(R) Xeon(R) Silver 4314 CPU @ 2.40GHz and varied
configurations of DRAM capacity. The slow-tier socket has 96GB
DRAM capacity with all CPUs disabled. The CPU access latency
to the slow tier is measured at 140ns, with a maximum bandwidth
of 31 GB/s. We disable transparent huge pages, randomized virtual
address space, hyper-threading, kernel same-page merging, Intel
Turbo Boost, and memory swapping.

Workloads. We choose 11 representativememory intensive Python
applications, including 3 SQL workloads using SQLAlchemy [11],
and 8 graph computing workloads using the popular Python library
NetworkX [24]. Table 3 shows detailed workloads description, in-
cluding their memory consumption.

Comparison targets. We compare EMT against 3 systems:TPP [37],
AutoNUMA [3], and MEMTIS [33]. We report the relative perfor-
mance slowdown compared to the baseline in each workload runs
entirely in the local fast tier without any tiering solution.

Tiering Configurations. We configure fast tier size to 25%, 50%,
and 75% of each workload’s RSS (Table 3) to simulate different levels
of fast-tier scarcity. To do that, we first modify the Linux kernel
boot argument using the memmap GRUB option [43] to reserve
most of the fast-tier memory. We then use a memory hogger to
consume the remaining fast-tier memory until the target size is
reached. This simulates a real-world scenario where a server runs

7

multiple workloads, with our evaluation target (the workloads) and
background noise (the memory hogger).

For EMT, we set mem_pressure to 1GB and sample_interval to
250ms. For TPP, we adjust the demote_scale_factor to 2% to trigger
fast-tier memory reclamation, as recommended by its original paper.
For MEMTIS, which relies on transparent huge pages (THP), we
present its performance with THP enabled. For the other three
solutions, we compare performance with THP disabled, as all these
migration designs are based on base pages. To minimize variances,
each workload in each configuration was run five times and we
report the median value.

7.2 Performance Comparison
Figure 6 shows the average slowdown of all tiering solutions relative
to running workloads entirely in the fast tier. Across 33 configu-
rations (11 workloads × 3 memory ratios), EMT outperforms TPP
in 25 cases and AutoNUMA in 30. While MEMTIS edges out EMT
in 18 cases, EMT still achieves a lower geometric mean slowdown
(1.18 vs. 1.20), highlighting its overall competitiveness.

Astar (Figure 6a) benefits from EMT ’s MLR-based hotness infer-
ence via object refcounts, yielding 23.4%–25.5% lower slowdown
than MEMTIS and up to 29.3% over AutoNUMA. TPP suffers from
excessive kernel overhead — 53% runtime spent in kernel — due
to aggressive migrations triggered by uniform page hotness, caus-
ing “ping-pong” effects. Similar issues occur in LC and SQL1 (Fig-
ures 6g, 6i). For MEMTIS, performance improvements are marginal,
with slowdown only dropping from 1.55 to 1.45 as the fast-tier size
increases from 25% to 75%. In contrast, AutoNUMA’s slowdown
decreases from 1.69 to 1.14. Comparatively, EMT maintains stable
run-time variance across different fast-tier sizes while achieving
the lowest slowdown.

In Bellman (Figure 6b), TPP has a relatively lower slowdown
compared to Astar, as it better distinguishes hot/cold pages. AutoN-
UMA performs the worst due to minor page faults, with slowdowns
ranging from 56.6% to 28.9% compared to the baseline. Similar pat-
terns are observed in BFS_rand, KC, and SQL2. EMT still achieves
the best result among all solutions.

In contrast, for BFS_rand, Bidirectional, and SP (Figures 6c,6e,6h),
EMT ’s initial marking cost dominates — especially there are mas-
sive amount of objects in CPython VM — leading to high overhead
during the first marking. Despite this, once EMT has collected the
object information, it effectively distinguishes page temperatures
and distributes pages accordingly, as evidenced by the small slow-
down variations across different tiering settings.

SQL workloads (Figure 6i, 6j, 6k) populate relational databases
with different table structures and insert random new items using
foreign keys, but with different table scales and compute intensity.
In this case, EMT behaves better than AutoNUMA by overall 4.7%.
However, it is slightly slower than TPP by 5.1% andMEMTIS by 4.9%
considering SQL2 and SQL3. Unlike in BFS_rand, this slowdown
stems not from marking, but from EMT ’s critical-path operations
on the growth field, which are essential for refcount-based inference.

Finally, comparing TPP and AutoNUMA, TPP achieves an 11.2%
geomean advantage over AutoNUMA in memory-intensive work-
loads (Bellman, BFS_rand, KC, SQL2, and SQL3) by sampling slow-
tier page faults and relying on LRU aging in fast tier. This minimizes
the overhead of temperature detection. However, in workloads like

Astar, Bidirectional, and SQL1 (Figures 6a, 6e, 6i), TPP’s aggressive
demotion leads to frequent migrations and higher overhead than
AutoNUMA, even with lazy demotion enabled.

7.3 Page Temperature Representations Analysis
We implement and evaluate four object-based page temperature
representations: Summed Hotness (SH), Median Hotness (MH), In-
terval Mode Hotness (IMH), and Averaged Hotness (AH). Directly
comparing their effectiveness is difficult due to the coarse sampling
of page hotness in DAMON, so we use the number of migrated
pages — shown for Astar (irregular access pattern) in Figure 7 — as
a proxy. Adaptive lazy demotion is disabled for clarity.

SH captures the total activity on a page, making it useful for
estimating overall usage. Astar shows sporadic migrations trig-
gered by concentrated bursts of object accesses. Over time, SH also
shows a more gradual decline in migrations compared to other
representations. We attribute this to two key factors. First, SH does
not distinguish between a few very hot objects and many mildly
warm ones, resulting in a relatively stable hotness distribution. Sec-
ond, the same virtual address can represent different PyObjects at
different times due to the managed runtime. Thus, it makes sense
some objects accessed at different times are actually located in the
same set of pages, reducing page migration.MH ismore robust
to outliers than SH, as it ignores extreme hotness values. How-
ever, it results in higher migration rates and greater fluctuation.
When a few hot objects sit among mostly cold ones, the median re-
mains low, causing unnecessary demotions. IMH shows the most
stable page migration as it captures the most common object
hotness level. However, it’s sensitive to interval selection and may
ignore important high-access cases. Lastly, AH shows the most
unstable migration pattern, especially for irregular access work-
loads and highly skewed hotness distribution in each page. Given
its volatility, AH is not recommended unless the access pattern is
well-understood and predictable.

Note that except for SH, all other three representations require
extra metadata for hotness calculation. For example, MH incurs
an O(log(N)) overhead per object hotness recording, where N is
the average number of objects in each page. Performance of all
four representations show marginal differences. This is because
compared to page migration overhead, the stop-the-world in EMT’s
marking phase dominates the overall cost. However, this provides
a takeaway for future research when trying to represent page tem-
perature using objects within when there is no marking overhead
like EMT.

7.4 Effectiveness of Adaptive Lazy Demotion
Figure 8 shows the normalized slowdown of five graph workloads
across varying fast-tier memory allocation ratios (x-axis), where a
y-axis value of 1 represents the best performance (least run time) for
each workload, typically achieved when 75% of the RSS is in the fast
tier. The workloads were run using EMT with three configurations:
eager demotion, lazy demotion, and an adaptive mode that enables
lazy demotion based on a profiled threshold 𝑇 .

Eager vs. Lazy Demotion: When only a small portion of memory
(e.g., 25%) is in the fast tier, lazy demotion improves performance by
preventing unnecessary migrations of pages that may soon become

8

Efficient Memory Tiering for Python Applications

(a) Astar (b) Bellman (c) BFS_rand (d) BFS (e) Bidirectional

(f) KC (g) LC (h) SP (i) SQL1 (j) SQL2 (k) SQL3

Figure 6: Workload slowdown ratios under different tiering configurations (with the fast tier set to 25%, 50%, and 75% of total
RSS), compared to the baseline where each runs entirely in the local fast tier. OnlyMEMTIS is evaluated against the THP-enabled
baseline. Across 33 comparisons, EMT outperforms TPP in 25 cases, AutoNUMA in 30, and MEMTIS in 15 cases.

Figure 7: Number of migrated pages for different hotness
representations in Astar.

hot again. In such cases, eager demotion can cause inefficient “ping-
pong” migrations, competing for fast-tier resources. Conversely,
when most of the RSS is in the fast tier, eager demotion performs
better (except for SP), as more frequent migrations face less compe-
tition and the benefits outweigh the overhead. For a 50% split across
tiers, lazy demotion only outperforms eager demotion in Bidirec-
tional and SP, indicating that more precise criteria for enabling lazy
demotion are needed.

Adaptive Lazy Demotion: This mode balances performance by
considering not just the RSS ratio but also factors like LLCmiss ratio
and slow-tier bandwidth during run time (Sec. 6.1). At 75% fast-tier
allocation, adaptive mode performs best in 4 of 5 workloads (except
KC). For 50%, it leads in 3 of 5 cases, and at 25%, it consistently
performs between eager and lazy demotion. Overall, the adaptive
mode is most effective at 75% fast-tier allocation, with slightly lower
performance as the fast-tier size decreases (except for KC). This
is likely due to our chosen 𝑇 , which favors eager demotion more.
Further online tuning of the threshold could improve performance.

7.5 EMT Overhead Analysis
Run-time overhead: EMT’s overhead stems almost entirely from
its marking phase, which accounts for over 99% of total overhead.

N
or

m
al

iz
ed

 S
lo

w
do

w
n

Figure 8: Effect of different demotion modes for graph work-
loads under varying fast-tier RSS ratios in EMT.

Figure 9 shows the marking time as a percentage of the total work-
load run time across different fast-tier ratios, providing insight into
EMT ’s performance when excluding migration benefits.

Marking phases can contribute up to 8.3% (SP) of the total run
time. This overhead is dynamically controlled by skipping unnec-
essary marking phases based on GC frequency and limiting the
length and depth of each marking. Without these optimizations, the
overhead would likely be higher. Most overhead occurs during the
initial marking phase, which is essential for identifying PyObjects.

For all workloads, the ratio of marking time increases as fast-tier
size grows. This is because the absolute marking time (numerator)
remains stable while workload run time (denominator) decreases
as more RSS is allocated to the fast tier, leading to larger division
results. However, this ratio does not grow unbounded, as EMT only
triggers marking when fast-tier capacity is insufficient.

Interestingly, fast-tier scarcity has a smaller impact on mark-
ing overhead than anticipated. For example, when fast-tier size
increases from 25% to 75%, the overhead ratio increases by only 1%
at most (in Astar). This suggests that EMT ’s marking overhead is
not significantly impacted by fast-tier pressure.

Memory overhead:
In Figure 9 (dashed line), we show memory overhead as a per-

centage of RSS compared to vanilla CPython 3.12. This overhead,
primarily from tracking PyObject temperature metadata, correlates

9

Figure 9: Marking time and memory overhead percentage
for EMT. Marking time consists at most 8.3% of total running
time, while memory overhead consists of at most 6.4% of
total RSS.

with run-time overhead (bars), as both scale with the number of
sampled objects. Memory overhead ranges from 1% to 6.4%, with
graph workloads incurring more due to higher object creation than
SQL workloads.

Because Python treats everything as objects, EMT ’s metadata
tracking incurs more memory overhead than page-level OS ap-
proaches. Onemitigation is storingmetadata in the slow tier, though
frequent access may delay migration decisions. Alternatively, more
compact data structures could reclaim space once objects are repeat-
edly cold—an avenue for future work. Importantly, EMT embeds
the growth field into unused bits of ob_refcnt, avoiding any memory
overhead when tracing is disabled.

8 LIMITATION AND DISCUSSION
Inability to track native executions. Even though we put sig-
nificant effort realizing EMT and minimizing overhead, EMT can
only track PyObjects with refcount changes. Hence, it misses na-
tive objects from libraries like NumPy, SciKit-Learn, or Tensor-
Flow [6, 18, 39, 52]. A potential solution is detecting native execu-
tion and delegating migration to OS-level methods.

Guidance on EMT vs. MEMTIS. While MEMTIS is more effec-
tive in some scenarios according to our experiments, it operates at a
coarse-grained, at huge pages, and system-wide scope, limiting flex-
ibility for workload-specific tuning. In contrast, EMT, as a user-level
solution, provides fine-grained, per-application, per-code-segment
control, and safe deployment without kernel changes.

We stress that EMT andMEMTIS (or other future high-performant
OS solutions) are orthogonal to each other and can coexist. For ex-
ample, both can be deployed in separate VMs on the same server:
MEMTIS handles general tiering, while EMT is customized for VMs
running Python applications with specific QoS Needs.

Why EMT uses page-level migration.We do not incorporate
object-level migration for two principal reasons. First, existing
object-level migrations (e.g., Write-rationing [2], Panthera [53],
Semeru [54]) — originally devised for the JVM — are incompatible
with CPython which does not move objects by itself, making it
infeasible to bind GC-managed regions to DRAM/CXL and depend
on automated migration. Adapting a CPython-specific object-level
migration mechanism requires substantial changes to the existing
GC and memory management schemes, making it impractical.

Second, even if this challenge is solved with engineering effort,
forcibly enabling object-level migration will still cause substantial
overhead. Preliminary work in SemSwap [13] reveals that consol-
idating hot objects into dense pages minimizes network traffic.
However, it introduces considerable overhead in metadata manage-
ment and run-time address translation. Furthermore, DiLOS [61]
shows that page migration imposes comparatively little additional
cost relative to object-level migration (∼ 25% extra overhead for a
4KB page vs. a 128-byte object under one-sided RDMA reads). With
CXL’s low latency (∼ 210ns), page-level migration is both practical
and efficient, especially when hot objects are densely packed.

GC-agnostic design. EMT only uses CPython’s GC for live-
ness marking, unlike Memliner [55] which modifies JVM GC inter-
nals. This decoupled design simplifies integration and avoids heavy
CI/CD dependencies.

9 RELATEDWORK
Given the exponentially growingmemory needs, a number of works
have explored tiered memory systems, which mainly fall into two
categories, OS-based and software-based.

OS-based tiered memory falls into two categories. The first
uses page table tracing [3, 17, 28, 29, 37, 42, 48], relying on page
faults or access-bit sampling. It periodically checks and resets access
bits, with overhead scaling to memory size due to page scanning.
The second leverages hardware features like PEBS (Intel) and IBS
(AMD) to capture exact memory addresses [9, 17, 40, 46, 48], avoid-
ing page scans. However, high memory traffic increases sampling
overhead [33].

Software-based tiered memory has been explored within
application-level [26, 35, 47, 53] and library-level systems [16, 22, 40,
46, 49, 51] that offer fine-grained object tracking across caches, local
tiers, and far memory. While MaPHeA [40] uses profile-guided heap
allocation, its offline nature limits adaptability. AIFM [49] intro-
duces remotable pointers but requires predefined APIs. Mira [22]
and TrackFM [51] automate placement via compilers, yet need
source access.

In managed runtimes, HCSGC [60] modifies ZGC for hot/cold
segregation; Panthera [53] combines offline profiling with online
GC for layout control. Semeru [54] andMemLiner [55] aim to reduce
GC-induced far-memory overhead. Write-Rationing [2] prioritizes
NVM endurance, while TeraHeap [30] reduces serialization over-
head when offloading long-lived objects. Though some challenges
overlap with CPython, EMT focuses on reducing performance loss
when using CXL-based memory expansion.

10 CONCLUSION
In this work, we present EMT, a CPython runtime extension that
enables transparent and efficient memory tiering for Python ap-
plications. EMT infers object hotness via refcount changes using
a lightweight model, and manages migration through a software-
defined page table with page bucketing and adaptive lazy demotion.
Experiments show that EMT achieves competitive performance
against state-of-the-art OS-based tiering in identifying and migrat-
ing hot data. Additionally, it allows cloud providers to tailor tiering
strategies to meet diverse workload QoS requirements.

10

Efficient Memory Tiering for Python Applications

REFERENCES
[1] Soramichi Akiyama and Takahiro Hirofuchi. 2017. Quantitative evaluation of

intel pebs overhead for online system-noise analysis. In Proceedings of the 7th
International Workshop on Runtime and Operating Systems for Supercomputers
ROSS 2017. 1–8.

[2] Shoaib Akram, Jennifer B Sartor, Kathryn S McKinley, and Lieven Eeckhout.
2018. Write-rationing garbage collection for hybrid memories. ACM SIGPLAN
Notices 53, 4 (2018), 62–77.

[3] Andrea Arcangeli. 2012. AutoNUMA AutoNUMA Red Hat, Inc.
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/
autonuma_bench-20120530.pdf

[4] Kubernetes Authors. [n. d.]. Utilizing the NUMA-aware Memory Manager. https:
//kubernetes.io/docs/tasks/administer-cluster/memory-manager/

[5] Jeff Barr. 2022. New General Purpose, Compute Optimized, and Memory-
Optimized Amazon EC2 Instances with Higher Packet-Processing Performance |
AWS News Blog. https://aws.amazon.com/blogs/aws/new-general-purpose-
compute-optimized-and-memory-optimized-amazon-ec2-instances-with-
higher-packet-processing-performance/

[6] Emery D Berger, Sam Stern, and Juan Altmayer Pizzorno. 2023. Triangulating
Python Performance Issues with {SCALENE}. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23). 51–64.

[7] TIOBE Software B.V. 2023. TIOBE Index - TIOBE. https://www.tiobe.com/tiobe-
index/. Accessed: November 21, 2023.

[8] Stephen Cass. 2023. The Top Programming Languages 2023 - IEEE Spectrum.
https://spectrum.ieee.org/top-programming-languages-2024. Accessed: Novem-
ber 21, 2023.

[9] Jinyoung Choi, Sergey Blagodurov, and Hung-Wei Tseng. 2021. Dancing in
the dark: Profiling for tiered memory. In 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). IEEE, 13–22.

[10] George E Collins. 1960. A method for overlapping and erasure of lists. Commun.
ACM 3, 12 (1960), 655–657.

[11] Rick Copeland. 2008. Essential sqlalchemy. " O’Reilly Media, Inc.".
[12] Maintainer Gabor Csardi. 2013. Package ‘igraph’. Last accessed 3, 09 (2013), 2013.
[13] Siwei Cui, Liuyi Jin, Khanh Nguyen, and Chenxi Wang. 2022. SemSwap:

Semantics-aware swapping in memory disaggregated datacenters. In Proceedings
of the 13th ACM SIGOPS Asia-Pacific Workshop on Systems. 9–17.

[14] Compute Express Link (CXL). [n. d.]. https://www.computeexpresslink.org/.
https://www.computeexpresslink.org/

[15] Django. 2019. The Web framework for perfectionists with deadlines | Django.
https://www.djangoproject.com/.

[16] Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan Sundaram,
Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten Schwan. 2016. Data
tiering in heterogeneousmemory systems. In Proceedings of the Eleventh European
Conference on Computer Systems. 1–16.

[17] Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler, Zhiyi
Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela Mijailovic, Brian
Morris, Chiranjit Mukherjee, Jingliang Ren, Greg Thelen, Paul Turner, Carlos
Villavieja, Parthasarathy Ranganathan, and Amin Vahdat. 2023. Towards an
Adaptable Systems Architecture for Memory Tiering at Warehouse-Scale. In
Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (Vancouver, BC,
Canada) (ASPLOS 2023). Association for Computing Machinery, New York, NY,
USA, 727–741. https://doi.org/10.1145/3582016.3582031

[18] Pedregosa Fabian. 2011. Scikit-learn: Machine learning in Python. Journal of
machine learning research 12 (2011), 2825.

[19] Python Software Foundation. [n. d.]. 3. Configure Python. https://docs.python.
org/3/using/configure.html#cmdoption-with-trace-refs

[20] Gil. 2023. Python C++ (EXPERIMENTAL + IN PROGRESS). https://github.com/
gf712/python-cpp.

[21] Donghyun Gouk, Sangwon Lee, Miryeong Kwon, and Myoungsoo Jung. 2022.
Direct access,{High-Performance} memory disaggregation with {DirectCXL}.
In 2022 USENIX Annual Technical Conference (USENIX ATC 22). 287–294.

[22] Zhiyuan Guo, Zijian He, and Yiying Zhang. 2023. Mira: A Program-Behavior-
Guided Far Memory System. In Proceedings of the 29th Symposium on Operating
Systems Principles (Koblenz, Germany) (SOSP ’23). Association for ComputingMa-
chinery, New York, NY, USA, 692–708. https://doi.org/10.1145/3600006.3613157

[23] Zhiyuan Guo, Yizhou Shan, Xuhao Luo, Yutong Huang, and Yiying Zhang. 2022.
Clio: A hardware-software co-designed disaggregated memory system. In Pro-
ceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 417–433.

[24] Aric Hagberg, Pieter Swart, and Daniel S Chult. 2008. Exploring network structure,
dynamics, and function using NetworkX. Technical Report. Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).

[25] Matthew Hertz and Emery D Berger. 2005. Quantifying the performance of
garbage collection vs. explicit memory management. In Proceedings of the 20th
annual ACM SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications. 313–326.

[26] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and Venkatesh
Akella. 2020. Autotm: Automatic tensor movement in heterogeneous memory
systems using integer linear programming. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems. 875–890.

[27] Justapedia contributors. 2022. Python (programming language) — Justape-
dia, The Free Encyclopedia. https://justapedia.org/index.php?title=Python_
(programming_language)&oldid=1119573205. [Online; accessed 19-October-
2024].

[28] Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan. 2017.
Heteroos: Os design for heterogeneous memory management in datacenter. In
Proceedings of the 44th Annual International Symposium on Computer Architecture.
521–534.

[29] Jonghyeon Kim, Wonkyo Choe, and Jeongseob Ahn. 2021. Exploring the Design
Space of Page Management for {Multi-Tiered} Memory Systems. In 2021 USENIX
Annual Technical Conference (USENIX ATC 21). 715–728.

[30] Iacovos G Kolokasis, Giannos Evdorou, Shoaib Akram, Christos Kozanitis, Anas-
tasios Papagiannis, Foivos S Zakkak, Polyvios Pratikakis, and Angelos Bilas.
2023. Teraheap: Reducing memory pressure in managed big data frameworks.
In Proceedings of the 28th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3. 694–709.

[31] Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal, Radoslaw
Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan Deng, Junaid Shahid,
Greg Thelen, Kamil Adam Yurtsever, Yu Zhao, and Parthasarathy Ranganathan.
2019. Software-Defined Far Memory in Warehouse-Scale Computers. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems (Providence, RI, USA) (ASP-
LOS ’19). Association for Computing Machinery, New York, NY, USA, 317–330.
https://doi.org/10.1145/3297858.3304053

[32] Christoph Lameter. 2013. An overview of non-uniform memory access. Commun.
ACM 56, 9 (2013), 59–54.

[33] Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik Eom. 2023.
MEMTIS: Efficient Memory Tiering with Dynamic Page Classification and Page
Size Determination. In Proceedings of the 29th Symposium on Operating Systems
Principles. 17–34.

[34] Huaicheng Li, Daniel S. Berger, Lisa Hsu, Daniel Ernst, Pantea Zardoshti, Stanko
Novakovic, Monish Shah, Samir Rajadnya, Scott Lee, Ishwar Agarwal, Mark D.
Hill, Marcus Fontoura, and Ricardo Bianchini. 2023. Pond: CXL-Based Memory
Pooling Systems for Cloud Platforms. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2 (Vancouver, BC, Canada) (ASPLOS 2023). Association for
Computing Machinery, New York, NY, USA, 574–587. https://doi.org/10.1145/
3575693.3578835

[35] Zhe Li and Mingyu Wu. 2022. Transparent and lightweight object placement
for managed workloads atop hybrid memories. In Proceedings of the 18th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments.
72–80.

[36] Wenjie Liu, Shoaib Akram, Jennifer B Sartor, and Lieven Eeckhout. 2021.
Reliability-aware garbage collection for hybrid HBM-DRAM memories. ACM
Transactions on Architecture and Code Optimization (TACO) 18, 1 (2021), 1–25.

[37] Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner, Niket Agar-
wal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowdhury, Shobhit Kanau-
jia, and Prakash Chauhan. 2023. TPP: Transparent page placement for CXL-
enabled tiered-memory. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems,
Volume 3. 742–755.

[38] A Lakshmi Muddana and Sandhya Vinayakam. 2024. SQLite3. In Python for
Data Science. Springer, 201–216.

[39] NumPy. 2022. NumPy documentation. https://numpy.org/doc/stable/.
[40] Deok-Jae Oh, Yaebin Moon, Eojin Lee, Tae Jun Ham, Yongjun Park, Jae W Lee,

and Jung Ho Ahn. 2021. MaPHeA: A lightweight memory hierarchy-aware
profile-guided heap allocation framework. In Proceedings of the 22nd ACM SIG-
PLAN/SIGBED International Conference on Languages, Compilers, and Tools for
Embedded Systems. 24–36.

[41] Pallets. 2010. Flask documentation. https://flask.palletsprojects.com/en/3.0.x/.
[42] SeongJae Park, Madhuparna Bhowmik, and Alexandru Uta. 2022. DAOS: Data

access-aware operating system. In Proceedings of the 31st International Symposium
on High-Performance Parallel and Distributed Computing. 4–15.

[43] pmem.io. 2019. Using the memmap Kernel Option | Persistent Memory Docu-
mentation. https://docs.pmem.io/persistent-memory/getting-started-guide/
creating-development-environments/linux-environments/linux-memmap

[44] python. 2017. Garbage collector design. https://github.com/python/cpython/
blob/main/InternalDocs/garbage_collector.md

[45] PyTorch. 2023. PyTorch. https://pytorch.org/.
[46] Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon Peter. 2021.

Hemem: Scalable tiered memory management for big data applications and real
nvm. In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles. 392–407.

11

https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://mirrors.edge.kernel.org/pub/linux/kernel/people/andrea/autonuma/autonuma_bench-20120530.pdf
https://kubernetes.io/docs/tasks/administer-cluster/memory-manager/
https://kubernetes.io/docs/tasks/administer-cluster/memory-manager/
https://aws.amazon.com/blogs/aws/new-general-purpose-compute-optimized-and-memory-optimized-amazon-ec2-instances-with-higher-packet-processing-performance/
https://aws.amazon.com/blogs/aws/new-general-purpose-compute-optimized-and-memory-optimized-amazon-ec2-instances-with-higher-packet-processing-performance/
https://aws.amazon.com/blogs/aws/new-general-purpose-compute-optimized-and-memory-optimized-amazon-ec2-instances-with-higher-packet-processing-performance/
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/
https://spectrum.ieee.org/top-programming-languages-2024
https://www.computeexpresslink.org/
https://www.computeexpresslink.org/
https://www.djangoproject.com/
https://doi.org/10.1145/3582016.3582031
https://docs.python.org/3/using/configure.html#cmdoption-with-trace-refs
https://docs.python.org/3/using/configure.html#cmdoption-with-trace-refs
https://github.com/gf712/python-cpp
https://github.com/gf712/python-cpp
https://doi.org/10.1145/3600006.3613157
https://justapedia.org/index.php?title=Python_(programming_language)&oldid=1119573205
https://justapedia.org/index.php?title=Python_(programming_language)&oldid=1119573205
https://doi.org/10.1145/3297858.3304053
https://doi.org/10.1145/3575693.3578835
https://doi.org/10.1145/3575693.3578835
https://numpy.org/doc/stable/
https://flask.palletsprojects.com/en/3.0.x/
https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/linux-environments/linux-memmap
https://docs.pmem.io/persistent-memory/getting-started-guide/creating-development-environments/linux-environments/linux-memmap
https://github.com/python/cpython/blob/main/InternalDocs/garbage_collector.md
https://github.com/python/cpython/blob/main/InternalDocs/garbage_collector.md
https://pytorch.org/

[47] Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li. 2021.
Sentinel: Efficient tensor migration and allocation on heterogeneous mem-
ory systems for deep learning. In 2021 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 598–611.

[48] Jie Ren, Dong Xu, Junhee Ryu, Kwangsik Shin, Daewoo Kim, and Dong Li.
2024. MTM: Rethinking Memory Profiling and Migration for Multi-Tiered Large
Memory. In Proceedings of the Nineteenth European Conference on Computer
Systems. 803–817.

[49] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. 2020.
AIFM: High-Performance, Application-Integrated Far Memory. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 315–332. https://www.usenix.org/conference/osdi20/presentation/
ruan

[50] Amazon Web Service. 2024. Overview of performance and optimization options
- Amazon EC2 Overview and Networking Introduction for Telecom Compa-
nies. https://docs.aws.amazon.com/whitepapers/latest/ec2-networking-for-
telecom/overview-of-performance-optimization-options.html

[51] Brian R Tauro, Brian Suchy, Simone Campanoni, Peter Dinda, and Kyle C Hale.
2024. TrackFM: Far-out compiler support for a far memory world. In Proceedings
of the 29th ACM International Conference on Architectural Support for Program-
ming Languages and Operating Systems, Volume 1. 401–419.

[52] TensorFlow. 2019. TensorFlow. https://www.tensorflow.org/.
[53] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman, Haris Volos, Onur Mutlu,

Fang Lv, Xiaobing Feng, and Guoqing Harry Xu. 2019. Panthera: Holistic mem-
ory management for big data processing over hybrid memories. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 347–362.

[54] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan Ruan, Khanh Nguyen,
Michael D Bond, Ravi Netravali, Miryung Kim, and Guoqing Harry Xu. 2020.

Semeru: A {Memory-Disaggregated} Managed Runtime. In 14th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 20). 261–280.

[55] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao, Jonathan Eyolfson, Christian
Navasca, Shan Lu, and Guoqing Harry Xu. 2022. {MemLiner}: Lining up Trac-
ing and Application for a {Far-Memory-Friendly} Runtime. In 16th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 22). 35–53.

[56] Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao Wang, Blaise
Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain, Chunqiang Tang, and Dim-
itrios Skarlatos. 2022. TMO: Transparent Memory Offloading in Datacenters. In
Proceedings of the 27th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzerland) (ASP-
LOS ’22). Association for Computing Machinery, New York, NY, USA, 609–621.
https://doi.org/10.1145/3503222.3507731

[57] Lingfeng Xiang, Zhen Lin, Weishu Deng, Hui Lu, Jia Rao, Yifan Yuan, and Ren
Wang. 2024. Nomad:{Non-Exclusive} Memory Tiering via Transactional Page
Migration. In 18th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 24). 19–35.

[58] Dong Xu, Junhee Ryu, Kwangsik Shin, Pengfei Su, and Dong Li. 2024. {FlexMem}:
Adaptive Page Profiling and Migration for Tiered Memory. In 2024 USENIX
Annual Technical Conference (USENIX ATC 24). 817–833.

[59] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019. Nimble
pagemanagement for tieredmemory systems. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Languages
and Operating Systems. 331–345.

[60] Albert Mingkun Yang, Erik Österlund, and Tobias Wrigstad. 2020. Improving
program locality in the GC using hotness. In Proceedings of the 41st ACM SIGPLAN
Conference on Programming Language Design and Implementation. 301–313.

[61] Wonsup Yoon, Jisu Ok, Jinyoung Oh, Sue Moon, and Youngjin Kwon. 2023.
Dilos: Do not trade compatibility for performance in memory disaggregation. In
Proceedings of the Eighteenth European Conference on Computer Systems. 266–282.

12

https://www.usenix.org/conference/osdi20/presentation/ruan
https://www.usenix.org/conference/osdi20/presentation/ruan
https://docs.aws.amazon.com/whitepapers/latest/ec2-networking-for-telecom/overview-of-performance-optimization-options.html
https://docs.aws.amazon.com/whitepapers/latest/ec2-networking-for-telecom/overview-of-performance-optimization-options.html
https://www.tensorflow.org/
https://doi.org/10.1145/3503222.3507731

	Abstract
	1 Introduction
	2 Background
	2.1 CXL Memory System
	2.2 CPython Runtime and Garbage Collector

	3 Motivation
	3.1 Adapting to Workload-specific QoS Needs
	3.2 Balancing Tracing Accuracy and Overhead

	4 EMT Design
	4.1 Overview
	4.2 Challenges
	4.3 Pipeline

	5 Object Access Tracing
	5.1 Marking Phase
	5.2 Sampling Phase
	5.3 Object Temperature Prediction

	6 Page Migration Strategy
	6.1 Page Bucketing and Threshold Determination
	6.2 Adaptive Lazy Demotion

	7 Evaluation
	7.1 Evaluation Methodology
	7.2 Performance Comparison
	7.3 Page Temperature Representations Analysis
	7.4 Effectiveness of Adaptive Lazy Demotion
	7.5 EMT Overhead Analysis

	8 Limitation and Discussion
	9 Related Work
	10 Conclusion
	References

