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Abstract

Recent Serverless workloads tend to be large-
scaled/CPU-memory intensive, such as DL, graph
applications, that require dynamic memory-to-compute
resources provisioning.

Meanwhile, recent solutions seek to design page man-
agement strategies for multi-tiered memory systems, to
efficiently run heavy workloads. Compute Express Link
(CXL) is an ideal platform for serverless workloads run-
time that offers a holistic memory namespace thanks to
its cache coherent feature and large memory capacity.
However, naively offloading Serverless applications to
CXL brings substantial latencies.

In this work, we first quantify CXL impacts on various
Serverless applications. Second, we argue the opportu-
nity of provisioning DRAM and CXL in a fine-grained,
application-specific manner to Serverless workloads, by
creating a shim layer to identify, and naively place hot
regions to DRAM, while leaving cold/warm regions to
CXL. Based on the observation, we finally propose the
prototype of Porter, a middleware in-between modern
Serverless architecture and CXL-enabled tiered memory
system, to efficiently utilize memory resources, while
saving costs.

1 Introduction

Serverless computing, or Function-as-a-Service (FaaS) is
a cloud abstraction, that offers highly scalable, portable,
and intuitive microservice deployment for cloud applica-
tions [1, 2, 3]. It eases off developers’ burden of setting
up system and runtime environment, allowing them to fo-
cus on application development. Developers write their
code as a set of stateless event-triggered tasks as func-
tions, which are invoked via triggers, e.g., HTTP, gRPC.
The providers spawn and tear down instances for each
function on demand.

Recent trends show Serverless workloads tend to oc-
cupy large memory resources, such as high-performance
computing (HPC) [4], machine learning (ML) [5], and
graph computation [6], which led memory become a
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Figure 1: CXL decouples memory from compute.

significant infrastructure expense in hyperscale datacen-
ters [7]. For example, running a DNN training work-
load may produce more than 40GB of memory footprint
that current Serverless providers fail to offer. Mean-
while, different large-scale applications exhibit different
ratio of compute-to-memory ratio that requires efficient
resource provisioning. DL workloads often comprise
numerous dynamic stages each with its own unique re-
source requirements [8], i.e., feature extraction, model
training, and inference, which are served better by pro-
visioning proportional resources to them. However, in
extant Serverless datacenters, a monolithic server is stat-
ically equipped with a fixed set of compute (e.g., CPUs,
GPUs), and memory (e.g., DRAM, NVM) resources.
Even worse, current Serverless providers tend to pro-
vision a fixed ratio of compute-to-memory resources.
There is a fundamental mismatch between the static ca-
pabilities of the servers and the dynamic needs of the
emerging applications.

Compute Express Link (CXL) is a new memory dis-
aggregation protocol that allows a new memory bus in-
terface to attach memory to the CPU (Figure 1). Such
CXL-memory acts as a CPU-less NUMA node that of-
fers a holistic namespace of large memory size for di-
rect load and store from host CPU [9]. Together with
local DRAM, such memory system brings opportunities
for designing a tiered-memory solution for fined-grained
memory resource provisioning.

In fact, several state-of-art solutions [7, 10, 11, 12]
address efficient provisioning of multi-tiered memory
(including CXL) resources to workloads in production.
However, they all focus on general workloads in a



coarse-grained manner that contains no prior knowledge
of workload behavior. However, unlike black-box server-
ful VMs, the resource monitoring of Serverless functions
can be characterized by cloud providers since the func-
tion’s performance is visible. Major serverless providers,
including AWS Lambda [13], already offer tools to mon-
itor and characterize serverless functions. Unfortunately,
the area of effectively offloading Serverless workloads to
CXL-enabled multi-tiered memory system is left unex-
plored, and Serverless platforms remain largely unaware
of the fundamental differences between tiered memory
and DRAM-only datacenters.

In this work, we first quantify the impact of CXL on
several Serverless workloads by naively making all load,
store operations via emulated CXL environment. To
showcase the opportunity of provisioning DRAM-CXL
dual-tiered memory system to Serverless workloads, we
then built a shim layer that uses syscall_intercept library
and a page access monitor to generate hints for naive ob-
ject placement. Current experiment shows such naive al-
location of (potential) hot objects to DRAM, while leav-
ing cold objects to CXL can bring down the execution
time from 30% (pure CXL) to under 5%. Finally, we
propose the proto design of Porter, a user-space mid-
dleware between modern multi-tenant Serverless archi-
tecture and underlying CXL-enabled memory systems
to efficiently exploit large capacity from CXL, without
harming Serverless function SLO. Porter works by 1)
generating and updating memory objects placement hints
by gathering workload characteristics, and 2) intelligent
promotion/demotion during function runtime based on
SLO requirements and system resource loads.

2 Background

2.1 Memory Provisioning in Serverless

Memory provisioning has been a major pain point for the
Serverless world. There are two key insights to support
this.

Rigid CPU-DRAM Ratio Provisioning The mem-
ory growing speed has been stagnating [14, 15], the
CPU-DRAM ratio in VM instances is relatively dropping
[16, 17]. This is very likely the reason why Serverless
providers come up with memory-oriented resource pro-
visioning strategy/pricing. Despite minor discrepancies
amount different Serverless providers, they generally re-
quire users to provide three major components to provi-
sion resources: 1) function code; 2) memory cap size; 3)
timeout. Then the CPU cycles resources are proportion-
ally provisioned with the memory cap size configured
by users, and the pricing of a Lambda invocation is pro-
portional to the memory allocated [18]. However, such
static CPU-memory ratio assumes all applications need

a similar ratio of different kinds of resources, which is
often an incorrect assumption. Memory-intensive work-
loads usually require dynamic compute-to-memory pro-
visioning. For example, DL workloads often comprise
numerous dynamic stages each with its own unique re-
source requirements.

Insufficient Memory Resource Serverless applica-
tions have become increasingly memory-consuming,
particularly graph applications [6], ML training [5], and
referencing [19, 20]. The granularity and scalability of
Serverless offer opportunities for data-intensive ML/DL
workloads [5], but compared to the total working set
of such applications, there is usually a relatively small
memory capacity for each Serverless function, for in-
stance, DL memory footprint is too large to be held in
AWS Lambda (10GB) [21]. For providers, memory tier-
ing can be a solution.

2.2 Tiered Memory

The idea of tiered memory is becoming increasingly at-
tractive when DRAM capacity is surpassed by memory
demand [10, 12]. As Non-DRAM memory technologies
provide a cheaper $/GB point [22, 23, 24, 7], tiered mem-
ory suggests bundling multiple tiers of memory spaces
(e.g., DRAM, Non-Volatile Memory, Persistent Mem-
ory), with faster memory spaces to be filled out first.
Such solutions often place slower-but-larger memory for
colder (less frequently accessed) memory page place-
ment, and smaller-but-faster DRAM as hotter (more fre-
quently accessed) memory content cache.

Disaggregated memory has long been a widely applied
solution to memory-consuming applications [25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36] that has a large pool
of cheap memory on remote nodes. Such nature makes
disaggregated memory an ideal fit for a last-tier memory
rank in tiered memory systems. Most recent memory dis-
aggregation efforts [25, 26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36] are specifically designed for RDMA over Infini-
Band or Ethernet networks where latency is bottlenecked
by network. Recently, the advent of CXL [37] introduces
opportunities for a faster-than-conventional last-tier dis-
aggregated memory. CXL allows a new memory bus in-
terface to attach memory to the CPU, which has a latency
of around 70ns introduced by the CXL port and con-
troller, compared to local DRAM access [9]. However,
this is still order-of-magnitude faster than going through
the network.

In recent years, there have been different software-
level designs proposed to fully utilize the potential of
tiered memory systems. Software-Defined Far Mem-
ory [11] proposes to make use of fragmented available
memory on the host, regarding it as a software-defined
dynamic memory region called far memory. It utilizes



zswap [38], a Linux kernel feature that compresses RAM
for swapped pages, and compresses cold pages of user
applications to be put into the far memory. TPP [7] pro-
poses page promotion/demotion of hot/cold page place-
ment for CXL-based tiered memory. It leverages the
cache-line load/store semantics instead of passively re-
lying on swapping. However, there lacks a viable ap-
proach to bridge the gap between Serverless and tiered
memory datacenters, as all these works passively migrate
pages based on page-level runtime characteristics. None
of the existing solutions combines with Serverless work-
loads behavior to be tier-memory-aware, let alone CXL-
enabled memory.

2.3 Overview of CXL Impact on Serverless
Workloads

To understand how much CXL environment impacts
real-life Serverless workloads, in this subsection, we
showcase the experiment setup and our emulated results.
Experiment Setup We use OpenFaaS [39] as our
Serverless platform, and our system speculation is shown
in table 1. CXL is still not publicly available for broad
deployment. Meanwhile, as the CXL access latency
is similar to the remote latency on a dual-socket sys-
tem [7, 9], we emulate the CXL environment by cross-
accessing a CPU-less NUMA node, compared to the base
(ideal) environment where all memory traffics go to lo-
cal DRAM. For Serverless workloads, we derived real-
world benchmarks from SeBS [40], FunctionBench [41],
vSwarm [42], and GAPBS [43] and ported them to Open-
FaaS. We use VTune [44], DAMON [45], and Intel Per-
formance Counter Monitor [46] to gather metrics.

Table 1: System Hardware Specifications

Hardware Specification

CPU Intel(R) Xeon Gold 6126 CPU @ 2.60GHz
Cores 2 * 24 cores

L3 cache 19.25 MB

Memory 192 GB DDR4 @ 2133 MHz
Storage 240 GB SATA SSD

As seen in figure 2, the x-axis shows the sorted per-
cent of execution time slowdown of the tested work-
loads, compared to all local DRAM. We observe dif-
ferent Serverless applications have different percentages
of slowdown in CXL compared to local DRAM, rang-
ing from 1% to 44%. Naively offloading Serverless
tasks to CXL largely harms the performance. In fact,
it is presumable that those with heavier load/store op-
erations are more severely impacted (e.g., graph work-
loads, linear equation solving, DL training). This trend
roughly matches the memory backend boundness (blue
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Figure 2: CXL has various latency impact to Serverless
workloads.
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Figure 3: Profiling Memory Objects and Statically Plac-
ing.

line), which indicates how much percent of the total time
is stalled due to memory traffic such as load, store, mem-
ory bandwidth boundness, and latency boundness.

3 Offline Profiling and Static Place-
ment

Following up on previous work [47], we deployed a
proof-of-concept tool to monitor workloads memory ac-
cesses and statically place different objects atop DRAM
or CXL (figure 3). Specifically, having the observation
of hot regions throughout workloads running and mem-
ory allocation statistics, by statically placing hot mem-
ory objects to DRAM and leaving cold/warm objects to
CXL, we aim to observe how much performance gain
compared to pure CXL.

3.1 Recording Memory Accesses

In the record phase, we use DAMON [45] to profile the
data access patterns throughout workloads running. DA-
MON is a profiling tool for data access tracing with con-
trollable overhead. It consists of a region-based sam-
pling and an adaptive region adjustment, allowing users
to limit the tracing overhead in a bounded range regard-
less of the size and complexity of the target workloads.



Note that for consistent memory object location, we dis-
abled the randomize_va_space. We then use DAMO, a
userspace tool of DAMON to generate heatmaps. As
shown in figure 4, workloads show varied data access
patterns. For example, strong locality (only a specific
range of data gets accessed across running) can be ob-
served for DL (ImageNet) training, linear equation solv-
ing (Linpack), and graph computation (BFS and PageR-
ank), whereas HTML generation (Chameleon), and im-
age processing show sparse, unpredictable access pat-
tern. After that, we perform an offline processing to filter,
merge, and generate huge chunk of hot blocks.

3.2 Tracking Memory Allocations

In the reply phase, we implement a shim layer to in-
tercept dynamic allocations performed by applications.
In situations where an application requires memory
blocks that exceed a certain threshold (such as the
MMAP _THRESHOLD value of 128 kilobytes in Linux),
the malloc function will utilize mmap to allocate space
within the Memory Mapping Segment region, rather
than expanding the Heap through brk. Therefore, given
a workload executable, we intercept mmap and brk
syscalls by using a shared library syscall_intercept [48].
When intercepting each allocation, we gather informa-
tion such as the timestamp, allocation size, starting mem-
ory address, and call stack.

Since for each mmap intercept there is a memory
address range and each sample has a memory address
associated with it (memory objects), we can combine
with the profiled hot regions observed over time (3.1)
to get placement hints 3. We statically place these ob-
jects on either DRAM for hot objects, or to CXL for
cold/warm objects based on the hints. The shim layer is
hooked dynamically during runtime thus no changes are
required for workload source code. For proof-of-concept
purposes, we note that the object is naively placed in-
stantly after mmap, thus no migrations are needed in
this stage. For fine-tuned promotion/demotion from/to
DRAM/CXL during execution, we list in our future work
in4.2.

3.3 Static Placement Result

To show how statically placing hot memory objects
to DRAM improves performance, we tested on two
graph workloads, namely BFS and PageRank on Twitter
dataset, as they show a large percentage of slowdown in
pure CXL environment. Figure 5 shows a noticeable per-
formance improvement compared to CXL. For PageR-
ank workload, we observed up to 26% execution time
reduction compared to pure CXL. The result can be in-
terpreted as more memory accesses taking place on lo-

cal DRAM. This observation brings us the opportunity
to identify and place memory objects that are likely to be
hot/cold to DRAM/CXL right before get accessed, also
workload-specific fine-grained optimizations can be of-
floaded.
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Figure 4: Heatmap of some workloads, where colored
areas are denoted as hot regions.

4 Porter and Future Work

4.1 Porter Design

Having the understanding of workloads memory ac-
cess behavior, we aim to deploy Serverless atop such
CXL-enabled tiered memory system, to achieve efficient
memory usage, cost alleviation, without harming appli-
cations’ performance, and SLO-guaranteed application
performance.

Our proto-design is shown in figure 6: When a user
invokes a function via gateway (1), the load balancer
(e.g., Kubernetes) route the request to a server. The in-
vocation payloads with function ID are pushed into a
local queue (2), which are fetched by an engine asyn-
chronously. If it is the first time invoking (newly de-
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Figure 5: Performance improvement of static placement
over pure CXL for PageRank and BFS on Twitter dataset.

ployed/updated function), and because the platform has
no clue of the workload behavior, Porter engine is likely
to provision local DRAM (3) for the best SLO guaran-
tee, but it also depends on current system loads (memory
footprint, bandwidth, etc) (6. While serving a request,
Porter attaches a hook to intercept syscalls such as mmap
and munmap, and generates heatmaps for memory ac-
cess patterns. Porter also monitors workloads’ back-end
boundness by VTune profiler [44] to understand general
behaviors. All metrics are sent to an offline tuner (4).
Combined with user-defined function speculation (e.g.,
memory requirement, SLO), the offline tuner generates
a placement hint for each function (5). The placement
hint consists only metadata that can be cached on each
server. For subsequent invocations, Porter engine gathers
the function-specific hint, together with current system
loads (6), to decide page placement for memory objects.
During each function execution, the engine will spawn
a separate thread to dynamically migrate pages among
DRAM and CXL (.

Similar to state-of-art Serverless runtime resource reg-
ulation solution [49], whenever a function memory ac-
cess behavior changes, e.g., input size changes, that
causes previous hot regions shifting, Porter engine would
dynamically predict which memory objects would still
be acting as hot/cold. If unpredictable, then it considers
using DRAM to ensure the best performance, then cap-
tures and updates function metrics to the offline tuner.

4.2 Future Work

Fined-grained data access awareness For our naive
placement strategy, two main problems need to be tack-
led in Porter. First, consider a memory object, not all
pages (addresses) are hot. Simply regarding the object
as a whole for placement causes waste of memory re-
sources. Thus, Porter will consider a fine-grained aware-
ness of hot objects’ size. Second, not all hot pages are
accessed from time to time throughout the function run-
ning. An intelligent page migration (i.e., promotion and
demotion) strategy must be considered. For example,
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Figure 6: Porter prototype for Serverless Runtime in
CXL-Enabled tiered memory system. Placement hints
will be generated/updated for each invocation. Subse-
quent invocations benefit from the hint to efficiently uti-
lize DRAM-CXL memory stacks.

consider ImageNet training (figure 4c), the hot regions
around relative address 2.5 x 100 are sparsely accessed
chronologically. Therefore, deciding the time and data
range to migrate with acceptable overhead is essential
for Porter.

Resistance to payload changing One thing we no-
ticed is even with randomize va_space disabled, when
the payload changes (i.e., batch size, input dataset), the
underlying compiler will allocate different memory areas
to the same object, invalidating the hint for data place-
ment for subsequent invocations. Thus, Porter must be
aware of how payload changes affect memory address al-
location by the compiler, and still be able to successfully
classify and place objects accordingly.

Function runtime impact We note that Serverless
function runtime has impact to memory access behavior
and overall performance. For example, performing BFS
using GAPBS [43] in C++ and igraph [50] in Python on
the same graph show different memory access patterns.
This is because Python uses its interpreter to compile and
run the program without storing the machine code being
created. After comparing the call stacks, we note Python
always contains extra layers than C++. Another example
is when performing matrix multiplication using Python
Numpy [51] versus Golang Gonum [52] package in CXL
environment, we observed Python always outperforms
Golang. We found Numpy uses OpenBLAS [53] as an
optimized BLAS (Basic Linear Algebra Subprograms)
library that allocate anonymous pages into local DRAM
regardless, thus helps accelerating computation. As for
Serverless clients are not aware of the underlying library
behavior, same functionality in different runtime may re-
sult in various behavior, which Porter needs to consider.

Multi-tenancy resource contention To prove the im-
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Figure 7: Percent of slowdown in local DRAM and CXL
for different colocated functions. CXL always shows
more severe impact compared to local DRAM.

pact of Serverless function colocation in CXL, we run a
DL serving workload and colocate with the same work-
load, DL training, and matrix multiplication, respec-
tively. We capture the percent of slowdown compared
to running standalone. As seen in figure 7, colocating in
CXL always shows more impact on slowdown compared
to local DRAM. Previous resource regulations [49, 54]
in Serverless only focus on DRAM. We believe different
methodologies should be considered in Porter for CXL-
enabled tiered memory systems.

5 Conclusion

In this report, we first state the trend of provisioning a
CXL-enabled tiered memory system to efficiently run
Serverless workloads in a application-behavior-awared
manner. We then demonstrate that CXL latency intro-
duces different levels of slowdown to Serverless work-
loads. By naively identifying and placing hot objects
to fast DRAM and leaving cold/warm ones to CXL, we
observe significant performance gain. Based on that,
we propose the prototype and future work of Porter, a
middleware that sits between Serverless architecture and
CXL-enabled memory system to effectively provision
proper memory resource/type to Serverless functions.
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