
Towards Persistent Memory based Stateful Serverless
Computing for Big Data Applications

Yuze Li1∗, Kevin Assogba2∗, Abhijit Tripathy1, Moiz Arif2, M. Mustafa Rafique2, Ali
R. Butt1, Dimitrios Nikolopoulos1

Virginia Tech1, Rochester Institute of Technology2

ABSTRACT
The Function-as-a-service (FaaS) computing model has re-
cently seen significant growth especially for highly scal-
able, event-driven applications. The easy-to-deploy and cost-
efficient fine-grained billing of FaaS is highly attractive to big
data applications. However, the stateless nature of serverless
platforms poses major challenges when supporting stateful
I/O intensive workloads such as a lack of native support
for stateful execution, state sharing, and inter-function com-
munication. In this paper, we explore the feasibility of per-
forming stateful big data analytics on serverless platforms
and improving I/O throughput of functions by using mod-
ern storage technologies such as Intel Optane DC Persistent
Memory (PMEM). To this end, we propose Marvel, an end-
to-end architecture built on top of the popular serverless
platform, Apache OpenWhisk and Apache Hadoop. Marvel
makes two main contributions: (1) enable stateful function
execution on OpenWhisk by maintaining state information
in an in-memory caching layer; and (2) provide access to
PMEM backed HDFS storage for faster I/O performance. Our
evaluation shows that Marvel reduces the overall execution
time of big data applications by up to 86.6% compared to
current MapReduce implementations on AWS Lambda.

1 INTRODUCTION
Problem The Function-as-a-service (FaaS) [17] or serverless
computing model is gaining popularity in the cloud environ-
ment. The model offers attractive features such as ease of
deployment, function-driven execution, and cost-efficiency.
Thus, the use of FaaS in supporting big data applications that
make up a significant portion of cloud applications [1, 2, 20]
can provide an efficient solution. Inmodern FaaS frameworks,
data storage is decoupled from the computation instances,
e.g., in object stores such as S3 [6], or managed in-memory
cache instances such as Elasticache[4]. However, functions
have to load data from either local or remote storage, per-
form computation, and store the results back to the storage
tier. The distributed and isolated nature of serverless func-
tions puts a lot of strain on the storage sub-system that can
∗ Equal Contribution.

quickly become a performance bottleneck for large amounts
of data such as that used in emerging deep learning [23] and
video encoding [19] applications.

Big data application processing frameworks such as
Apache Hadoop [8] require stateful operations, typically
supported by a distributed filesystem such as HDFS [21].
It is natural to integrate these frameworks for their pro-
gramming advantages and FaaS for its cost efficiency, and
researchers have begun to explore such integration. However,
using stateless serverless to run stateful big data applications
is challenging. The stateless nature of serverless limits any
inter-function communications [18]. Big data applications,
however, require data processing and storage to be co-located
in order to avoid the network performance bottleneck. Previ-
ous solutions [14, 25, 26, 28] are stateless in nature and uses
remote storage media to read input data, cache intermediate
data, and write output data. For example, Corral [14] and
AWS Serverless Reference Architecture [28] use AWS S3 as
storage media for intermediate state. These solutions decou-
ple/distribute the compute and storage and thus are slow;
they require at least four I/O calls to read and write data
to either local or remote network storage entailing higher
latency. In Hadoop, for example, mappers read input from
remote storage, write back intermediate state, reducers read
from remote storage, and then write back the final output.
In such cases, the network quickly becomes the bottleneck
and reduces overall performance.
Another limitation of existing solutions is that they rely

on commercial frameworks that only provide serverless plat-
formswith no native support for Big Data applications. These
applications would require custom implementations of data-
parallel processing frameworks, particularly MapReduce. As
a result, existing solutions offer very simple serverless im-
plementations of MapReduce with minimal features and no
support for data-parallel processing [26]. These systems ba-
sically take the ad-hoc approach of running serverless func-
tions with remote storage services for MapReduce work-
loads to share state. Such I/O strategies scale poorly in data-
intensive workloads. This is because during the shuffle phase
of MapReduce, each mapper sends its intermediate data to re-
ducers that may not be scheduled on the same host. Thus, the
number of remote I/O requests increase leading to observable

1

,

performance degradation due to slower I/O. In our experi-
ments we found that Corral’s Lambda and S3 based invoca-
tions fail due to the maximum data transfer limit of 15 GB.
Moreover, such solutions require isolated, long-running func-
tions that need to coordinate the state information, and thus
create another potential bottleneck of coordinating the tran-
sition from the map stage to the reduce stage. Being stateful,
any function failure will result in loss of computation, state
and data resulting in application-level failure.
Solution Recent hardware trends offer a promising substrate
for integrating FaaS and Big Data processing frameworks.
New memory technologies such as Intel’s Optane DC Per-
sistent Memory (PMEM) [15] can offer a stateful operations
substrate in a serverless setting at near DRAM speed, thus
mitigating the need for slower local or remote storage.
In this paper, we propose an architecture that integrates

serverless platforms with Hadoop to launch stateful func-
tions for big data processing. We optimize the I/O perfor-
mance of this architecture by co-locating compute and stor-
age capability via persistent memory. The overarching goal
is to leverage the ease-of-deployment and cost-efficiency of
serverless platforms and the data analytics capabilities of
Hadoop. We design Marvel, which to the best of our knowl-
edge is the first solution to support stateful Big Data function
execution in serverless platforms. We enable the serverless
platform to launch stateful functions, coordinate the data
and state sharing amongst MapReduce components, and we
integrate PMEM with Hadoop HDFS to provide fast interme-
diate storage and a storage backend for input and output data.
Marvel uses Apache OpenWhisk [10], to launch MapReduce
actions that interact with the Apache Hadoop[8] core compo-
nents. Hadoop core components, e.g., NameNode, DataNode,
and NodeManager, are deployed in OpenWhisk containers.
The NameNode provides data storage services to MapReduce
functions through optimized DataNodes that use PMEM as
the underlying storage media. This allows us to achieve bet-
ter I/O performance, avoid the bottlenecks associated with
slow storage tiers, and minimize data transfers over the net-
work. We use Apache Ignite[9] as an in-memory accelerator
to store the intermediate data. This allows us to store inter-
mediate data produced by Hadoop functions in a fast storage
tier accessible to all functions of the application.
Contributions Specifically, we make the following contri-
butions:

• We design an architecture that enables serverless plat-
forms to run stateful big data applications on Hadoop
framework while abstracting away complicated infras-
tructure management, and providing highly scalable,
and cost-effective FaaS.

• We provide a fast in-memory data store for maintain-
ing function states and storing intermediate data pro-
duced byMapReduce components to enable a fast inter-
function communication path.

• We improve the performance of big data applications
by utilizing PMEM as the storage backend for HDFS to
provide high throughput and low latency data access.

• We present an architecture that requires minimal
changes to the underlying frameworks and to the user
applications, this making it easy to use and deploy in
a distributed cluster.

2 MOTIVATION AND BACKGROUND
In the following, we provide motivational experiments for
Marvel, and discuss related work and background on persis-
tent memory and serverless computing frameworks.
Dataset sizes in MapReduce applications Infrastructure-
as-a-Service (IaaS) providers such as AWS EC2 [3], have
proved efficient in supporting big data applications and pro-
viding the needed performance and scalability. However, ad-
ditional steps have to be taken to design and deploy the infras-
tructure, launch, configure and maintain compute instances.
This is an additional burden on the application developer
in terms of time, effort and cost. In contrast, FaaS or server-
less computing, aims at making infrastructure transparent
to the application developers which is highly desirable. FaaS
frameworks support fast auto-scaling that allocates compute
resources dynamically to fulfill application requirements at
runtime [16]. However, current FaaS implementations do not
support stateful function execution and rely on cloud storage
services for state sharing. The remote nature of such storage
results reduces I/O and application performance. Therefore,
access to a fast storage layer is crucial for running big data
applications on stateful serverless platforms.
To better understand the above challenge we studied the

size of input, intermediate, and output data generated by
different MapReduce workloads as shown in Table 1. We
observed a high degree of variation in the size of data for
big data workloads at each step. During the MapReduce
shuffle phase, mapper functions send data to the reducers.
Therefore, as the input size increases, the data I/O from local
or remote storage increase. This leads to the storage and
network bottlenecks, e.g., when using S3, that puts a limit
on the IOPS and charges a premium per I/O request. [24].
Role of storage in serverless performance To observe the
impact of data locality and storage types on stateful applica-
tion’s performance we run MapReduce application on AWS
Lambda [31] that uses AWS S3 [6] for storage. We compared
the performance of this setup with an on-premise serverless
deployment that utilizes different storage backends.

2

Towards Persistent Memory based Stateful Serverless Computing for Big Data Applications ,

Table 1: Dataset sizes at different MapReduce phases.

Workloads
Input Size

(GB)
Intermediate
Data Size (GB)

Output Size
(GB)

Scan Query
0.54 0.76 0.1
1.2 1.3 0.16
5.7 6.7 0.81

Aggregation
Query

10.5 17.4 0.01
26.3 32 0.03
58 74 0.03

Join Query
12.5 49.6 9.7
27.5 103 22.6
63.7 242 51

Word Count

1 5.5 0.01
5 28 0.03
10 56 0.1
50 291 0.4

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 1 2 3 4 5 6 7 8 9 10

J
o
b
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Input Size (GB)

SSD
SSD + S3

PMEM + S3
PMEM

Figure 1: Wordcount performance using serverless with
varying storage layer provided by S3, local SSD, and PMEM.

Figure 1 shows the job completion time for a wordcount
application that uses the Corral MapReduce library. We com-
pare the performance by running the application backed by
SSD, SSD and S3, PMEM and S3, and finally just PMEM. The
results show that for an input size of 7 GB the PMEM per-
formed the best, with SSD performance slightly slower and
S3 backed experiments performed the worse. Hence, leverag-
ing new persistent memory technologies is an effective way
to improve the I/O performance of serveless frameworks.
Serverless and big data platforms Integrating serverless
and big data platforms is becoming increasingly important
due to the benefits of both frameworks [35]. Public cloud
providers such as AWS and NetApp are developing server-
less big data solutions, e.g., AWS EMR on serverless[20] and
Ocean for Apache Spark[30]. However, at the time of writ-
ing this paper AWS EMR Serverless is under development,
whereas NetApp’s ocean is available for demo use only. More-
over, based on our research, there are no opensource projects
that integrate modern storage technologies, such as PMEM,
with serverless platforms.
Persistent memory Intel has recently launched DC class
of PMEM, a type of Phase change memory based on the
3D XPoint memory media [22]. PMEM can be configured
as: (1) a volatile main memory while using DRAM as an L4
cache (Memory mode), (2) a persistent byte-addressable stor-
age device (AppDirect mode), (3) a combination of Memory

Table 2: IOPS, Bandwidth, Latency for PMEM vs. SSD.

Benchmarks IOPS (K)
Bandwidth
(GiB/s) Latency

Seq. Read PMEM 10700.0 41.0 0.6 us
SSD 108.0 0.4 4.7 ms

Seq. Write PMEM 3314.0 13.6 1.9 us
SSD 118.0 0.5 5.0 ms

Random Read PMEM 1166 4.6 0.6 us
SSD 82.3 0.3 0.8 ms

Random Write PMEM 335.0 1.4 2.3 us
SSD 66.2 0.3 1.0 ms

mode and AppDirect mode called Mixed mode. Researchers
have investigated the use of PMEM in multiple scenarios, e.g.
handling disaggregated PMEM consistency [34, 36], PMEM
file system [13, 27, 29], distributed PMEM Pool [33], and
PMEM-embedded network [32]. Based on a recent study [37],
many popular PMEM-based file systems have shown I/O per-
formance improvement over other slower storage devices.
Considering the high performance of PMEM, we include
PMEM for handling data I/O in Marvel.

To demonstrate the benefits of PMEM over SSDs, we used
FIO [12]microbenchmark.We configure PMEM inAppDirect
Mode, and mount a DAX-enabled EXT4 filesystem on it. We
use a 4 KB block size, and up to eight parallel streams for
sequential reads and writes. Moreover, we use libaio and
libpmem as I/O engines for SSD and PMEM, respectively.
Table 2 shows 10×−100× speed-up in IOPS, bandwidth, and
latency for PMEM.

3 MARVEL DESIGN
3.1 Design Goals
The main goal of this paper is to design a system that sup-
ports stateful function execution of big data applications and
to improve the application performance. The key objectives
driving the design ofMarvel are as follows: (1) Enable server-
less platform to run stateful functions by storing function
states. This will enable the execution of stateful big data
analytics applications to leverage the benefits of serverless
infrastructure. (2) Enable access to an in-memory distributed
database and PMEM-backed storage for hosting input, out-
put, and intermediate data, thus improving the throughput
and reducing the total application execution time.

3.2 Challenges
Communication between OpenWhisk actions and
Hadoop components All OpenWhisk components and ac-
tions are deployed as Docker containers. Hadoop does not
include native support for Docker. Therefore, there is a need
to containerize Hadoop and make the components accessible
to OpenWhisk over the network to both frameworks.
Integrating Ignite with Hadoop In containerized Hadoop,
the intermediate data produced bymappers is stored in HDFS

3

,

Figure 2: Proposed architecture ofMarvel.

backed by local storage media. To speed up I/O, mapper func-
tions must be configured to store intermediate data in Ignite,
and reducer functions to read that data from the database
while writing the final output to HDFS.
Ease of deployment To enable quick, easy and automated
deployment, all OpenWhisk, Hadoop, and Ignite components,
inter-component integration, configuration of PMEM needs
to be automated to support and end-to-end deployment.
3.3 Design Overview
Figure 2 shows the high-level architecture of Marvel. We
use OpenWhisk as the serverless platform, Hadoop as the
big data framework, PMEM for storing data, and Ignite for
storing intermediate data. InMarvel, OpenWhisk Invoker ex-
ecutes user requests inside the Hadoop runtime that provide
the necessary libraries to launch the use code.

All Hadoop components are deployed as Docker contain-
ers, and communicate through a Docker overlay network
accessible to all OpenWhisk components. In a distributed
setup, NameNode and ResourceManager are deployed along
with OpenWhisk core components on the master node, while
each worker node runs an instance of NodeManager, DataN-
ode andOpenWhisk Invoker. All core components are backed
by persistent docker volumes mounted on top of PMEM. The
developer submits a job through the client which coordinates
the launch of OpenWhisk actions, data provisioning from
the DataNodes via NameNode and providing endpoints to
mappers and reducers to access the intermediate data. Fi-
nally, we use YARN [11] for determining the appropriate
number of Mappers/Reducers needed per job.
3.4 Marvel Architecture
3.4.1 Apache OpenWhisk. Apache OpenWhisk manages the
serverless platform on the user’s behalf and handles the life-
cycle of the action containers. The OpenWhisk controller
launches actions that contain the user code, communicates
with the resource manager, the NameNode and DataNodes
for accessing input and storing the final output data.

3.4.2 Apache Hadoop. Apache Hadoop provides a big data
analytics platform and is deployed on top of the serverless

Figure 3: Job Execution Workflow inMarvel.
infrastructure. It is integrated with the OpenWhisk core for
scheduling MapReduce functions. We use HDFS to store data,
where computation is performed on the same nodes that host
the data, thus achieving data co-location. The HDFS DataN-
ode containers use persistent volumes mounted on top of
PMEM to speeds up I/O performance. To ensure that all com-
ponents from all cluster nodes can communicate, the entire
stack is deployed within an overlay network. However, Open-
Whisk is designed to deploy containers in the default docker
bridge network. To ensure that OpenWhisk actions commu-
nicate with Hadoop, we modified OpenWhisk to deploy all
containers, including OpenWhisk core components, within
the same overlay network. To enable the communication
between OpenWhisk and Hadoop we built a Docker-based
function runtime with necessary packages exported.

3.4.3 Apache Ignite File System (IGFS). Apache Ignite pro-
vides a high-speed database that enables stateful execution
and stores intermediate function data. As described in Sec-
tion 2, intermediate data requires significant I/O during the
application execution. Thus, we deploy Ignite File System as
a distributed in-memory cache, to allow low-latency access
to intermediate data. To enable Hadoop components to com-
municate with Ignite for reading and writing intermediate
data, the mappers and reducers use the ignite library that is
included in the runtime image created as a part of Marvel.
3.5 Application Workflow
Figure 3 shows the job execution workflow in Marvel. Users
submit jobs to the Marvel client, which serves as an entry
point to the stateful serverless big data framework 1 . The
client coordinates application execution with OpenWhisk
core 2 which sends the execution requests to YARN 3
and includes the job’s metadata and the submitted JAR files.
YARN schedules mappers 4 on the workers where Open-
Whisk invokers are deployed. The mappers fetch locations of
the input data from the NameNode 5 and read it from the
PMEM-backed HDFS DataNodes 6 . The mappers perform

4

Towards Persistent Memory based Stateful Serverless Computing for Big Data Applications ,

the map step, and stores the shuffled output as intermediate
data into IGFS 7 . After the Map phase completes, YARN
spawns reducers functions 8 which read intermediate data
from IGFS 9 , runs the reduce phase and stores the final out-
put to the PMEM-backed HDFS 10 . The entire application
execution is managed and monitored by OpenWhisk.

4 EVALUATION AND DISCUSSION
4.1 Evaluation Setup
Marvel supports distributed cluster deployment, where
Hadoop and OpenWhisk core components are deployed on a
cluster of machines. To have a fair comparison with Lambda-
supported Corral [14] we test Marvel on a single server. Our
server comprises of 32 Intel Xeon Silver 4215 CPU@2.50GHz
CPUs, 360 GB of DRAM, 700 GB of PMEM in App Direct
Mode, and runs CentOS 8. We use Apache Hadoop 3.2.1
with Apache Ignite 2.6.1 as the distributed database to store
intermediate function data. For Corral, we configure the
maximum 10 GB memory per function instance running on
Lambda. The memory and vCPU configuration is kept con-
sistent across all experiments. We run tests on three system
configurations: (1) Lambda with S3 and Corral’s MapReduce
library; (2) Marvel with HDFS where the DataNodes are
mounted on PMEM; and (3) Marvel with IGFS that is similar
to the previous configuration, except that the intermediate
data is cached in Ignite. We run the experiments 5 times and
report the average.

4.2 Performance Results
4.2.1 Impact of data locality and Ignite memory database on
workload performance. We study the performance of Marvel
with well-known WordCount and Grep benchmarks. Map-
pers in WordCount scan input files word by word, and emit
key-value pairs, like <word, 1>. WordCount reducers sum up
the frequency of each word and emit the final <word, count>
key-value pairs. Grep mappers work similarly toWordCount,
matching each word against a specific regular expression,
while the reducers only count those words that meet the
regular expression. We show a zoomed-in version of the
WordCount experiment where input size is between 0.5 GB
and 11 GB. From figures 4 and 5, wemake the following obser-
vations. (1) The Corral Lambda solution operating on AWS
architecture reaches its concurrency quota at 15 GB of input
size. This is due to AWS’s rate-limiting criteria, that puts a
limit on S3 I/O and function invocation requests. [5, 7] (2) For
medium-sized workloads, Marvel with HDFS achieves com-
parable performance as AWS Lambda, which also depends
on the type of workloads. As a benefit of data co-location,
where data is directly fetched from HDFS, the network band-
width constraint onMarvel is reduced. The result shows that

Marvel reduces the job execution time by 86.6 %, compared
to Lambda, while allowing stateful execution for serverless
functions. (3) Marvel with IGFS where intermediate data is
in memory shows the best performance.

4.2.2 I/O throughput for HDFS Vs. IGFS. Next, we examine
the throughput for the various studied cases. Figure 6 shows
the I/O throughput for HDFS mounted on PMEM, and IGFS,
while running the WordCount workload. Here, we can ob-
serve that while using IGFS, the I/O throughput increases
with an increase in data size, and reaches a peak throughput
of 12 Gbps at 10 Gb input size. This shows that using an
in-memory cache like IGFS can boost the I/O performance
of MapReduce applications.

4.3 Discussion and Future Work
We have taken the first steps to design Marvel and integrate
serverless and MapReduce in a performance-aware fash-
ion. Our evaluation indicates that the approach has promise.
However, a number of challenges remain.

First, we need to explore using Ignite as a distributed data-
base on top of PMEM. By doing that, intermediate data could
be persisted while making it available on DRAM for fast I/O
performance. This will enable us to develop a checkpoint-
based fault-tolerant mechanism for applications to resume
execution in the event of machine or network failures, while
allowing access to data on a fast storage tier.
Second, it is uncertain how serverless platforms can in-

teract with the resource managers of big data frameworks.
In this paper, we have explored the interaction between the
scheduling policies of OpenWhisk and Hadoop YARN [11].
Two potential approaches that we will explore in our ongo-
ing work are: (1) Allow YARN to make placement decisions
for OpenWhisk Action containers; or (2) Make OpenWhisk
aware of the Hadoop cluster topology, data placement, and
resource usage, and let it schedule the MapReduce actions
in a manner similar to YARN.

5 CONCLUSION
In this paper, we presented Marvel, a stateful FaaS architec-
ture that enables and optimizes the performance of stateful
function execution of big data applications by utilizing per-
sistence memory. We investigate the use of PMEM in various
architectural settings to maximize the I/O throughput of
stateful functions of the Hadoop framework. Our evalua-
tion shows that Marvel reduces job execution time by 86.6%,
compared to the default serverless platform.

REFERENCES
[1] [n.d.]. ApacheHadoop open source ecosystem | Cloudera. https://www.

cloudera.com/products/open-source/apache-hadoop.html. (Accessed
on 03/29/2022).

5

https://www.cloudera.com/products/open-source/apache-hadoop.html
https://www.cloudera.com/products/open-source/apache-hadoop.html

,

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Input Size (GB)

Lamdba + S3
Marvel + HDFS
Marvel + IGFS

 0

 100

 200

 300

 400

 500

 0 2 4 6 8 10

Figure 4: WordCount execution time.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35 40 45 50

A
v
e
ra

g
e
 E

x
e
c
u
ti
o
n
 T

im
e
 (

s
)

Input Size (GB)

Lamdba + S3
Marvel + HDFS
Marvel + IGFS

Figure 5: Grep execution time.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 1 2 3 4 5 6 7 8 9 10

T
h
ro

u
g
h
p
u
t
(M

B
/s

)

Input Size (GB)

HFDS Read
HFDS Write
IGFS Read
IGFS Write

Figure 6: Throughput comparison.

[2] [n.d.]. Hortonworks Data Platform | Cloudera. https://www.cloudera.
com/products/hdp.html. (Accessed on 03/29/2022).

[3] Amazon. [n.d.]. AWS EC2. https://aws.amazon.com/ec2/
[4] Amazon. [n.d.]. AWS Elasticache. https://aws.amazon.com/

elasticache/
[5] Amazon. [n.d.]. AWS Lambda Quotas. https://docs.aws.amazon.com/

lambda/latest/dg/gettingstarted-limits.html
[6] Amazon. [n.d.]. AWS S3. https://aws.amazon.com/s3/
[7] Amazon. [n.d.]. AWS S3 Request limit throttling. https:

//aws.amazon.com/premiumsupport/knowledge-center/s3-request-
limit-avoid-throttling/

[8] Apache. [n.d.]. Apache Hadoop Framework. https://cwiki.apache.
org/confluence/display/HADOOP/

[9] Apache. [n.d.]. Apache Ignite Documentation. https://ignite.apache.
org/docs/latest/.

[10] Apache. [n.d.]. Apache/openwhisk: Apache OpenWhisk is an open
source serverless cloud platform. https://github.com/apache/
openwhisk

[11] Apache. [n.d.]. Hadoop YARN. https://hadoop.apache.org/docs/stable/
hadoop-yarn/hadoop-yarn-site/YARN.html

[12] Jens Axboe. 2022. Flexible I/O Tester. https://github.com/axboe/fio
[13] Youmin Chen, Jiwu Shu, Jiaxin Ou, and Youyou Lu. 2018. HiNFS: A

persistent memory file system with both buffering and direct-access.
ACM Transactions on Storage (ToS) 14, 1 (2018), 1–30.

[14] Ben Congdon. 2020. Introducing corral: A serverless mapreduce frame-
work. https://benjamincongdon.me/blog/2018/05/02/Introducing-
Corral-A-Serverless-MapReduce-Framework/

[15] Intel Corporation. 2019. Intel® optane™ persistent memory product
brief. https://www.intel.com/content/www/us/en/products/docs/
memory-storage/optane-persistent-memory/optane-dc-persistent-
memory-brief.html

[16] IBM Cloud Education. [n.d.]. What is Serverless Computing? |
IBM. https://www.ibm.com/cloud/learn/serverless. (Accessed on
03/26/2022).

[17] IBM Cloud Education. 2019. What is FaaS (Function-as-a-Service)?
| IBM. https://www.ibm.com/cloud/learn/faas. (Accessed on
03/29/2022).

[18] Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
laptop to lambda: Outsourcing everyday jobs to thousands of transient
functional containers. In 2019 USENIX Annual Technical Conference
(USENIX ATC 19). 475–488.

[19] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki
Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivara-
man, George Porter, and Keith Winstein. 2017. Encoding, Fast and
Slow:{Low-Latency} Video Processing Using Thousands of Tiny
Threads. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). 363–376.

[20] J. B. Gilmour, A. W. Lui, and D. C. Briggs. 1986. Serverless
EMR. https://docs.aws.amazon.com/emr/latest/EMR-Serverless-
UserGuide/emr-serverless.html

[21] IBM. [n.d.]. Hadoop Distributed File System. https://www.ibm.com/
topics/hdfs

[22] Intel. [n.d.]. Intel Optane Technology. https://newsroom.intel.
com/press-kits/introducing-intel-optane-technology-bringing-3d-
xpoint-memory-to-storage-and-memory-products/

[23] Jiawei Jiang, Shaoduo Gan, Yue Liu, Fanlin Wang, Gustavo Alonso,
Ana Klimovic, Ankit Singla, WentaoWu, and Ce Zhang. 2021. Towards
demystifying serverless machine learning training. In Proceedings of
the 2021 International Conference on Management of Data. 857–871.

[24] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl
Krauth, Neeraja Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion
Stoica, and David A. Patterson. 2019. Cloud Programming Simplified:
A Berkeley View on Serverless Computing. https://doi.org/10.48550/
ARXIV.1902.03383

[25] Youngbin Kim and Jimmy Lin. 2018. Serverless data analytics with
flint. In 2018 IEEE 11th International Conference on Cloud Computing
(CLOUD). IEEE, 451–455.

[26] Hang Li Li, Robert Chatley, and Giuliano Casale. 2020. Serverless Data
Pipelines. Ph.D. Dissertation. Master’s thesis. Imperial College London.

[27] Ruibin Li, Xiang Ren, Xu Zhao, Siwei He, Michael Stumm, and Ding
Yuan. 2022. ctFS: Replacing file indexing with hardware memory trans-
lation through contiguous file allocation for persistent memory. In
Proceedings of the 20th Usenix Conference on File and Storage Technolo-
gies, FAST, Vol. 22.

[28] Bryan Liston. 2016. Ad Hoc Big Data Processing Made Simple with
Serverless MapReduce. https://github.com/awslabs/lambda-refarch-
mapreduce

[29] Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
{RDMA-enabled} Distributed Persistent Memory File System. In 2017
USENIX Annual Technical Conference (USENIX ATC 17). 773–785.

[30] Jean-Yves Stephan Senior Product Manager, Jean-Yves Stephan, and
Senior ProductManager. 2022. Orchestrate spark pipelines with airflow
on ocean for Apache Spark. https://spot.io/blog/orchestrate-spark-
pipelines-with-airflow-on-ocean-for-apache-spark/

[31] DAVID MUSGRAVE. 2022. Lambda. https://docs.aws.amazon.com/
lambda/index.html

[32] Korakit Seemakhupt, Sihang Liu, Yasas Senevirathne, Muhammad
Shahbaz, and Samira Khan. 2021. PMNet: in-network data persistence.
In 2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 804–817.

[33] Jiwu Shu, Youmin Chen, Qing Wang, Bohong Zhu, Junru Li, and
Youyou Lu. 2020. Th-dpms: Design and implementation of an rdma-
enabled distributed persistent memory storage system. ACM Transac-
tions on Storage (TOS) 16, 4 (2020), 1–31.

[34] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating
Persistent Memory and Controlling Them Remotely: An Exploration
of Passive Disaggregated {Key-Value} Stores. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20). 33–48.

[35] Sebastian Werner, Jörn Kuhlenkamp, Markus Klems, Johannes Müller,
and Stefan Tai. 2018. Serverless Big Data Processing using Matrix

6

https://www.cloudera.com/products/hdp.html
https://www.cloudera.com/products/hdp.html
https://aws.amazon.com/ec2/
https://aws.amazon.com/elasticache/
https://aws.amazon.com/elasticache/
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://aws.amazon.com/s3/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-request-limit-avoid-throttling/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-request-limit-avoid-throttling/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-request-limit-avoid-throttling/
https://cwiki.apache.org/confluence/display/HADOOP/
https://cwiki.apache.org/confluence/display/HADOOP/
https://ignite.apache.org/docs/latest/
https://ignite.apache.org/docs/latest/
https://github.com/apache/openwhisk
https://github.com/apache/openwhisk
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://github.com/axboe/fio
https://benjamincongdon.me/blog/2018/05/02/Introducing-Corral-A-Serverless-MapReduce-Framework/
https://benjamincongdon.me/blog/2018/05/02/Introducing-Corral-A-Serverless-MapReduce-Framework/
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.intel.com/content/www/us/en/products/docs/memory-storage/optane-persistent-memory/optane-dc-persistent-memory-brief.html
https://www.ibm.com/cloud/learn/serverless
https://www.ibm.com/cloud/learn/faas
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
https://www.ibm.com/topics/hdfs
https://www.ibm.com/topics/hdfs
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://newsroom.intel.com/press-kits/introducing-intel-optane-technology-bringing-3d-xpoint-memory-to-storage-and-memory-products/
https://doi.org/10.48550/ARXIV.1902.03383
https://doi.org/10.48550/ARXIV.1902.03383
https://github.com/awslabs/lambda-refarch-mapreduce
https://github.com/awslabs/lambda-refarch-mapreduce
https://spot.io/blog/orchestrate-spark-pipelines-with-airflow-on-ocean-for-apache-spark/
https://spot.io/blog/orchestrate-spark-pipelines-with-airflow-on-ocean-for-apache-spark/
https://docs.aws.amazon.com/lambda/index.html
https://docs.aws.amazon.com/lambda/index.html

Towards Persistent Memory based Stateful Serverless Computing for Big Data Applications ,

Multiplication as Example. In 2018 IEEE International Conference on
Big Data (Big Data). 358–365. https://doi.org/10.1109/BigData.2018.
8622362

[36] Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast
One-sided RDMA-based Distributed Transactions for Disaggregated

Persistent Memory. In 20th USENIX Conference on File and Storage
Technologies (FAST 21). USENIX Association.

[37] Guangyu Zhu, Jaehyun Han, Sangjin Lee, and Yongseok Son. 2021.
An empirical evaluation of nvm-aware file systems on intel optane dc
persistent memory modules. Electronics 10, 16 (2021), 1977.

7

https://doi.org/10.1109/BigData.2018.8622362
https://doi.org/10.1109/BigData.2018.8622362

	Abstract
	1 Introduction
	2 Motivation and Background
	3 Marvel Design
	3.1 Design Goals
	3.2 Challenges
	3.3 Design Overview
	3.4 Marvel Architecture
	3.5 Application Workflow

	4 Evaluation and Discussion
	4.1 Evaluation Setup
	4.2 Performance Results
	4.3 Discussion and Future Work

	5 Conclusion
	References

