

 52 Int. J. Agile and Extreme Software Development, Vol. 1, No. 1, 2012

 Copyright © 2012 Inderscience Enterprises Ltd.

Software product innovation in agile usability teams:
an analytical framework of social capital, network
governance, and usability knowledge management

Jeremy T. Barksdale* and
D. Scott McCrickard
Department of Computer Science,
Center for Human Computer Interaction,
Virginia Tech, 2202 Kraft Drive,
Blacksburg VA 24060-0902, USA
E-mail: barksdale@vt.edu
E-mail: mccricks@cs.vt.edu
*Corresponding author

Abstract: As the practice of software engineering matures, project teams are
leveraging the expertise of those with a background in other domains such as
usability. This paper proposes a model and agenda for understanding and
improving social interaction on agile usability software teams. We argue that
social interaction on multidisciplinary agile usability teams, as a means to
integrating the software development and usability domains, impacts how
usability knowledge is managed, and thus, software product innovation. This
work contributes:

1 a background, analysis, and discussion of the various agile usability
integration strategies to-date

2 a model for investigating the social interaction in agile usability teams
3 a research, practice, and policy agenda for future work toward improving

the social interaction in multidisciplinary agile usability software teams.

Keywords: agile usability; agile software development; ASD; usability
engineering; social capital; network governance; usability knowledge
management.

Reference to this paper should be made as follows: Barksdale, J.T. and
McCrickard, D.S. (2012) ‘Software product innovation in agile usability teams:
an analytical framework of social capital, network governance, and usability
knowledge management’, Int. J. Agile and Extreme Software Development,
Vol. 1, No. 1, pp.52–77.

Biographical notes: Jeremy T. Barksdale is a PhD student in the Department
of Computer Science at Virginia Tech. He currently works as a Usability
Engineer at a software company, and has previous experience working as a
Project Manager and Requirements Engineer in the public and private sectors.
His primary research interests include the social interaction between developers
and usability experts in agile software development teams and, more generally,
how technology can support improved team collaboration. He received his
MS in Computer Science in 2002, and his BA in Broadcast Production in 2000
from North Carolina A&T State University.

 Software product innovation in agile usability teams 53

D. Scott McCrickard is an Associate Professor in the Department of Computer
Science at Virginia Tech, and a member of the Virginia Tech’s Center for
Human Computer Interaction. His research interests include human-computer
interaction, design methods, user and task modelling, and interface design for
mobile computing devices. He received his MS and PhD in Computer Science
from Georgia Tech in 1995 and 2000, respectively, and his BS in Mathematical
Science from the University of North Carolina, Chapel Hill, in 1992.

1 Introduction

Traditional software teams, comprised of software engineers using waterfall-like
methodologies, were limited in their ability to develop quality software on schedule and
within budget. Toward resolving these limitations, a team of software experts created the
Agile Manifesto that would guide developers to be more effective through a set of
principles and values (Fowler and Highsmith, 2001). However, the manifesto did not
consider disciplines outside of software engineering.

As the practice of software engineering matured, software teams also began
leveraging the knowledge and skills of experts in other areas, such as usability
engineering (UE) and interaction design (IxD) to address the limitations of teams without
diversity. An advantage of diverse teams is that they can produce better quality software
in a shorter time period given the decreased time required by experienced members and
the parallel work activity.

However, multidisciplinary software teams face barriers, such as effectively
transferring knowledge within the team. Encoding and decoding during knowledge
transfer is complicated because members are less likely to have a shared vocabulary and
meaning. For example, software engineers and usability engineers have a different
understanding of what constitutes a scenario. A scenario for a software engineer will
most likely include a formal narrative of the user’s activity relative to the system; the
usability engineer’s scenario will likely take on a less formal narrative form – centred on
the user’s actions. Although both disciplines use the term ‘scenario’, the difference in
meaning can interfere with effective collaboration.

Interaction barriers can compromise negotiation among members when making
system and user experience (UX) decisions. Agile teams constantly prioritise which
aspects of the software will get development effort. Given that developers are typically
responsible for implementation, if negotiation breaks down between the two groups (e.g.,
due to miscommunication), it often results in developers bypassing the input of usability
experts and potentially compromising the product’s usability and innovation.

Previous research has investigated strategies for improving the interaction between
software developers and usability experts in agile usability teams. Such strategies include
technical process integration (e.g., extreme scenario-based design, XSBD), the sharing of
practices (e.g., daily stand-up meetings), and technology integration (e.g., design and
development tools). Although there is benefit to these approaches, focus is needed on
socio-cognitive interactions.

 54 J.T. Barksdale and D.S. McCrickard

This research aims to address the interaction-related problems in agile usability teams
by exploring how social capital and social network governance contribute to effective
management of usability knowledge on agile usability software teams. It also seeks to
offer practical guidance on designing cohesive agile usability teams. It is anticipated that
the awareness gained from this research will empower teams to modify their dynamics to
achieve effective usability knowledge management toward product innovation.

This work contributes:

1 a background from a review of the literature, thematic analysis, and discussion of the
various agile usability integration strategies to-date

2 a model for investigating the social interaction in agile usability teams

3 a research, practice, and policy agenda for future work toward improving the social
interaction in multidisciplinary agile usability software teams.

2 Agile usability

2.1 Agile software development

A weakness of traditional waterfall approaches was the difficulty to accommodate regular
customer feedback, which affected whether the product sufficiently served the client’s
needs. Requirements were elicited at the beginning of the project during the requirements
phase, and incorporating changes based on customer feedback became increasingly
infeasible as the development lifecycle progressed. Potential problems arose from the
client’s changing needs – often because the client was unable to sufficiently communicate
their needs without a tangible reference, or because the software team simply
misunderstood the client’s needs. As stakeholders begin to see and experience the
character of the software, they gain a clearer understanding of the needs and wants. This
inability to flexibly adjust during development impacted how well the final product met
the customer’s needs.

The traditional approaches also resulted in software products that ran over budget or
were not completed on schedule. For reasons similar to those previously mentioned (e.g.,
an inability to identify clear needs upfront), the software team could not accurately
estimate the required cost and time it would take to develop a product. Essentially, there
was risk given the effort was too complex to fully estimate at the beginning of the
project. For example, teams had difficulty sufficiently estimating the appropriate team
size, the complexity of the algorithms, or the time to resolve development environment
configuration management issues that arose. Each of these, and many other points of
failure in a development project, erodes the team’s ability to control software cost,
quality, and schedule (Beck and Andres, 2004).

Agile was one answer to addressing these quality, cost, and schedule challenges. A
meeting among 17 software experts in 2001 resulted in a manifesto that outlined a set of
values and principles for developing software as an alternative to the traditional
development approaches (Fowler and Highsmith, 2001). Software developers and
methodologists use the manifesto as a vision for how an agile team should function.

 Software product innovation in agile usability teams 55

Agile approaches (Highsmith and Cockburn, 2001), such as eXtreme programming
(XP) (Beck and Andres, 2004), Scrum (Schwaber, 2004), and others (Ambler, 2008)
established a vision for minimising the amount of big upfront planning that was required
for a product. For example, XP provides developers a set of rules, values, and practices
(Beck and Andres, 2004). In Scrum, emphasis is on the general project management
activities versus lower level development activities. Common to both, and other agile
processes, is the incremental and iterative progression of product development. The scope
of work is allocated across time such that the product is incrementally delivered over a
number of iterations and release cycles. In doing so, the team is better able to estimate the
development time required, associated costs, and is better able to accommodate change
requests. Also, the customer is in a better position to provide feedback since they are able
to envision the system incrementally throughout development. More opportunities are
available for users to provide feedback since the development team deploys a working
product at regular increments.

Teams have taken various courses of action toward becoming agile since the
establishment of the manifesto. For example, some teams have adopted the ‘spirit’ of
agility by employing a subset of the values and principles, some have rigorously applied
agile principles and practices since inception, while others transition into agile more
progressively to mitigate organisational and team culture shock. These methods of
adoption are acceptable given that different organisations and teams have different
objectives and levels of need for agility.

On the surface, the advantages of agile appear to satisfy the major drawbacks of the
traditional approaches. However, although the software experts that formulated agile had
the best intentions, a key component in the development process was superficially
considered – the user. The primary stakeholder that was given attention in agile was the
customer, which in many cases is different than the users. Hence, by only understanding
the customer’s perspective, the software is still likely to not satisfy those who are
purchasing and using the software. Only the users can provide the user’s perspective, and
in some cases, the customer is merely guessing what the user wants or what they want
without regard for their users.

2.2 Software usability

The user has commonly been considered, in some capacity, in software engineering via
design decisions with the adoption of the Unified Modelling Language (UML) (Booch
et al., 2005). UML is the integrated work of three separate modelling languages
developed for object-oriented analysis and design (OOAD) (Larman, 2002). Modelling
the use of the system helps developers better decompose the system, eases development
effort, and provides alternative views (Kruchten, 1995) of the system as its complexity
increases. In UML, the user is considered via use case diagrams with actors and system
components, use cases that detail the interaction between the actors and the system, and
usage scenarios that list the tasks users need to accomplish. However, analysis of system
use is not equivalent to analysis of system usability, and emphasis was primarily on the
use of the system, and indirectly the user. Artefacts were commonly developed by
software experts with a system focus, in consultation with the customer, and portrayed
the user as a mechanical entity – compromising the ability to gain a richer awareness of
the user’s experience and preferences.

 56 J.T. Barksdale and D.S. McCrickard

With the emergence of human computer interaction (HCI) and its research over the
past 40 years, usability has grown into a discipline with methods and practices that keep
the user in the forefront during software design and development. The increased
understanding gained about users in computing (e.g., awareness about their mental
models, cognitive load, and tasks) provided deeper insight to software teams about how
software can best support their needs. Research also advanced insight about what is
visually appealing to users and how software can become more pleasant to their senses.
This progress resulted in the establishment of methods such as scenario-based design
(SBD) (Rosson and Carroll, 2002), UX design (Law et al., 2008; McClelland, 2005),
user interface (UI) design (Nielsen, 1993a), IxD (Löwgren and Stolterman, 2004), UE
(Mayhew, 1999; Nielsen, 1993b; Rosson and Carroll, 2002), user-centred design (UCD)
(Fox et al., 2008; Göransson et al., 2003; Hussain et al., 2008).

Depending on the team, the associated roles might include a UI designer that is
concerned with establishing a visually appealing UI, a UE who ensures the user is able to
effectively carry out their intended tasks efficiently, and a UX designer who more
broadly aims to make the user’s overall experience rewarding. Collectively, those in these
roles are categorically referred to as usability experts throughout this research given their
emphasis on usability. Common across these approaches and roles is the design of what
the UXs – in essence, a greater focus on the user than the system – and the advocating for
the users’ needs and desires during software development.

Changes in software development have also occurred to accommodate usability.
Specifically, development frameworks (such as Oracle’s Java Spring Framework,
37Signal’s Ruby on Rails, and Microsoft’s .NET Framework) that use architectural
patterns such as model-view-controller, model-view, and model-view-presenter make it
easier for developers to organise their code and separate system and user concerns so they
can focus their attention on the important details of system and user design and
implementation.

2.3 Agile usability

Usability progressively made its way into agile software teams, yielding what is currently
known as agile usability – a term that evolved as the focus of usability in agile
development increased.

Software practitioners needed a way to satisfy customers through timely releases,
such that changes were feasible without compromising software quality, going over
budget, and taking longer than scheduled. Usability experts wanted (and needed) to be
included in the process to ensure the usability of the software product. The first need was
addressed with the establishment of agile. The second need was satisfied as software
engineers realised the need to place more emphasis on the user.

Constantine was among the first, in 2002, to identify that the agile manifesto did
not directly consider usability. He argued for the incorporation of usability through his
usage-centred design (UC-D) approach – a card-based modelling and decision making
process (Constantine and Lockwood, 2002, 2003). From this point onward, research
continued to seek ways to integrate the usability agile environments. In some cases, the
goal was to increase the software developer’s attention on the user by providing to the
software team relevant principles and guidelines. In other cases, the argument was made
for a separate usability expert role (or team) on the software project.

 Software product innovation in agile usability teams 57

3 Agile usability integration strategies

The integration of agile and usability is a relatively new research area. Since 2002,
various approaches to integration have been discussed among researchers and
practitioners. Based on a review of the literature, research on agile usability can be
organised within five themes: the adoption of practices by one or both areas, the
combination of agile and usability processes, communication between technology used in
each domain, incorporation of team members with the necessary skill-set, and integration
with greater focus on their interaction.

3.1 Literature review methodology

Over the past decade, agile usability has grown into what this research identifies as
five key directions. Table 1 shows the integration strategies of agile usability relative
to each year since its emergence in 2002 along with key authors and citations of
their publications. The ‘no data’ category means that an integration category was
indeterminable from the publication. The ‘none’ category means that no integration was
presented in the publication, which could result from the article discussing agile usability
as a topic but not proposing a method of integration. The primary goal of this literature
review was to identify the various turns agile usability has taken since its inception.
Hence, the review is not meant to be exhaustive, but a representation of the trends over
time as a way to acknowledge past research on the topic and reveal an area of need for
future research in agile usability.
Table 1 Summary of integration strategies, related work, and key authors

Integration type (%) Key authors with related work

None (14.7%) Constantine and Lockwood (2002), Hudson (2005), Sharp et al. (2006),
Ferreira et al. (2007b), Patton (2007), Lee et al. (2007), Federoff et al.
(2008), Bygstad et al. (2008) and Hussain and Slany (2009a, 2009b)

Practices (23.5%) Ferre et al. (2005a, 2005b), Meszaros and Aston (2006),
Chamberlain et al. (2006), Anwar (2006), Parsons et al. (2007),
Memmel et al. (2007a, 2007c), Detweiler (2007), Sy (2007),
Wolkerstorfer et al. (2008), Hussain et al. (2008, 2009), Evnin and Pries
(2008), Sy and Miller (2008), Obendorf and Finck (2008), Fox et al.
(2008), Ambler (2008), Adikari et al. (2009), Miller and Sy (2009),
Budwig et al. (2009), Benigni et al. (2010) and Sohaib and Khan (2010)

Process (4.4%) Patton (2002a, 2002b), Constantine (2002), Hansson (2002), Blomkvist
(2005), Lee (2006, 2010), Miller (2006), Lee and McCrickard (2007),
Memmel et al. (2007b), Haikara (2007), Duchting et al. (2007),
Paelke and Nebe (2008), Lee et al. (2009), Carvalho (2010) and Paelke
and Sester (2010)

Technology (2.9%) Memmel et al. (2008) and Nunes (2009)
People (8.8%) McDonald and Welland (2003), Ghosh (2004), McInerney and Maurer

(2005), Lievesley and Yee (2006), Ferreira et al. (2007a) and Singh
(2008b)

Social (11.8%) Tai (2005), Memmel et al. (2007d), Brown et al. (2008), Ungar and
White (2008), Ungar (2008), Barksdale et al. (2009), Ferreira et al.
(2010) and Barksdale and McCrickard (2010)

 58 J.T. Barksdale and D.S. McCrickard

The search space included ‘agile usability software’ in the computer science and
business categories for each year, singularly, between 2000 and 2010, inclusive.
Google Scholar was used as the search engine to identify related work given its broad
reach and coverage of the most relevant publication databases for this topic. The search
returned over 5,200 results and resulted in a review of over 65 key publications. Each
publication was abstracted by extracting its title, authors, publication venue and year,
relevance to the topic, evidence strength, integration category, integration approach, key
argument(s)/summary, integration rationale, findings, future work, and any miscellaneous
comments. Descriptive statistics were computed and a thematic analysis was conducted
to better understand the gaps in the agile usability research area.

3.2 Practices integration

Practice integration (Figure 1) was found to be one of the most common approaches to
agile usability integration. It is defined here as integration that occurs through the
adoption of principles or practices from another field. For example, it occurs when an
existing agile process is supplemented with usability practices, but does not entail the
complete merging of independent processes.

Figure 1 Practices integration strategy (see online version for colours)

3.2.1 Agile incorporating usability

One approach to integrating practices is to incorporate usability practices into agile
methods and teams. In this case, practitioners augment their agile methods to include
some of the important usability practices. Meszaros and Aston (2006) argue that “Some
design up front provides better guidance to the development team and provides earlier
opportunities for feedback”. They discuss their experience with incorporating usability
testing into an XP project by building paper prototypes and conducting wizard-of-oz
testing. The project manager and agile coach developed the paper prototypes, the
business lead conducted the usability test sessions, and members of the development
team acted as the computer and played the role of the help system or observed
participants. They found that integration was easy, that usability testing ensured that all
work was accounted for and prevented last minute essential scope creep, and that it
ultimately resulted in a significant reduction of usability rework.

3.2.2 Usability incorporating agile

Another approach to practices integration is the incorporation of agile practices into
usability methods. In this case, this entailed tailoring usability methods to become more

 Software product innovation in agile usability teams 59

agile-like. Sy (2007) argues that by adjusting how UCD is conducted, the team was able
to harness its power to the agile characteristics of speed, responsiveness, and high
implementation quality. They tailored their approach to conducting usability tests,
interviews, and contextual inquiry to fit within the constraints of the agile framework.
Hence, although the usability methods were ultimately integrated into the agile
framework, the usability methods were adjusted to incorporate agile practices by
decreasing the time required for, and granularity of, usability investigations. This was
later implemented by synchronising the agile and UCD activities for efficiency. They
found that the new agile UCD method produced better-designed products than the
waterfall versions of the same techniques by narrowing the gap between evaluation and
incorporation of changes.

3.2.3 Mutual sharing

In the most collaborative sense, agile and usability methods incorporate practices from
each other to move the two areas closer to one another. From an agile practitioner’s
perspective, Ambler (2008) argues that UX is important to software development, and
that both agile software developers and UX professionals need to adjust for successful
integration to work. He recommended that UX professionals go beyond UX in their
skillset, become embedded in agile software development (ASD) teams, give agile
approaches a chance, and start looking beyond XP when tailoring practices. His
suggestions to the agile community were to learn UX skills, to accept that usability is a
critical quality factor, and to adopt UI and usage style guidelines.

Parsons et al. (2007) offer strategies for incorporating key practices from each area
into agile and usability methods based on their practical experiences. They argue
that agile methods have not typically incorporated HCI and usability techniques and tools
into their software development processes, and that it is possible to integrate certain
practices from UE into an agile approach. Among other strategies for mutual practices
integration, they recommend using iterative development throughout the lifecycle,
merging user scenarios with stories, and allowing testing of the UI in the user
context regularly throughout all phases. They also found that the following ensures high
HCI quality: co-locating a UI expert with the development team, letting the product
manager-owned backlog control the development process, regular assessment of the
application by an external HCI consultant, and making supportive design and technology
choices.

3.3 Process integration

The integration of agile and usability processes is another common approach to
integrating agile and usability efforts (Figure 2). In this case, independent agile and
usability processes are combined and synchronised to provide a single newly designed
agile usability process. Although there is seemingly significant overlap between
process and practices integration, the difference hinges on whether two completely
separate processes were merged into a single process versus picking techniques from a
process.

 60 J.T. Barksdale and D.S. McCrickard

Figure 2 Process integration strategy (see online version for colours)

Constantine (Constantine, 2002; Constantine and Lockwood, 2002) advocates for the use
of his UC-D process in coordination with agile methods such as XP. He argues that his
method is a natural adjunct to an effective agile process (rather than an end-to-end
development process) because it is card-based (like story card use in XP), lightweight,
and iterative and incremental in nature. Patton (2002a) later instantiates Constantine’s
UC-D approach in an agile environment, arguing that IxD is a valuable component of any
software development process and that it happens whether the intention is there or not.
Patton found that although constant collaboration was exhausting, the team’s tacit
knowledge was ‘irreplaceable’. He also noted that the UC-D task cards were useful
during testing and other points of reference.

Alternatively, Lee et al. (2009) integrated the SBD process and XP. They argued
that there is a need to understand the similarities and differences between XP and
SBD as a means to addressing the integration problem. A comparative analysis of
the core principles of XP and SBD lead them to the development of XSBD. They
found that maintaining and collectively agreeing on a prioritised list of design goals
will help to resolve conflicts, claims are effective for capturing design rationale, enforced
and opportunistic synchronisation is important, and that a central design record (CDR) –
used to support synchronisation of activities – can help with developing a cohesive
interface.

3.4 Technology integration

Technology integration (Figure 3) implies that the underlying coordination between the
agile development and UE activities occurs through the use of technology. An example of
technology integration is when the designer and developer can perform their task using
two independent software components or applications that communicate using a common
data exchange format to integrate their output. Pyla (2007) developed the Ripple project
development environment to foster communication between the software engineering and
UE roles. He argued for the need of a connection between SE and UE lifecycles to
support communication among roles given they have different levels of iteration and
evaluation, different terminology, and requirements representation.

 Software product innovation in agile usability teams 61

Figure 3 Technology integration strategy (see online version for colours)

Industry solutions to technology integration entail the use of a declarative mark-up
language that facilitates data exchange between the designer’s software and the
developer’s software. For example, when the designer creates an artefact (such as a UI),
the code is automatically written in the background. The developer can then incorporate
that component directly into the system code they have written. A common example
includes Microsoft’s eXtensible Markup Language (XML)-based language (eXtensible
Application Markup Language, or XAML) implemented by their Windows Presentation
Foundation (WPF). Microsoft Expression Blend for creating UI elements and animations
(MacVittie, 2006) and Microsoft Visual Studio for system development both utilise
XAML as a data interchange format for UI development.

On a smaller scale, Oracle provides similar functionality through the use of a
JavaScript Object Notation (JSON)-based declarative markup language – called JavaFX
Data (FXD) – as the data interchange format. The JavaFX Production Suite is used, in
conjunction with Adobe Illustrator and Photoshop by designers to construct UIs. The
Netbeans integrated development environment (IDE) is used by developers to develop
system code (Clarke et al., 2009). Design artefacts can be exported and incorporated into
the system code via FXD.

3.5 People integration

People-focused approaches achieve integration by changing the team’s personnel or
composition to obtain the required talent. This typically means, for example, adding a
designer to the team, but not necessarily specifying an integrated process or set of
practices that will be used (Figure 4).

Figure 4 People integration strategy (see online version for colours)

 62 J.T. Barksdale and D.S. McCrickard

Singh argues that having two product owners in Scrum – called U-Scrum, where one
focuses on agile; the other focuses on usability – can improve product usability (Singh,
2008). She found improvements in developer productivity with this structure, noting five
factors that are critical to prevent potential obstacles with this approach: the two product
owners should be peers, additional coordination may be required, an argument may be
needed to justify the additional role, the development team must view personas as an
input to the process versus artificial creations, and the UX vision must provide a
complete picture for the project.

McDonald and Welland (2003) argue that creating agile multidisciplinary sub-teams
of diverse specialists along with coordination teams to maintain communication among
specialists will improve the inherent need for diversity in agile web engineering. They
identify several stakeholder roles required for large web engineering projects. Namely,
these are end-users, clients, domain experts, business experts, software engineers,
creative designers, and team leaders. In their approach, sub-teams will include a number
of different specialists as well as the infrastructure required for specialists to
communicate across teams based on their specialty.

3.6 Social integration

Social integration (Figure 5) involves a remedy where integration occurs via the social
construction of knowledge or changing how the team interacts socially. Ungar (2008) and
Ungar and White (2008) provide an example of social integration through presentation of
a design studio. He argues that holding a design studio (i.e., a workshop) with designers
and developers is a viable approach to moving design ahead of development under the
compressed time frame of Scrum. The design studio has four components – conduct user
research, rapid design generation, evaluate created designs (i.e., the studio component),
and the participants from various disciplines. The author found that the design studio
facilitates role sharing and knowledge transfer, rapid exploration, early commitment,
shared understanding, team cohesion, and the sharing of best practices.

Figure 5 Social integration strategy (see online version for colours)

Similarly, Brown et al. (2008) have investigated the role that stories, sketches, and
lists (e.g., a product backlog) play in mediating the interaction between developers and
designers. They argue that stories and sketches, as mediating artefacts, have critical roles
in the collaboration between interaction (Ix) designers and agile developers. They found
that sketches and stories support creation and reflection, facilitate resolution of

 Software product innovation in agile usability teams 63

contradiction, and also work at a level of consciousness that is below the level of
self-awareness.

At a higher level of task abstraction, Barksdale and his colleagues (Barksdale and
McCrickard, 2010; Barksdale et al., 2009) presented a method for connecting the various
domains through the use of concept mapping. They argue that collaborative concept
mapping can alleviate politics on agile usability teams and can improve their interaction
by facilitating communication while enabling role autonomy. In their approach, usability
experts add scenarios to the map, developers link the stories to the scenarios, and both
collaborate on that link to provide deeper rationale for the association between the
scenarios and stories. They found that – although there is a need for improvement in
agile usability and a concept mapping approach is promising for improving team
interaction in agile usability environments – role familiarity is important, collaboration
and communication do not imply one another, and there is value in providing steps for
sharing knowledge versus just the structure to do so.

4 Social interaction integration strategy

This research approach applies social capital, network governance, and usability
knowledge management as a lens through which to analyse and understand the role of
social interaction in agile usability software teams. This section provides the background
necessary to understand the framework and its application in this research.

4.1 Social capital

Social relationships play a key role in how well team members communicate. Healthy
relationships can make it easier for team members to ask for help, serve as a support
system during difficult times, or generally provide a more fulfilling work experience. A
team that dismisses their social dynamics and structure might struggle in accomplishing
their tasks, whereas those that leverage these characteristics might function more fluidly
through awareness of influential social factors. For example, brainstorming with other
team members may help another member resolve some of the issues experienced with a
colleague that prevents them from focusing on the project. Talking with other members
about the experience may also help establish rapport and build trust within the team.

Social capital provides a means for capturing and understanding these social
dynamics. It has been defined in many ways (Adler and Kwon, 2002) across various
disciplines, such as political science and public administration, sociology, and business
(Table 2). However, there is still a lack of consensus on what it entails and its purpose.
For some, social capital is merely a reconstruction of social network theory, and thus
unnecessary. For others, it provides a means for providing a more accessible measure of
such dynamics and presumes that social networks have value. The most fitting, and
selected, definition for this work is that provided by Nahapiet and Goshal (1998).

Social capital is commonly assessed using social network analysis (SNA), which
measures and analyses the properties of social networks (Cross et al., 2002). These
measures include, for example, centrality (to assess how connected an individual is),
cohesion (the degree to which members are directly tied to each other, which can be used
to identify cliques), and density (the amount of connectivity among network members).
Such data is useful for gaining insight about how valuable the members and the network

 64 J.T. Barksdale and D.S. McCrickard

are, how well social capital is leveraged in networks, and how it can be adjusted for
desired outcomes.
Table 2 Definitions of social capital

Authors Domain Definition

Hanifan (1916) Political
science

“… that in life which tends to make these tangible
substances count for most in the daily lives of a people,
namely, good-will, fellowship, mutual sympathy and social
intercourse among a group of individuals and families who
make up a social unit, the rural community, whose logical
center is the school.”

Bourdieu
(2008)

Sociology “The aggregate of the actual or potential resources which
are linked to possession of a durable network of more or less
institutionalized relationships of mutual acquaintance or
recognition.”

Schiff (1992) Business “… the set of elements of the social structure that affects
relations among people and are inputs or arguments of the
production and/or utility function.”

Burt (1992) Public
administration

“… friends, colleagues, and more general contacts through
whom you receive opportunities to use your financial and
human capital.”

Fukuyama
(1997)

 “… the existence of a certain set of informal values or
norms shared among members of a group that permit
cooperation among them.”

Nahapiet and
Ghoshal (1998)

Business “… the sum of the actual and potential resources embedded
within, available through, and derived from the network of
relationships possessed by an individual or social unit.”

Putnam (2000) Public
administration

“… connections among individual-social networks and the
norms of reciprocity and trustworthiness that arise from
them.”

4.2 Network governance

Network governance theory emphasises the coordination of informal social
systems through establishing or leveraging structures to guide network activities and
network-level outcomes (e.g., network efficiency) (Jones and Hesterly, 1997; Provan and
Kenis, 2008). This means changing how the network functions to achieve a desired result.
It is different from the structural dimension of social capital because it is concerned with
the structure of decision-making in the network instead of merely the positioning of
members in the network.

The network governance theory used in this study was developed by Provan and
Kenis (2008). They define network governance as involving “the use of institutions and
structures of authority and collaboration to allocate resources and to coordinate and
control joint action across the network as a whole”. This theory is used because it not
only distinguishes between organisational and network governance (with a focus on the
network), but also because it is flexible – able to accommodate application in a variety of
domains. Consistent with the intentions of this work, they view the network “as a
variable, examining different network governance configurations and the conditions for
the effectiveness of each form”.

 Software product innovation in agile usability teams 65

4.3 Knowledge management

The way knowledge is created and shared has implications for and consequences in work
team collaboration. What, how, and when knowledge is acquired and exchanged can
influence the team’s effectiveness and efficiency. If team members do not have a clear
understanding of the knowledge they are sharing or attach different meanings to
knowledge that is gained, then collaboration can become strained and ineffective.
However, if knowledge can be managed in a way that enables a shared understanding and
is exchanged at opportune moments, then it could put team collaboration on a more solid
footing, possibly increasing the likelihood of the team realising their objectives.

5 Agile usability team interaction framework

The goal of the theoretical framework (Figure 6) is to provide researchers and
practitioners with an understanding of how social interaction influences the integration of
the agile software domain and the usability domain (i.e., analytical purpose). The
framework also aids with providing guidance to practitioners on the best practices for
achieving effective usability knowledge management in their agile usability teams (i.e.,
practical purpose). Hence, the understanding gained from the analytical purpose informs
the practical purpose.

Figure 6 Theoretical framework

Social capital
dimensions

(Usability) knowledge
management phases

Network governance forms

1) Structural
2) Cognitive
3) Relational

1) Construction
2) Embodiment
3) Dissemination
4) Use

1) Shared
2) Lead
3) Network admin.

Nahapiet and Goshal (1998) McAdam and McCreedy (1999) Provan and Kenis (2007)

5.1 Social capital and the framework

Social capital is incorporated into the framework as a partial explanation of what
influences how usability knowledge is managed. Its inclusion has import for both the
analytical and practical purposes. From an analytical perspective, its inclusion in the
framework facilitates capturing data about the team’s social capital. Its inclusion also
helps to answer the question of what and how best to measure social capital. From a
practical perspective, it helps to give practitioners insight about what targeted changes

 66 J.T. Barksdale and D.S. McCrickard

they can make to their social capital to create change that is likely to achieve their desired
effectiveness for how usability knowledge is managed.

5.2 Network governance and the framework

Network governance serves as another partial explanation of how the relationship
between social capital and usability knowledge management is affected by the
governance form of the network (or team). In this framework, however, network
governance is analysed as having influence on the relationship between social capital and
usability knowledge management versus directly on usability knowledge management. It
means that some governance forms may influence the relationship between social capital
and usability knowledge management and some may not.

5.3 Knowledge management and the framework

Usability knowledge management is the outcome of interest in the framework and of this
study. How usability knowledge is managed has implications for the resulting usability of
the software product, team management, and customer satisfaction. For example,
ineffective or inefficient management of usability knowledge could result in usability
decisions not being incorporated into the software because of a breakdown anywhere
between the time it was created and its potential use. Although all usability knowledge
may not be utilised, there is value in knowing where and why it lost traction and whether
it was an intentional or unintentional decision to not use that knowledge.

6 Framework evaluation

To assess the potential effectiveness and applicability of the proposed agile usability team
interaction framework to professional practices, we conducted an expert review. An
expert review is a structured walkthrough of typical tasks meant to test a process or tool
(Shneiderman, 2009). It is a common method in UE and other people-centric sciences,
providing rapid and low-cost feedback about a method prior to long-term large-scale
deployment (which will be our next steps with our framework).

Specifically, our expert review asked four domain experts to provide feedback on the
perceived benefits, limitations, application, and challenges with applying the framework
based on their areas of expertise. They were provided with materials related to our
framework, and they were asked to respond to a series of questions about it. The
evaluation covered four areas of inquiry: the perceived benefits, application, limitations,
and application challenges of the framework. Follow-up questions were used to resolve
discrepancies.

6.1 Method

Data were collected via an online survey from four professionals with expertise in
software engineering, ASD, usability, behavioural analysis, social capital and network
analysis, and UX. The average work experience across experts was 13 years. Each
participant was provided with an overview and description of the framework for
reference.

 Software product innovation in agile usability teams 67

6.2 Results

Participants reported such benefits as the framework’s potential to better integrate team
members of different backgrounds and improve the productivity and performance of the
team.

In terms of application of the framework, the experts stated that using scenarios as
guidance would be useful in applying the framework, and that the framework could be
applied in teams where there is uncertainty in the team or innovative leadership willing to
take risks. It was also communicated that techniques such as workshops, tutorials,
consulting, and discussions were effective methods for applying the framework.

Participants reported the following limitations of the framework: the possibility of the
team experiencing gridlock if they were highly polarised, that the framework should be
more accessible to practitioners given its currently theoretical nature, that it should also
appeal to agile developers, that it should provide actionable guidance for the practitioner,
that there might exist conflict between the goals of the individual team members and the
team, and that the framework should be sensitive enough to recognise influences that are
not explicitly part of the model.

The limitations noted are consistent with the vision for the framework. The current
implementation of the framework is intended to help us understand existing interactions
in a multidisciplinary agile usability team. The insight gained from studying teams with
the existing model will help us identify additional factors that might influence how
usability knowledge is managed and inform the crafting of practical guidance on how
team members can improve their interaction and minimise polarisation. Additionally,
usability knowledge management is the outcome for the current model, but it is our goal
to gradually expand the area of concern to other roles toward improving knowledge
management throughout the team generally.

Key challenges to applying the framework mentioned by several reviewers were
obtaining buy-in by management and team members, and motivating practitioners to
utilise the framework over existing approaches. Also mentioned were challenges with
ensuring effective communication and coordination in the team, and balancing short-term
and long-term strategic interests.

Adoption is a common concern when introducing tools or approaches, and we
acknowledge these potential challenges. Our aim is to increase the likelihood of adoption
by building the framework on an empirical foundation. By studying teams using the
existing model, we anticipate the model will ultimately better reflect the actual concerns
of multidisciplinary agile usability teams. Informing the framework with empirical data
from agile usability teams will also help establish buy-in from practitioners. We also
anticipate that keeping agile principles in mind during the development of the framework
will help toward mitigating application challenges.

7 Discussion

Reflecting on the existing agile usability integration strategies, through the lens of the
proposed framework, helps clarify the importance of social interaction in agile usability
teams. This section discusses the role social interaction plays in existing agile usability
integration strategies – thus comparing each strategy with social capital, network

 68 J.T. Barksdale and D.S. McCrickard

governance, and usability knowledge management. The purpose of this critical analysis is
to highlight the relevance of social interaction in existing integration strategies.

7.1 Practices integration via framework lens

Practices integration was defined earlier as the sharing of practices employed by each
domain: ASD and usability. The team’s social interaction can influence how effective the
team is at sharing practices. For example, the team structure, the level of shared meaning
and learning within the team, relationships among members across domains, and the level
of inclusion when it comes to deciding how the team will function are likely to impact to
what extent practices sharing occurs.

Team structure attributes, such as the density of communication links within the team,
can impact whether sufficient communication occurs among members across domains. If
communication is primarily between a couple of agile software developers and usability,
for example, they could miss opportunities to share best practices based on their unique
experiences.

Cognitive attributes, such as team learning and shared meaning, can affect how easy
it is for members to share best practices. Members of each domain have a language that is
unique to their domain, and overlap between domains may or may not exist. In instances
where there is not an overlap, communicating a best practice requires translation on both
parts to clearly describe, understand, and apply the practice.

Relational attributes (e.g., trust) can influence whether members of a domain trust
sharing practices with each other. For instance, if the usability experts believe that
sharing practices with agile software developers will be used against them in some way,
they may be less inclined to share that knowledge.

Network governance, concerned with the decisions of resource allocation in and
coordination of network members, can affect whether shared practices are implemented.
In a shared governance form, members have greater control over whether practices are
employed within the team, whereas a team lead might make that decision in a lead
governance form.

The effects of practices integration on usability knowledge management without
consideration of the team’s social interaction could yield differing results. Examining
practices integration through each framework component shows that sharing does not
occur irrespective of the team’s style of social interaction.

7.2 Process integration via framework lens

Process integration – the integration of disparate ASD and usability processes – more
strongly considers social interaction than practices integration, but still has its limitations.
Its primary limitation is the explicit and routinised approach to social interaction. While
this may be ideal for process-driven tasks (e.g., writing code) and still fundamental to
teams, a more personable compliment is needed when interaction with others is
necessary.

The team’s structure can facilitate or undermine the integrated process used by the
agile software developers and usability experts. If the process prescribes that the
developers and usability experts communicate with each other at regular intervals, but
they are isolated from each other in their structure, this could undermine that objective of
the integrated process.

 Software product innovation in agile usability teams 69

Although an integrated process aids in providing a shared language within the team
via the process language, it cannot take the place of shared meaning across domains.
Team members of both domains may understand and follow the integrated process, but
the possibility for misunderstandings about the product remains. In essence, shared
process language does not imply shared domain language.

Relational attributes are commonly overlooked in an integrated process. Interaction
prescribed by the process is commonly task-focused and less concerned with whether
following it builds such things as trust. Also, a low level of trust in the team could
adversely impact the effectiveness of the process. For example, members may follow the
process but withhold useful information, or they may simply selectively use the process.

A benefit of the integrated process strategy is that it facilitates coordination among
members, which complements the network governance forms. What network governance
contributes (besides the process) is knowledge of how the social interaction impacts the
various structures for making team resource allocation and coordination decisions.

Although it is likely that usability knowledge management is less of a concern with
the process integration strategy, awareness of the social interaction can ease its
management. Knowing the strengths and weaknesses of the team’s social interaction style
enables the team to adjust their interaction to get the most out of the process, and thereby
minimise barriers to effective management of usability knowledge.

7.3 Technology integration via framework lens

Technology integration leverages the communication between the tools used by each
domain. An emphasis on social interaction is important in the context of technology
integration because it is easier for members to work through their tools as their primary
method of interacting. The limitation is more obvious in this strategy than the practices
and process integration strategies. Namely, that limitation is the risk of social interaction
being practically non-existent.

Without consideration of the structural dimension in the technology integration
strategy, some critical communication may not happen. Instead, members might believe
that what is put into the tools is all that matters. For example, the usability expert might
update the UI design in the tool, which updates in the developer’s tool. However, there
are other topics (e.g., design goals) that have to be discussed.

Establishing shared meaning and understanding is challenging when person to person
interaction exists. When technology is the primary medium, some of the personal context
can be lost if social interaction is not built into the way tools are used.

Building trust and establishing relationships within teams can be challenging.
To some degree, technology can facilitate building relationships given the ease
with which members can communicate with each other. However, such computer
mediated communication can result in a loss of information that can adversely affect the
relationship between team members. By focusing on social interaction, teams can be
more strategic in what technology they use and how they use it.

Usability knowledge management can benefit from the use of technology when the
appropriate technology is used to institutionalise the knowledge. However, the quality of
the knowledge entered into and used from knowledge management systems can be
affected by the structural, cognitive, relational, and governance nature of the team.

 70 J.T. Barksdale and D.S. McCrickard

7.4 People integration via framework lens

People integration is the addition of team members (or the skillset through training of
existing members) to fulfil the requirement for a usability member. The primary
limitation with this strategy is that little, if any, attention is given to how the change in
the team will influence the social interaction among team members.

The impact of adding a person (or skillset) to the team without considering the team’s
structure and communication flow could create political tension among the team. For
example, the team might have a very different dynamic if the usability expert is
responsible to a developer versus the manager over developers. The former might result
in a greater emphasis on developer activity than usability activities.

When finding shared meaning and understanding, it is easy to dismiss the need to
emphasise establishing common ground in the people integration strategy. For example, a
usability expert might be added to the team, resulting in an assumption that the addition is
all that is necessary. To the contrary, effort should also go into ensuring the team and
usability expert are willing to learning from each other for meaningful output to occur.

On the relational dimension, if the usability expert does not make a conscious effort
to gain the trust of the other members of the team or learn the norms, it can make their
collaboration more difficult. Conversely, developers must gain the trust of the usability
expert as a means to ensuring that usability knowledge is incorporated into the product.

It is possible that usability knowledge management could be more difficult at the
team level if the social interaction between the usability expert and the rest of the team is
not sufficient. For example, usability knowledge creation might be difficult without the
necessary access to the users.

8 Implications and recommendations

8.1 Practical implications and recommendations

The field of software development has been perceived as being comprised of those who
prefer working at a computer to socialising with others. For practitioners, the proposed
relationship between social interaction and usability knowledge management could mean
that team social dynamics have a greater impact on the software product than realised,
which could mean a need for a more social culture among development teams.

As agile usability software teams are formed, the proposed relationships suggest that
social interaction should be factored into team-related decisions. For example, it might
prove useful for teams to more strategically consider the structural, cognitive, relational
characteristics of their team, as well as the governance form used in their team. This
might especially prove advantageous in teams where usability experts and software
developers are not on separate teams and are disproportionate in size. For example, if
there are only one or two usability experts on a larger agile development team, the team
interaction framework can help balance the influence via the governance form used, or by
identifying and strengthening a particular dimension of social capital (e.g., the cognitive
dimension toward greater shared meaning) among the team members.

As usability continues to gain traction in ASD teams, interaction among team
members will become ever more important. This will especially hold in cases such as
mobile development, where UI development can play a key role in whether users keep or

 Software product innovation in agile usability teams 71

discard mobile applications. This team interaction framework is well suited to help teams
mature their interactions and adjust to the platform for which they’re developing.

Another practical implication is that teams may experience difficulty with
encouraging some team members to move out of their existing comfort zone. Team leads
and other team level managers can possibly mitigate such concerns by minimising the
tension that can develop between what is communicated and what is rewarded. By
bringing communication and rewards into alignment for team members, they may be
more likely to accept and respond to the need for more social interaction. For example,
communication can occur by consistently encouraging developers and usability experts to
work directly with one another instead of making assumptions about insight that falls in
each other’s areas of expertise (e.g., assuming what the user might prefer or technical
limitations). In this example, one possible reward is to publicly acknowledge, during
team meetings, the benefits that resulted from the interaction between the usability expert
and the developer.

8.2 Research implications and recommendations

As shown from the review of related literature, additional study of the social interaction
in agile usability software teams is needed. Agile usability research serves as an
opportunity for research and practice to contribute to one another toward the production
of grounded and empirical knowledge. This knowledge then has greater relevance to
practice and is likely to be more consumable by practitioners. Conversely, practice can
better inform research as practitioners are likely to provide more relevant feedback from
their involvement in the research.

As research on agile usability continues, there will be a need for identifying lines of
inquiry that provide understanding about whether, and in what cases, social interaction is
most critical in agile usability software teams. This also includes determining which
kinds and what levels of social interaction are most beneficial to product usability and
innovation at varying phases of the project. For example, is social interaction more
important in the beginning, middle, or end of an iteration or a release? Is less social
interaction less beneficial if all team members have the understanding needed to complete
a task? Is the cognitive dimension more important during the beginning of an iteration
and the relational dimension more important at the end of an iteration? Consideration of
these and many other related questions can help agile usability teams better understand
the role social dynamics play in their team and can better arm them with the
understanding required to make adjustments.

8.3 Policy implications and recommendations

In line with encouraging a change in team interaction at the team level, management may
need to modify how they measure performance to ensure that they are encouraging
effective social interaction in and across teams from the corporate level. Corporate
changes could include modifying their core values or how they are communicated,
building recognition of cross-team interaction into their corporate incentive program, or
consistently communicate and reinforce its importance when during interaction with the
team members and during organisational meetings.

 72 J.T. Barksdale and D.S. McCrickard

Understanding the impact of social interaction on organisational policies is possible
via a strategic partnership between researchers and practitioners. Access to organisations
is imperative when conducting research that benefits the practice of developing software
products. Currently, it can be challenging to gain access to experts and the proprietary
data of organisations.

To empirically understand and improve the social interaction of agile usability
software teams and its effects through organisational policies, a precursor of policies that
guide the collaboration between researchers and practitioners is needed. Such policies
might formalise, for example, the extent to which employees can participate in studies,
how participant anonymity and data confidentiality will be maintained, and the benefits
of the study to the organisation and the community generally.

9 Conclusions

This research endeavoured to contribute a history of the development of agile usability
integration, propose a framework for evaluating the social interaction and usability
knowledge management in agile usability software teams, and to discuss the implications
of and recommendations for improving the social interaction and management of
usability knowledge in agile usability software teams.

We identified five categories of agile usability integration – practice, process,
technology, people, and social – that have been researched or used. We focused on the
social integration approach and critiqued the role of social interaction in the other four
integration approaches. More specifically, we discussed the potential impact of not duly
considering the role of social interaction – in agile usability and in other integration
strategies – on team dynamics and product usability and innovation. Finally, we
discussed the implications and recommendations for practice, research, and policy
relative to the framework.

Acknowledgements

The authors thank the expert reviewers for their time in providing feedback about the
framework. The authors also thank the journal reviewers and editor for their thoughtful
comments.

References
Adikari, S., McDonald, C. and Campbell, J. (2009) ‘Little design up-front: a design science

approach to integrating usability into agile requirements engineering’, Human-Computer
Interaction. New Trends, Vol. 5610, pp.549–558, Springer.

Adler, P. and Kwon, S. (2002) ‘Social capital: prospects for a new concept’, Academy of
Management Review, Vol. 27, No. 1, pp.17–40, JSTOR.

Ambler, S.W. (2008) ‘Tailoring usability into agile software development projects’, Maturing
Usability, pp.75–95, Springer, London.

Anwar, M.F. (2006) ‘Engineering the requirements in user-centered design and agile development
methodologies’, CUSEC 2006, Citeseer, p.56.

 Software product innovation in agile usability teams 73

Barksdale, J.T. and McCrickard, D.S. (2010) ‘Concept mapping in agile usability: a case study’,
Proceedings of the 28th of the International Conference Extended Abstracts on Human
Factors in Computing Systems, ACM, pp.4691–4694.

Barksdale, J.T., Ragan, E.D. and McCrickard, D.S. (2009) ‘Easing team politics in agile usability: a
concept mapping approach’, Agile Conference, 2009, AGILE’09, IEEE, pp.19–25.

Beck, K. and Andres, C. (2004) Extreme Programming Explained: Embrace Change, 2nd ed.,
Addison-Wesley Professional, USA.

Benigni, G., Gervasi, O., Passeri, F. and Kim, T.H. (2010) ‘USABAGILE_Web: a web agile
usability approach for web site design’, Computational Science and Its Applications – ICCSA
2010, Springer, pp.422–431.

Blomkvist, S. (2005) ‘Towards a model for bridging agile development and user-centered design’,
Human-Centered Software Engineering – Integrating Usability in the Software Development
Lifecycle, Springer, pp.219–244.

Booch, G., Rumbaugh, J. and Jacobson, I. (2005) Unified Modeling Language User Guide, The
(Addison-Wesley Object Technology Series), Addison-Wesley Professional, USA.

Bourdieu, P. (2008) ‘The forms of capital’, in N.W. Biggart (Ed.): Readings in Economic
Sociology, Blackwell Publishers Ltd., Oxford.

Brown, J., Lindgaard, G. and Biddle, R. (2008) ‘Stories, sketches, and lists: developers and
interaction designers interacting through artefacts’, Agile 2008 Conference, IEEE, pp.39–50.

Budwig, M., Jeong, S. and Kelkar, K. (2009) ‘When user experience met agile: a case study’,
Proceedings of the 27th International Conference Extended Abstracts on Human Factors in
Computing Systems, pp.3075–3084, ACM.

Burt, R.S. (1995) Structural Holes: The Social Structure of Competition, First Harvard Univ. Press,
USA.

Bygstad, B., Ghinea, G. and Brevik, E. (2008) ‘Software development methods and usability:
perspectives from a survey in the software industry in Norway’, Interacting with Computers,
Vol. 20, No. 3, pp.375–385, Elsevier.

Carvalho, C.R.M.de. (2010) ‘MEX experience boards: a set of agile tools for user experience
design’, Proceedings of the IX Symposium on Human Factors in Computing Systems,
pp.213–216, Brazilian Computer Society, Belo Horizonte, Minas Gerais, Brazil.

Chamberlain, S., Sharp, H. and Maiden, N. (2006) ‘Towards a framework for integrating agile
development and user-centred design’, Extreme Programming and Agile Processes in
Software Engineering, Vol. 4044, pp.143–153, Springer.

Clarke, J., Connors, J. and Bruno, E.J. (2009) JavaFX: Developing Rich Internet Applications,
Prentice Hall PTR, USA.

Constantine, L. (2002) ‘Process agility and software usability: toward lightweight usage-centered
design’, Information Age, Vol. 8, No. 8, pp.1–10.

Constantine, L.L. and Lockwood, L.A.D. (2002) ‘Usage-centered engineering for web
applications’, IEEE Software, Vol. 19, No. 2, pp.42–50, IEEE Computer Society.

Constantine, L.L. and Lockwood, L.A.D. (2003) ‘Usage-centered software engineering: an agile
approach to integrating users, user interfaces, and usability into software engineering practice’,
Proceedings of the 25th International Conference on Software Engineering, IEEE Computer
Society, pp.746–747.

Cross, R., Borgatti, S. and Parker, A. (2002) ‘Making invisible work visible: using social network
analysis to support strategic collaboration’, California Management Review, Vol. 44, No. 2,
pp.25–47, University of California.

Detweiler, M. (2007) ‘Managing UCD within agile projects’, Interactions, Vol. 14, No. 3,
pp.40–42, ACM.

Duchting, M., Zimmermann, D. and Nebe, K. (2007) ‘Incorporating user centered requirement
engineering into agile software development’, Proc. HCII, pp.58–67, Springer, Berlin,
Heidelberg.

 74 J.T. Barksdale and D.S. McCrickard

Evnin, J. and Pries, M. (2008) ‘Are you sure? Really? A contextual approach to agile user
research’, Agile 2008 Conference, IEEE, pp.537–542.

Federoff, M., Villamor, C., Miller, L., Patton, J., Rosenstein, A., Baxter, K. and Kelkar, K. (2008)
‘Extreme usability: adapting research approaches for agile development’, Proc. CHI Extended
Abstracts, pp.2269–2272, ACM.

Ferre, X., Juristo, N. and Moreno, A. (2005a) ‘Framework for integrating usability practices
into the software process’, Product Focused Software Process Improvement, Vol. 3547,
pp.202–215, Springer.

Ferre, X., Juristo, N. and Moreno, A. (2005b) ‘Which, when and how usability techniques
and activities should be integrated’, Human-Centered Software Engineering – Integrating
Usability in the Software Development Lifecycle, pp.173–200, Springer, Netherlands.

Ferreira, J., Noble, J. and Biddle, R. (2007a) ‘Up-front interaction design in agile development’,
Agile Processes in Software Engineering and Extreme Programming, Vol. 4536, pp.9–16,
Springer.

Ferreira, J., Noble, J. and Biddle, R. (2007b) ‘Agile development iterations and UI design’, AGILE
2007, IEEE, pp.50–58.

Ferreira, J., Sharp, H. and Robinson, H. (2010) ‘Values and assumptions shaping agile development
and user experience design in practice’, Agile Processes in Software Engineering and Extreme
Programming, Springer, pp.178–183.

Fowler, M. and Highsmith, J. (2001) ‘The agile manifesto’, Software Development, Vol. 9, No. 8,
pp.28–35, Miller Freeman, Inc., 1993, San Francisco, CA.

Fox, D., Sillito, J. and Maurer, F. (2008) ‘Agile methods and user-centered design: how these
two methodologies are being successfully integrated in industry’, Agile, 2008, AGILE’08,
IEEE, pp.63–72.

Fukuyama, F. (1997) ‘Social capital and the modern capitalist economy: creating a high trust
workplace’, Stern Business Magazine, Vol. 4, No. 1, pp.1–16.

Ghosh, G. (2004) ‘Agile, multidisciplinary teamwork’, Methods & Tools, available at
http://www.methodsandtools.com/archive/archive.php?id=17 (accessed on 25 July 2011).

Göransson, B., Gulliksen, J. and Boivie, I. (2003) ‘The usability design process – integrating user-
centered systems design in the software development process’, Software Process:
Improvement and Practice, Vol. 8, No. 2, pp.111–131.

Haikara, J. (2007) ‘Usability in agile software development: extending the interaction design
process with personas approach’, Agile Processes in Software Engineering and Extreme
Programming, Vol. 4536, pp.153–156, Springer.

Hanifan, L.J. (1916) ‘The rural school community center’, Annals of the American Academy of
Political and Social Science, Vol. 67, No. 1, pp.130–138, JSTOR.

Hansson, C. (2002) User Driven Software Development in a Small Company, Blekinge Institute of
Technology.

Highsmith, J. and Cockburn, A. (2001) ‘Agile software development: the business of innovation’,
Computer, Vol. 34, No. 9, pp.120–127, IEEE.

Hudson, W. (2005) ‘A tale of two tutorials: a cognitive approach to interactive system design and
interaction design meets agility’, Interactions, Vol. 12, No. 1, pp.49–51, ACM.

Hussain, Z. and Slany, W. (2009a) ‘Current state of agile user-centered design: a survey’, HCI and
Usability for e-Inclusion, Vol. 5889, pp.416–427.

Hussain, Z and Slany, W. (2009b) ‘Investigating agile user-centered design in practice: a grounded
theory perspective’, HCI and Usability for e-Inclusion, Vol. 5889, pp.279–289, Springer.

Hussain, Z., Lechner, M. and Milchrahm, H. (2008) ‘Agile user-centered design applied to
a mobile multimedia streaming application’, HCI and Usability for Education and Work,
Vol. 5298, pp.313–330.

 Software product innovation in agile usability teams 75

Hussain, Z., Milchrahm, H., Shahzad, S. and Slany, W. (2009) ‘Integration of extreme
programming and user-centered design: lessons learned’, Extreme Programming, Vol. 31,
No. 3, pp.174–179.

Jones, C. and Hesterly, W. (1997) ‘A general theory of network governance: exchange conditions
and social mechanisms’, Academy of Management Review, Vol. 22, No. 4, pp.911–945.

Kruchten, P. (1995) ‘The 4+1 View Model of Architecture’, Software, Vol. 12, No. 6, pp.42–50,
IEEE.

Larman, C. (2002) Applying UML and Patterns : An Introduction to Object-Oriented Analysis and
Design and the Unified Process, 2nd ed., Prentice Hall PTR, Upper Saddle River, NJ.

Law, E., Roto, V., Vermeeren, A.P.O.S., Kort, J. and Hassenzahl, M. (2008) ‘Towards a shared
definition of user experience’, Proc. CHI Extended Abstracts, pp.2395–2398, ACM, Florence,
Italy.

Lee, J. and McCrickard, D. (2007) ‘Towards extreme(ly) usable software: exploring tensions
between usability and agile software development’, Agile 2007, pp.59–71, IEEE Computer
Society, Washington, DC.

Lee, J.C. (2006) ‘Embracing agile development of usable software systems’, Proc. CHI Extended
Abstracts, pp.1767–1770, ACM.

Lee, J.C. (2010) ‘Integrating scenario-based usability engineering and agile software development’,
PhD dissertation, Virginia Tech, Blacksburg, VA.

Lee, J.C., McCrickard, D.S. and Stevens, K.T. (2009) ‘Examining the foundations of agile usability
with eXtreme scenario-based design’, 2009 Agile Conference, IEEE, pp.3–10.

Lee, J.C., Wahid, S., McCrickard, D.S., Chewar, C. and Congleton, B. (2007) ‘Understanding
usability: investigating an integrated design environment and management system’, Interactive
Technology and Smart Education, Vol. 4, No. 3, pp.161–175, Emerald Group Publishing
Limited.

Lievesley, M.A. and Yee, J.S.R. (2006) ‘The role of the interaction designer in an agile software
development process’, Proc. CHI Extended Abstracts, pp.1025–1030, ACM.

Löwgren, J. and Stolterman, E. (2004) Thoughtful Interaction Design: A Design Perspective on
Information Technology, The MIT Press, USA.

MacVittie, L.A. (2006) XAML in a Nutshell, O’Reilly Media, Inc., Sebastopol, CA.
Mayhew, D. (1999) The Usability Engineering Lifecycle: A Practitioner’s Handbook for User

Interface Design, Morgan Kaufmann, San Francisco, CA.
McAdam, R. and McCreedy, S. (1999) ‘A critical review of knowledge management models’, The

Learning Organization, Vol. 6, No. 3, pp.91–101.
McClelland, I. (2005) ‘‘User experience’ design a new form of design practice takes shape’, Proc.

CHI Extended Abstracts, pp.1096–1097, ACM, Portland, OR, USA.
McDonald, A. and Welland, R. (2003) ‘Agile web engineering (AWE) process: multidisciplinary

stakeholders and team communication’, Web Engineering, Springer, pp.253–312.
McInerney, P. and Maurer, F. (2005) ‘UCD in agile projects: dream team or odd couple?’,

Interactions, Vol. 12, No. 6, pp.19–23, ACM.
Memmel, T., Bock, C. and Reiterer, H. (2008) ‘Model-driven prototyping for corporate software

specification’, Engineering Interactive Systems, Springer, pp.158–174.
Memmel, T., Gundelsweiler, F. and Reiterer, H. (2007a) ‘Agile human-centered software

engineering’, Proceedings of the 21st British HCI Group Annual Conference on People and
Computers: HCI... But Not as We Know It, British Computer Society, Vol. 1, pp.167–175.

Memmel, T., Gundelsweiler, F. and Reiterer, H. (2007b) ‘CRUISER: a cross-discipline user
interface and software engineering lifecycle’, Human-Computer Interaction: Interaction
Design and Usability, Springer, pp.174–183.

Memmel, T., Gundelsweiler, F. and Reiterer, H. (2007c) ‘Prototyping corporate user interfaces:
towards a visual specification of interactive systems’, Proceedings of the Second IASTED
International Conference on Human Computer Interaction, ACTA Press, pp.177–182.

 76 J.T. Barksdale and D.S. McCrickard

Memmel, T., Reiterer, H. and Holzinger, A. (2007d) ‘Agile methods and visual specification in
software development: a chance to ensure universal access’, Universal Access in Human
Computer Interaction: Coping with Diversity, Vol. 4554, pp.453–462, Springer.

Meszaros, G. and Aston, J. (2006) ‘Adding usability testing to an agile project’, Agile Conference,
IEEE, p.6.

Miller, L. (2006) ‘Case study of customer input for a successful product’, Agile Conference, 2005,
Proceedings, IEEE, pp.225–234.

Miller, L. and Sy, D. (2009) ‘Agile user experience SIG’, Proceedings of the 27th international
Conference Extended Abstracts on Human Factors in Computing Systems, ACM,
pp.2751–2754.

Nahapiet, J. and Ghoshal, S. (1998) ‘Social capital, intellectual capital, and the organizational
advantage’, Academy of Management Review, Vol. 23, No. 2, pp.242–266, JSTOR.

Nielsen, J. (1993a) ‘Iterative user-interface design’, Computer, Vol. 26, No. 11, pp.32–41, IEEE.
Nielsen, J. (1993b) Usability Engineering, Morgan Kaufmann, San Francisco, CA.
Nunes, N.J. (2009) ‘What drives software development: bridging the gap between software and

usability engineering’, Human-Centered Software Engineering, Springer, pp.9–25.
Obendorf, H. and Finck, M. (2008) ‘Scenario-based usability engineering techniques in agile

development processes’, Proc. CHI Extended Abstracts, pp.2159–2166, ACM.
Paelke, V. and Nebe, K. (2008) ‘Integrating agile methods for mixed reality design space

exploration’, Proceedings of the 7th ACM Conference on Designing Interactive Systems,
ACM, pp.240–249.

Paelke, V. and Sester, M. (2010) ‘Augmented paper maps: exploring the design space of a mixed
reality system’, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 65, No. 3,
pp.256–265, Elsevier.

Parsons, D., Lal, R., Ryu, H. and Lange, M. (2007) ‘Software development methodologies, agile
development and usability engineering’, ACIS 2007 Proceedings, Citeseer, p.21.

Patton, J. (2002a) ‘Hitting the target: adding interaction design to agile software development’,
OOPSLA 2002 Practitioners Reports, ACM, pp.1–7.

Patton, J. (2002b) ‘Designing requirements: incorporating usage-centered design into an agile SW
development process’, Extreme Programming and Agile Methods – XP/Agile Universe 2002,
pp.95–102, Springer.

Patton, J. (2007) ‘Understanding user centricity’, IEEE Software, November, pp.9–11.
Provan, K.G. and Kenis, P. (2008) ‘Modes of network governance: structure, management, and

effectiveness’, Journal of Public Administration Research and Theory, Vol. 18, No. 2,
pp.229–252.

Putnam, R. (2000) Bowling Alone: The Collapse and Revival of American Community, Simon &
Schuster, New York, NY.

Pyla, P. (2007) ‘Connecting the usability and software engineering life cycles through a
communication-fostering software development framework and cross-pollinated computer
science courses’, PhD dissertation, Virginia Tech, Blacksburg, VA.

Rosson, M. and Carroll, J. (2002) Usability Engineering: Scenario-Based Development of
Human-Computer Interaction, Morgan Kaufmann, San Francisco, CA.

Schiff, M. (1992) ‘Social capital, labor mobility, and welfare’, Rationality and Society, Vol. 4,
No. 2, p.157, Sage Publications.

Schwaber, K. (2004) Agile Project Management with Scrum (Microsoft Professional), 1st ed.,
Microsoft Press, Redmond, WA.

Sharp, H., Biddle, R., Gray, P., Miller, L. and Patton, J. (2006) ‘Agile development: opportunity or
fad?’, Proc. CHI Extended Abstracts, pp.32–35, ACM.

Shneiderman, B. (2009) Designing the User Interface: Strategies for Effective Human-computer
Interaction, 5th ed., Harlow: Pearson Education, Upper Saddle River, NJ.

 Software product innovation in agile usability teams 77

Singh, M. (2008) ‘U-SCRUM: an agile methodology for promoting usability’, Agile, 2008,
AGILE’08, Conference, IEEE, pp.555–560.

Sohaib, O. and Khan, K. (2010) ‘Integrating usability engineering and agile software development:
a literature review’, 2010 International Conference on Computer Design and Applications
(ICCDA), IEEE, Vol. 2, pp.32–38.

Sy, D. (2007) ‘Adapting usability investigations for agile user-centered design’, Journal of
Usability Studies, Vol. 2, No. 3, pp.112–132.

Sy, D. and Miller, L. (2008) ‘Optimizing agile user-centred design’, Proc. CHI Extended Abstracts,
pp.3897–3900, ACM Press, New York, New York, USA, doi:10.1145/1358628.1358951.

Tai, G. (2005) ‘A communication architecture from rapid prototyping’, Proc. Workshop on Human
and Social Factors of Software Engineering, Vol. 30, No. 4, pp.1–3.

Ungar, J. (2008) ‘The design studio: interface design for agile teams’, Agile 2008, pp.519–524,
IEEE.

Ungar, J.M. and White, J.A. (2008) ‘Agile user centered design: enter the design studio – a case
study’, Proc. CHI Extended Abstracts, pp.2167–2178, ACM.

Wolkerstorfer, P., Tscheligi, M., Sefelin, R., Milchrahm, H., Hussain, Z., Lechner, M. and
Shahzad, S. (2008) ‘Probing an agile usability process’, Proc. CHI Extended Abstracts,
pp.2151–2158, ACM.

