
Facilitating and Automating Empirical Evaluation  
Laurian Hobby, John Booker, D. Scott McCrickard, C. M. Chewar, Jason Zietz 

Center for HCI and Department of Computer Science 
Virginia Polytechnic Institute and State University (Virginia Tech)  

Blacksburg, VA. 24061-0106 
(540) 231-7409 

  
ABSTRACT 
Through the automation of empirical evaluation we hope to 
alleviate evaluation problems encountered by software designers 
who are relatively new to the process. Barriers to good empirical 
evaluation include the tedium of setting up a new test for each 
project, as well as the time and expertise needed to set up a 
quality test. We hope to make the evaluation process more 
accessible to a wider variety of software designers by reducing the 
time and effort required for evaluation through the use of a 
wizard-like system that does not require expertise in evaluation 
techniques. Implementation is accomplished by utilizing a library 
of design knowledge in the form of claims to focus the 
evaluations.  User tests were performed to evaluate receptiveness 
to the software tool as well at the performance of the underlying 
methods. Results were positive and provide a justification for 
further research into this area as well as exposing problem areas 
for improvement. 

Categories and Subject Descriptors 
D.2.2 [Design Tools and Techniques]: Evolutionary Prototyping 

General Terms 
Design, Experimentation, HCI, Human Factors, Verification 

Keywords 
Critical parameters, design, reuse, interaction. 

1. INTRODUCTION 
Empirical evaluation, the scientific study of users working with 
and evaluating a computer system, is naturally a challenging 
problem for interface design in software engineering in three 
different yet related ways [11]. The first reason is that it requires 
the designer to spend a cumbersome amount of time evaluating 
and analyzing data. It is not hard to imagine that a designer could 
spend weeks, if not months, evaluating two dozen hours of 
gathered recording. To extend this problem, when creating 
software the designer may have to implement multiple iterations 
of design where the system is tested by a prototypical user. The 
sheer amount of data produced and the amount of time to analyze 
this work is an immense process. Also, the setup and execution of 

creating an empirical evaluation is a unwieldy process.  

The second way that empirical evaluation is a challenging 
problem is that it is a hard process to learn; it requires software 
engineers to become expert in human-computer interaction (HCI) 
[9]. Whole college level classes are dedicated to attempting to 
teach the method of empirical evaluation. However, it is not until 
the designer is actually attempting to evaluate his software that he 
finally starts to work out the intricacies of the process. Empirical 
evaluation, like many things, is a skill and it hard to learn from a 
book. This can cause the designers to become distracted from the 
end goal: to support, with data, that the hypothesis was or was not 
rejected.   

The final way that empirical evaluation is challenging is the lack 
of reusability. The HCI community has been chasing the elusive 
idea of reusability for decades because it would reduce time and 
effort for future designs. However, currently there is a critical loss 
of design data due to the lack of a framework to support reuse. 
[12]. In the particular case of empirical evaluation, the mass of 
data that is accumulated in this process is essentially discarded 
and never used again. If there was a way to leverage the reuse of 
even a small part of this phase in design, there could be a 
significant reduction to the time that empirical evaluation would 
take.  

To address these three problems we propose an automated 
empirical evaluation design environment that would reduce the 
time needed to complete a study, help novice designers learn the 
process, and support reuse. We will discuss an application of 
empirical evaluation and our proposed method of assessment.  

2. BACKGROUND 
2.1 Notification Systems and LINK-UP 
In order to facilitate our goal of supporting an automated 
empirical evaluating environment we narrowed the concentration 
of our design to the area of Notification Systems in HCI. 
Notification systems are a specific kind of software that mediates 
the idea of multi tasking interfaces while working. Designers 
employ notification systems because they support reacting to and 
the comprehension of time sensitive information in a way that is 
not overly interruptive [6]. For example, the user may have one 
primary task, but will have multiple pieces of software running in 
the background. To keep the user up to date on the status of 
secondary programs, notification systems are implemented to 
supply the user with incident information. Typical examples are 
artifacts such as news tickers, automobile dashboard displays, 
context-sensitive help agents, or blinking icons in the control bar.  

LINK-UP (Leveraging Integrated Notification Knowledge with 
Usability Parameters) is a system that supports all phases of 
design for general software development by being implemented 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
43rd ACM Southeast Conference, March 18-20, 2005, Kennesaw, GA, 
USA. Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00. 
 



specifically for notification systems [4]. It allows the designers to 
have a clear view of the envisioned system while being able to 
consider the tradeoffs of using particular artifacts. The designer is 
guided through Scenario Based Design [2] and creates 
prototypical user scenarios about interaction with the system. 
Then, the designer creates claims on what are the upsides and 
downsides for implementing a specific artifact. An example of a 
claim would be the following:  

“Use of ticker-tape text-based animation to display news 
headlines in a small desktop window: Preserves user focus on a 
primary task, while allowing long term awareness BUT is not 
suitable for rapid recognition of and reaction to urgent 
information.”  

The designer then uses claims to evaluate the tradeoff as he or she 
moves through the phases of LINK-UP. The beginning phases of 
LINK-UP are requirements engineering (where designers elicit the 
needs from stakeholders for a system image using generated tools) 
and participatory negotiation (where designers and stakeholders 
gather to negotiate about needed features and artifacts for the 
proposed system). The designer then prototypes their design and 
moves onto the later stages of LINK-UP that are analytic 
evaluation [6] and automated empirical evaluation. From here 
design knowledge is then transferred to a reuse library that stores 
design information that is linked to design claims like the above 
example.  

2.2 Critical Parameters: IRC 
Critical parameters are quantitative performance metrics that 
measure not only a raw attribute, but also measure a system’s 
ability to serve a purpose [8]. How they differ from regular 
parameter is that they go beyond just a “measure of goodness”. 
The only advice one can retrieve from those types of parameters is 
what “you need more of.” On the other hand, critical parameters 
are set up so that you have a target value in your design 
specifications, and you know not only if you have too little of a 
certain parameter, but also too much. For example, the amount of 
interruption desired in a notification system varies: when there is 
a highly critical piece of information that the user needs then a 
high interruption is desire. Since critical parameters are structured 
in such a way that you want to match a certain set of “design 
parameters,” it is important that designers and users alike can 
understand the criteria set forth by a certain parameter. Therefore, 
critical parameters are important to facilitate communication 
between the groups of stakeholders for more efficient work. 

IRC stands for interruption, reaction, and comprehension. These 
are the three critical parameters for notification systems developed 
by McCrickard, et al [5] that we based our empirical system upon.  

2.2.1 Interruption 
In a dual task computer environment, attention is divided between 
a primary and secondary task. The interruption parameters capture 
how much of this attention is required by the secondary task. 
Whenever a notification system causes the user to shift her focus 
to the notification system, this is considered interruption. The best 
way to record this is to measure the effect a notification system 
has on a user’s “primary task performance.” Low interruption 
would be something that does not interfere with the primary task 
in any noticeable way, such as an icon that changes color once to 
indicate a new message, but does not blink.  

2.2.2 Reaction 
In addition to having to look at an interface to discover 
information, users may be prompted to interact with it. Clicking to 
see additional information, sending a quick email, or adding an 
item to a to-do list would be considered reaction.  A user goal of 
low reaction means users desire little direct interaction, such as 
running a stock ticker for casual observation, not active trading.  

2.2.3 Comprehension 
Comprehension is the final parameter that measures how much 
information the user wants to absorb and retain. Low 
comprehension would indicate that the user did not want to retain 
much information—for example, if an email notification system 
used a simple color change in the system tray, prompting reaction 
but delivering little comprehension.  

2.3 Empirical Evaluation and LINK-UP 
There are three phases in our empirical test: the creation of the 
test, the running of the test, and the evaluation of the test results.  
Each of these phases tries to be as easy and automated as possible 
by providing a quick empirical evaluation of a notification system 
thus addressing the problems proposed in the introduction. The 
systems we tested were based on Expedia.com. Students 
developed notification systems to monitor flight information, and 
used our empirical test system to evaluate how well they 
performed. 

2.3.1 Creating the Test Setup 
The goal of the test creation phase is to create the script file that 
drives the primary task in the dual-task environment.  This phase 
guides the designer through the creation of a script file by asking 
a series of questions. Since we cannot feasibly “automatically” 
extract all the information needed to run a test from the prototype 
or design documents, we provide helpful comments throughout 
this process thus reducing the cost of learning. Designers are first 
given an overview of the automated empirical evaluator system. 
They are informed about what this stage does, what information it 
will collect, and what will become of the information that will be 
collected. If they do not know what their results will be like 
before being forced to do the setup, they will likely forego the 
whole system.  

Since the setup phase is the first thing the designer sees, it begins 
with an overview of the system so the designer can judge how 
much work it is going to take and what benefits she will receive 
from it.  The designer is then guided to select the environment 
(i.e. the primary task) for which to test the end users. For example, 
with the Expedia notification system, our participant designers 
chose a game where the end user moves a bar left and right to 
catch falling blocks. Other examples would be typing tasks or 
video games where the level of concentration on the primary task 
is variable. We termed this to be the ‘cost of interruption’.  

After entering the cost of interruption, the automated system asks 
the designer to set up practice, benchmark, and activity rounds. 
Practice rounds are important because they acclimate the end user 
to the primary task. Specifically, the user is working with the 
primary task but performance is not measured. Benchmark rounds 
are also important because performance is logged after 
acclimation occurs. This allows the automated system to have a 
performance measure of the end user that can be measured against 
after the secondary task is added. After entering the information 



needed for both of those rounds the designer enters information 
about and the actual version of the prototyped notification system 
for the activity rounds (i.e., how many rounds to have, when 
notifications will occur, and how long the notifications will last 
for). For example, with our Expedia participants the designer 
might enter that a new flight occurs with her particular prototype 
at forty seconds and a message is displayed for eight seconds. At 
all of these phases the designers are offered helpful information 
on why both of these phases are important and how they are going 
to affect the end users. 

While entering in information about their prototype, designers 
also had claims they would enter (See Figure 2) that were 
populated from the LINK-UP Library. If they had multiple 
artifacts (ex: popups), they would have multiple notifications at 
different times associated with the same claim. This way, 
designers can setup the test platform to automatically log 
performance data captured during a signal as relevant to its 
associated claims.  

The last phase of setting up the test allows the user to personalize 
the test to their particular prototype. We support this idea in two 
ways: dialog boxes and user defined questions. Through the use of 
dialog boxes the designer is allowed to enter in explanatory 
information for how their system is going to behave. The dialog 
boxes are a simple way for the designer to retain control over the 
automated test platform should she wish to do something that it 
does not support. For user defined questions we support the idea 
that the designer will want to generate qualitative data. For 
compatibility with our critical parameter measurements, there are 
two types of questions: comprehension and projection. A 
comprehension question is one that asks about a specific event or 
object, such as “What was the cheapest flight overall?” A 
projection question deals with trends and predicting new events, 
such as “Did flight prices increase or decrease overall?” or, 
“Would you expect flights next week to be cheaper or more 
expensive than this week?” 

After inputting the questions, the user is done with the setup, and 
most of the work needed for the test in general. The work is 
heaviest early on, but no more so than any traditional manually 
run experiment. By guiding the designer through our setup, we 
hope to not only make it easier for expert designers, but possible 
for novice designers to run an empirical study without the expert 
knowledge. 

2.3.2 Running the Test 
The testing environment is completely automated. Once the test 
begins, users can complete the test without any guidance or 
dealings with the designer. Instructions are included in the test 
from the setup phase. If desired, designers can have instructions 
be to “listen for verbal instructions” (as specified in section 2.3.1).  
All the data collection is handled by our back end. All the user 
interaction with the system during the test itself is logged, and 
questions are asked and answers recorded at the end. This 
eliminates the need for tedious pen and paper surveys, which 
requires one to collect them, enter all the data, and then run 
calculations on them. 

2.3.3 Evaluating Test Results 
Once the data has been uploaded, the LINK-UP user can view the 
results of each test she has run.  Each round is subdivided into the 
claims that were tested for that round.  The average I, R, and C 
values obtained for each claim are displayed next to the claim 
name (Figure 3).  For further information regarding each claim, 
the user can view a claim detail page, which contains information 
such as a claim description, upsides, downsides, scenarios, 
expected I, R, and C values, and I, R, and C values obtained 
through empirical testing.  These parameters are displayed in their 
raw format, a way that speaks naturally to the user (Figure 3). By 
appending the empirical results to the claims in the library, other 
designers can benefit from someone else’s testing results. By 
sharing this knowledge, if a designer is not satisfied with her 

Figure 2. Example of a claim as it would appear in the library. (For reference: NS= Notification System, WH = Weather Highlighter)



Figure 3. Viewing results from the test. 

system’s performance, she can hunt through the claims library to 
find a claim that suits her more. 

2.3.4 Link Back to Reuse and LINK-UP 
One of the primary goals of this system, and indeed of LINK-UP 
overall, is to support reuse. The automatic test platform itself is a 
reusable component of testing. Creating a testing environment for 
an interface is very time consuming. Problems with the test itself 
will prohibit the tester from identifying problems with her own 

interface should some error occur during data collection.  A 
reusable test platform would not only save time, money, and 
potential data, but create a standard for which to measure 
interfaces as in [1]. Working within the scope of notification 
systems and using IRC parameters, we were able to identify many 
reusable components. First, to even be a notification system, there 
must be a primary task. By allowing substitutable primary tasks 
within our testing platform, they can be reused from test to test. 
Furthermore, every test needs data collection and visualization, 
both of which are handled by this module. 

The second part of reuse happens when designers view their 
results using the LINK-UP system. They are provided the option 
of searching for new artifacts that solve problems encountered 
during testing. Suppose a designer’s artifact turned out to be too 
interruptive. She could then search the database for an artifact 
with an interruption slightly lower than her own artifact had, but 
with other similar claims. This is truly the heart of LINK-UP’s 
reuse: the claim database. By providing designers access to each 
other’s design knowledge, they save resources and build better 
systems. The value of the database depends on the value and 
variety of claims that it stocks, which is why our automatic testing 
platform is so important to LINK-UP. If we can provide an 
attractive, easy to use system that provides empirical testing 
results, then designers will be more willing to use it and thus 
provide their own design knowledge for others to reuse. One of 
the principal barriers of reuse is that you must first have 
something to reuse, and that takes effort. By automatically 
appending to the database results that are in a standard format that 
makes them reusable (IRC), we can overcome that barrier and 
stock up on design knowledge. 

3. TESTING 
The empirical testing device created was placed through two 
phases of testing: an end-to-end form of testing and development, 

and consistency testing. Through the use of this two-phase testing 
procedure, an in-depth and controlled empirical testing device 
emerged. 

3.1 Phase 1, End–to–End Testing 
The first phase of testing used seven participants who created 
notification systems based on flight prices posted on 
Expedia.com.  The designers, who were expert level computer 
users, built their systems with a claim-centric approach using IRC 
parameters. The designers setup their experiments using the setup 
tool, and then tested their systems using the empirical testing 
device with three to five different participants. This allowed the 
seven designers to use their own mental model of how the 
developed systems should respond based on the critical 
parameters the system was founded upon. Before the designers 
viewed their results using the empirical testing device, the 
designers were questioned about where and how to redesign the 
said systems. The designers then viewed the results of their data 
using the empirical testing device and speculated upon where to 
redesign. Through analyzing the pre and post data on how to 
redesign, improvement of redesign strategies could be measured. 
Also, to measure ease of use and satisfaction, a questionnaire was 
given to evaluate what the designers thought of the system. 

This phase of testing probed the designers’ receptiveness to the 
software tool, as well as seeing if the designer’s view of their 
system matched the view of their system provided by the 
empirical testing tool. It is important for satisfaction purposes that 
the expert designers feel the tool provides redesign suggestions 
either as good as or better than their own. Also, as experts, their 
opinions provide a reasonable estimation of if the tool results 
actually are as good as or better than their own.  

3.2 Phase 2, Consistency Testing 
From phase one, a notification system experiment was selected 
and the data on how to redesign was used. Six participants, each 
with limited computer knowledge, evaluated empirical data on 
how the notification system performs from the testing phase. The 
participants then answered questions about where and how to 
redesign the system based on the experimentation data.   

This phase of testing investigated the results from the system 
independent from the tool itself to see whether or not consistent 
results could be obtained across multiple participants. Besides 
checking for consistency with the software tool itself, the point 
where design knowledge is transferred from the tool to the human 
to be implemented in the next iteration is susceptible to variation 
in interpretation, and thus of high interest. 

3.3 Hypothesis 
For the first phase of testing, our hypotheses were: 

• Designers would have a moderate level of satisfaction.  
Specifically, we looked for below an average of 3 on the 
surveys. A 7 point scale was used, where 1 was strong 
satisfaction and 7 was strong dissatisfaction. 

• Designers would be able to come up with useful, valid claims 
that they would feel confident with implementing.  

The hypotheses for the second phase of testing were: 

• Designers would be consistent in their redesign concerns. 



• Designers would be confident that their redesign issues would 
improve the system by matching the design IRCs more closely. 

4. Results 
Designers using the system in the first phase of testing expressed 
satisfaction with it overall, but did encounter some problems 
understanding parts of the setup (Figure 4). Designers of the 
system in the second phase were able to understand the system 
and make use of the results from the experiment, but only to an 
extent. 

4.1 Phase 1 
For the redesign survey, where designers were asked what and 
how they would redesign, we found out the following: 

• 4 found new things to redesign that they would not have found 
without our system 

• 3 confirmed earlier ideas they had about what to redesign or 
leave the same 

• 6 said they either found something new or confirmed their old 
ideas about redesign. 

Designers using the system agreed that the system was easy to use, 
interesting, stimulating, and satisfying (Figure 4). They also 
agreed that the system presented important findings. However, 
they did not feel that it would be important to redesign if the test 
results did not match their intended purpose (Figure 4). 

The system simplifies the task of evaluating 
notification systems compared to other methods.   

2.29 

I was able to understand and provide the necessary 
information to the script generator for the section about 
creating signals.  

4.43 

I was able to understand and provide the necessary 
information to the script generator for the section about 
creating dialog boxes.  

2.29 

If the test result IRC does not match the IRC I designed 
for, I think it would be very  important to redesign my 
interface or rethink my requirement assumptions.  

4.17 

Having IRC values that characterize user performance 
does not give me any useful information, if I were to 
continue designing this interface or others like it.  

5.14 

Testing my prototype with users provided important 
findings, either showing the interface was already well-
designed or helping to identify weaknesses.   

2.14 

I found the system satisfying, interesting, stimulating, 
and easy. 

2.82 

Figure 4. Scores out of a 7-point Likert Scale: 1 meaning 
“Agree Completely”  

4.2 Phase 2 
Novice designers were able to understand the domain for the 
experiment, as they agreed that they understood notification 
systems in general (Figure 5). They also understood our method 
of IRC. However, they did not agree that IRC was effective 
enough to evaluate interfaces or redesign by itself, and did not 
feel confident that there redesigns would match the original 
intended IRC values given by the designer (Figure 5). 

For the second phase, the redesign questionnaire revealed that out 
of a total of 18 responses (6 users across 3 claims), 6 of them cited 
IRC values specifically as justification for a redesign issue. These 
answers to the following question are below: 

 “Would you redesign the system based on the claim?  If so, why 
and how?” 

• “No, because the interruption is lower than originally 
anticipated and the main purpose of this method is to have low 
interruption.” 

• “No, because the anticipated downsides were high interruption, 
but empirical study showed that this method was not much 
more interruptive than the other methods.” 

• “I think reaction should be higher, a chime for a new flight 
would draw the user’s attention. It would also reduce the 
chance of the user ignoring the program.” 

• “While the interruption and reaction components are lower than 
expected, I feel this to be fairly unimportant, though I believe 
comprehension should be higher.” 

•  “I don’t think the original values of 1/1/0.5 were reasonable. 
The system purchases tickets automatically, so no reaction or 
comprehension is necessary. Also, interruption isn’t important 
because the user can respond at any time.” 

• “If you want more interruption, perhaps it would be useful to 
associate the popup with a noise, flashing, etc.” 

I understood what notification systems were. 2 

I understood what IRC stood for. 2.44 

The combination of I,R, and C is enough to evaluate 
the effectiveness of an artifact. 

4.67 

The combination of I,R, and C is enough to effectively 
redesign. 

4.2 

I was confident that my redesigned artifact would more 
closely match the designer’s IRC. 

4 

Figure 5. Scores out of 7-point Likert Scale 

5. DISCUSSION 
Our hypothesis for phase one of testing was met, as users were 
satisfied with the system. With an average of 2.82 (more than 
slight agreement) the users indicated the system was satisfying, 
interesting, stimulating, and easy. Key to design reuse is the 
ability of a system to entice usage to overcome any inherent 
reluctance. However, the second hypothesis for the first phase one 
was not fully met: designers did find useful, valid claims, but did 
not feel comfortable implementing them over their own ideas. 
Designers said that they were neutral (4.17) about redesigning “if 
the test result IRC does not match the IRC [they] designed for.” 
Convincing expert users to trust a machine over their own 
judgment is a difficult task. It is undetermined if the tool failed 
because the tool’s suggestions for redesign were truly inferior to 
the expert designers’ own ideas, or because the tool failed to 
instill confidence and trust in the user. 

The hypothesis for phase two regarding consistent redesign issues 
was not met. Users gave a wide array of answers about where to 
redesign. This is not too surprising, as usability studies often 
capture different problems with each test, and different designers 
interpret the problems in unique ways as well. A more robust test 



may have included an expert review of the redesign suggestions to 
evaluate them for “correctness” as well as consistency.  Had this 
hypothesis been met, the system would have conquered a large 
problem in usability testing: inconsistency. The second phase two 
hypothesis was not met, as users did not agree that IRC was 
enough to evaluate the interfaces and redesign them. Since they 
felt IRC was insufficient, it is somewhat moot that they did not 
think their redesign issues would match the design IRC more 
closely than the original interface. 

Users of the system understood the evaluation topics and terms 
presented to them, and we are confident they understood the tasks 
set before them. Why then, did they not take the system results 
more seriously and trust them? The results were not perceived as 
accurate and thus not trusted, either due to a misconception or a 
true flaw in the system. We feel we have achieved a measure of 
user acceptance which will enable us to return to the drawing 
board to make a system which is already easy to use into a more 
robust one.  

6. FUTURE WORK 
Many of the usability problems that arose during testing were due 
to the designers’ unfamiliarity with key terms that were used in 
the script creation phase.  Exit surveys helped us realize that, 
contrary to what we had originally thought, the designers did not 
have a clear picture of what the empirical tests would entail. This 
relates to the idea that even with automation empirical design is a 
hard process to learn.   Because of this, the first portion of future 
work that should be addressed is an end-to-end animated tutorial.  
This tutorial should walk a designer through the entire empirical 
test process – from creation to completion.  The tutorial would 
cover all key terms and jargon used in the empirical test module.  
Also, it would show the designer how data entered in the script 
creation phase affects the empirical test. This testing should be 
coordinated by one designer over the course of semester or four 
months, with four or more students used as test subjects. 

7. ACKNOWLEDGMENTS 
Our thanks go to all those who worked on LINK-UP prior to, and 
concurrent with, our work: special thanks to Anderson Ray 
Tarpley III for his hard work on this project. Many undergraduate 
seminars and graduate classes have been hard at work on LINK-
UP in the previous years, allowing us this chance to implement 
their design.  

8. REFERENCES 
[1] Booker, J. E., Chewar, C. M., & McCrickard, D. S. Usability 

Testing of Notification Interfaces: Are We Focused on the 
Best Metrics? 41st Annual ACM Southeast Conference. 
(April  2004),  pp. 128-133 

[2] Carroll, J. M. Rosson, M. B. 2002. Usability Engineering: 
Scenario-Based Development of Human-Computer 
Interaction. San Francisco, CA: Morgan Kaufman. 

[3] Carroll, J. M., Singley, M., Rosson, M. B. Integrating theory 
development with design evaluation. Behavior & 
Information Technology. 1992. 11(5). pp. 247-255 

[4] Chewar, C. M., Bachetti, E., McCrickard D. S., and Booker, 
J. Automating a Design Reuse Facility with Critical 
Parameters: Lessons Learned in Developing the LINK-UP 
System. In Proceedings of the 2004 International Conference 
on Computer-Aided Design of User Interface (CADUI 2004), 
Island of Madeira, Portugal, January 2004, pp. 236-247. 

[5] Fabian, A., Felton, D., Grant, M., Montabert, C., Pious, K., 
Rashidi, N., Tarpley, A. R., Taylor, N., Chewar, C. M., 
McCrickard, D. S. Designing the Claims Reuse Library: 
Validating Classification Methods for Notification System. 
41th Annual ACM Southeast Conference. (April 2004). pp. 
357-362 

[6] Lee, J. C., Lin, S., Chewar, C. M., McCrickard, Fabian, A. 
Jackson, A. From Chaos to Cooperation: Teaching Analytic 
Evaluation with LINK-UP. In Proceedings of the World 
Conference on E-Learning in Corporate, Government, 
Healthcare, and Higher Education (E-Learn '04), November 
2004 

[7] McCrickard, D. S., Catrambone, R., Chewar, C. M., Stasko, 
J. T. Establishing Tradeoffs that Leverage Attention for 
Utility: Empirically Evaluating Information Display in 
Notification Systems. International Journal of Human-
Computer Studies 58(5), May 2003, pp. 547-582 

[8] Newman, W. M. Better or Just Different? On the Benefits of 
Designing Interactive Systems in terms of Critical 
Parameters. In Proc. of DIS 97, ACM, 1997,  pp 239-245. 

[9] Norman, D. A. Cognitive engineering. In Donald A. Norman 
and Stephan W. Draper (eds), User centered system design: 
New perspectives on human computer interaction. Lawrence 
Erlbaum Associates, 1986, 31-62. 

[10] Payne, C., Allgood, C. F., Chewar, C. M., Holbrook, C., 
McCrickard, D. S. Generalizing Interface Design 
Knowledge: Lessons Learned from Developing a Claims 
Library.  IEEE International Conference on Information 
Reuse and Integration. (October 2003), pp. 362-369 

[11] Rittle, H. W. J. On the Planning Crisis: Systems Analysis of 
the ‘First and Second Generations’. Reprint #107 from 
Bedrifts Okonomen, no. 8 (October 1972), Berkeley, Institute 
of Urban and Regional Development, University of 
California. 

[12] Whittaker, S., Terveen, L., and Nardi, B. (Let's stop pushing 
the envelope and start addressing it: a reference task agenda 
for HCI.  Human Computer Interaction (2003), 15, 75-106 

 


