
How do we interact with an agent:
A perspective from an undergraduate human factors class

D. Scott McCrickard May Wing-Sze Cheng

Graphics, Visualization, and Usability Center

and College of Computing

Georgia Institute of Technology

Atlanta, GA 30332

Email: fmccricks,maycg@cc.gatech.edu URL: http://www.cc.gatech.edu/~mccricks/

Abstract

Undergraduate human factors classes explore guidelines for the design of user in-

terfaces. However, these guidelines may not apply when dealing with agents, which

run constantly without explicit direction from a user. An assignment for Georgia Tech

undergrads asked them to design an interface for an agent and discuss the guidelines

that were most and least applicable. This paper reviews some of their solutions.

Keywords: Information agents



1 Introduction

A software agent is a system that performs tasks in an autonomous manner in order to satisfy

the needs of its users. By autonomous we mean that the agent operates for long periods of

time without direct user intervention. We are particularly interested in information �ltering

agents that collect and process information for delivery to a user.

A number of HCI issues have emerged from the increased development and use of these

agents. How should agents present the information that they collect to their users? How

should users guide and direct their agents? To �nd the answers to these questions, we

presented an agent design assignment to the students in a senior-level human factors class

at Georgia Tech.

The human factors class is cross-listed in the College of Computing and the School of

Psychology at Georgia Tech, so it attracts students with a wide variety of skills and back-

grounds. All have had some introductory psychology and computer programming courses,

but beyond that there are students from mechanical engineering, industrial engineering,

information design, as well as computer science and psychology. We expected that this mix

of students would result in interesting and thought-provoking designs.

As is common in human factors classes, we examined various rules for the design of

interactive systems relating to consistency, cognitive load, color, animation, and so forth.

Most textbooks on the subject contain a discussion of these rules [2]. However, these rules

were designed with \typical" programs in mind, where a user starts the program, uses it to

accomplish some task, then exits the program. Agents do not �t this paradigm: they run

constantly without explicit direction from the user, and they may require input or generate

output at unpredictable times.

The students were asked to design and implement an agent that would display online

news articles taken from the Yahoo news page. This page is updated constantly during the

day, making it di�cult for a user to keep up with all of the new articles. In an accompanying

writeup, the students were asked to consider how agent interfaces are similar and di�erent

from typical program interfaces and to discuss the rules that were most and least applicable

to their design. This paper presents some of their designs and summarizes their writeups. A

complete description of the assignment along with selected results from the students can be

found on the Web at www.cc.gatech.edu/classes/cs4753 98 winter/homeworks/hw2.html

2 Rules for agent design

This section of the paper examines the rules that students thought were important in

designing an agent. Ironically, the same rules that many students found important to

follow, others found necessary and useful to break. We will summarize the discussions for

each of these rules using text and examples from the student submissions.

Screen space One rule followed by most students was to minimize screen real estate

with the display and interface. The sentiment was that the agent should be a small desktop

application that can be tucked away in a corner so that the rest of the screen can be used

by other applications. All too often it was the widgets that display text that su�ered in

size { a user only had a few lines to read the text.

1



A few students chose not to follow this rule. They felt it was more important to show

the text in a large, readable manner than to try to cram information into a small space.

The interface could be iconi�ed when not in use, then raised when the user wants to read

an article.

A compromise was to provide a small alert box that shows when new articles arrive,

then to display a window when the user clicks on a button or icon. The pop-up window

could then be dismissed when the user �nishes reading an article. The user would still be

alerted to the presence of new articles but would not have to sacri�ce screen space at all

times. An example of this type of interface is shown in Figure 1. One student went a step

further and allowed users to jump to the article Web page using a Netscape browser, thus

allowing a user to get the full multimedia e�ect using an application designed for displaying

articles (see Figure 2).

Knowledge in the world \Put knowledge in the world" is an oft-stated rule found in

Don Norman's Design of Everyday Things [1]. Knowledge in the world refers to the hints,

labels, and signals in interfaces that inform or remind us of how they work. By using aids

that users have seen before, an interface can be easy to learn and use.

Most students designed agent interfaces that are similar to those found in existing in-

terfaces, with explanatory labels and well-established interface rules. They argued that the

similarities with existing interfaces would result in an agent that is easy to use for �rst-

timers. As a result, many of the designs consisted of a list of articles, a text display area,

and a series of buttons for navigating through the list. However, several good arguments

were made for violating the well-known behavior of interfaces by having common actions

produce unusual results.

� Resizes reveal additional information: Since di�erent users have di�erent amounts of

space that they are willing to provide for the interface, one student varied the number

of widgets and the amount of available information based on the amount of space that

was provided to the user. Then, if users want to see more information, they can make

the interface bigger, and if they want more space for other windows, they can shrink

the interface while preserving some of the information. See Figure 3 for an example.

� Buttons double as displays: Typically the button widget has a consistent and non-

changing label, but because space is at a premium, several students used buttons to

show information about a change as well as to provide functionality when pushed.

Figure 2 shows an example of this.

� Keyboard controls rather than space-consuming buttons: Several students provided

keyboard controls in addition to or even instead of space-consuming widgets. A user

could hide the widgets and use keystrokes to access the interface, even though this

necessitates \knowledge in the head" (a user must remember the keystrokes since the

visual clues from buttons and other widgets are not present).

Although unusual actions produced interesting results in many of the designs, students

argued that simple and unobtrusive error handling would encourage users to experiment

with the interfaces and discover these features. They did not provide any functionality to

the user that was not easily reversible except allowing them to exit the interface. Since

2



users do not perceive a threat, they would be more likely to play with the interface and

discover the new functionality.

Use of color and animation Color and animation are two common techniques for

attracting the user's attention. Rules dictate that up to four colors can be used to highlight

interesting items, with other colors used for rare and important occasions. Animation (such

as blinking, continuous scrolling, or changes in color) should be used sparingly to avoid

annoying the user. All too often amateur designers will overuse these techniques, so we

were worried that the class agents would reect this. While we did see some poor uses, in

several places it was used in an interesting and informative manner.

Color was used to highlight important or dangerous widgets. The bene�ts of this is

questionable { the positioning generally directs novices to the correct action, and advanced

users tend to not need and even actively dislike this use of color. As seen is Figure 2, color

change can be used to indicate that articles have been updated. However, it is unclear that

a user would immediately realize that if a button is one color (red) it means there are new

articles and if it is another (blue) it means there are not.

Two animation widgets, a ticker-tape widget and a fade widget, were provided to the

students (see Figure 4). Often they used them in places where a simple change in text

or inversion of colors would su�ce. However, several used a tickering display of headers

or fading between the headers could alert the user of the information contents without

requiring button presses or other physical e�ort.

3 Conclusions

This paper presented several information delivery agent designs created by undergraduate

students. On occasion students violated certain well-established rules for interface design

to support the unique nature of agent-style programs. For example, animated tickering and

fading widgets were used to show more information without user interaction, and knowledge

in the world was sacri�ced to save space.

However, all too often the agent designs looked much like designs for typical non-agent

programs. While these well-established designs should not be dismissed lightly, it is im-

portant to remember the fundamental di�erence in the way an agent works and consider

how it impacts the manner in which user input is collected and information is displayed.

An agent works autonomously without explicit direction from the user, but at any time

it can identify interesting information that needs to be communicated to the user. The

importance of certain information must be balanced by the needs of the user { an agent

should display information when and only when a user needs it, ideally with a minimum

amount of e�ort from the user.

References

[1] Donald A. Norman. The Design of Everyday Things. Currency Doubleday, 1988.

[2] Ben Shneiderman. Designing the User Interface: Strategies for E�ective Human-

Computer Interaction. Addison-Wesley, 1998.

3



Figure 1: A news agent in iconi�ed form (left) and expanded form. The designer suggests

that users will typically keep the news reader in iconi�ed form, and the icon (and an audio

cue) will tell them when new news arrives. Users can click on the icon to expand the

interface to its full form (at right) and read the articles.

Figure 2: A news agent (left) and its accompanying news viewer. The agent alerts users of

new articles by changing the color of the image and displaying the \New News" message.

The lower message is a ticker widget that scrolls through the news headers. If a user sees

an article of interest, the news viewer can be raised by pressing the image. If a user wants

more information or wants to view the article on the Web, the \Jump To Web" button will

pull up the appropriate page in the Netscape browser.

4



Figure 3: A news agent at a large size (right) and resized to a smaller size. The designer

suggests that in general a user would keep the agent at the small size so it would �t in a

corner of the desktop. When new articles arrive, the \News" image changes color and the

tickering header display updates. If the user wants to read an article, the agent can be

resized so the full interface is visible.

Figure 4: Five snapshots in the operation of a fade widget that displays the scores of baseball

games. The �rst frame shows an initial block of text. The next two frames show how the

text fades away into the background, and the �nal two frames show how the new text will

appear in the same place.

5


